
WORKING DRAFT

10-166

1st June 2010 14:42

This is an internal working document of J3.

2010/02/18 WORKING DRAFT 10-166

Contents

1 Overview . 1
1.1 Scope . 1
1.2 Normative references . 1
1.3 Terms and definitions . 1
1.4 Compatibility . 1

1.4.1 New intrinsic procedures . 1
1.4.2 Fortran 2008 compatibility . 1

2 Execution control . 3
2.1 Image control statements . 3

2.1.1 Segments . 3
2.2 SYNC TEAM statement . 3
2.3 NOTIFY and QUERY statements . 5

3 Input/output statements . 7
3.1 OPEN statement . 7

3.1.1 TEAM= specifier in the OPEN statement . 7
3.2 CLOSE statement . 7
3.3 File positioning statements . 8
3.4 FLUSH statement . 8
3.5 File inquiry statement . 8

3.5.1 NEXTREC= specifier in the INQUIRE statement . 8
3.5.2 TEAM= specifier in the INQUIRE statement . 8

3.6 Error conditions and the ERR= specifier . 8
3.7 IOSTAT= specifier . 8

4 Intrinsic procedures . 9
4.1 Specification of the standard intrinsic procedures . 9

4.1.1 Collective subroutine . 9
4.1.2 Arguments to collective subroutines . 9

4.2 Standard generic intrinsic procedures . 9
4.3 Specifications of the standard intrinsic procedures . 10
4.4 The ISO FORTRAN ENV intrinsic module . 15

4.4.1 General . 15
4.4.2 IMAGE TEAM . 15

Annex A (informative) Extended notes . 17
A.1 Notes re Clause 2 of ISO/IEC 1539-1:2010 . 17

A.1.1 Normal and error termination of execution . 17
A.2 Notes re Clause 13 of ISO/IEC 1539-1:2010 . 18

A.2.1 Collective coarray subroutine variations . 18

Contents i

10-166 WORKING DRAFT 2010/02/18

Foreword

1 ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commis-
sion) form the specialized system for worldwide standardization. National bodies that are members of ISO or
IEC participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and nongovernmental,
in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

2 International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

3 The main task of the joint technical committee is to prepare International Standards. Draft International Stand-
ards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting a vote.

4 Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

5 ISO/IEC TR 29113:2010(E) was prepared by Joint Technical Committee ISO/IEC/JTC1,Information technology,
Subcommittee SC22, Programming languages, their environments and system software interfaces.

6 This technical report specifies an enhancement of the parallel processing facilities of the programming language
Fortran. Fortran is specified by the International Standard ISO/IEC 1539-1:2010.

7 It is the intention of ISO/IEC JTC1/SC22/WG5 that the semantics and syntax specified by this technical report
be included in the next revision of the Fortran International Standard without change unless experience in the
implementation and use of this feature identifies errors that need to be corrected, or changes are needed to achieve
proper integration, in which case every reasonable effort will be made to minimize the impact of such changes on
existing implementations.

ii Foreword

2010/02/18 WORKING DRAFT 10-166

Introduction

Technical Report on Enhanced Parallel Computing Facilities

1 Fortran, as standardized by ISO/IEC 1539-1:2010, provides core facilities for parallel programming with coarrays.
A Fortran program containing coarrays is interpreted as if it were replicated a fixed number of times and all copies
were executed asynchronously. Each copy has its own set of data objects and is called an image.

2 ISO/IEC TR xxxxx extends these core facilities with

• features in support of teams of images collaborating independently of other images;
• collective intrinsic procedures, which are invoked on a team of images and act collaboratively;
• the image control statements NOTIFY and QUERY for more detailed control of the collaborative actions

of the images; and
• input/output facilities for files connected on more than one image.

3 The facility specified in ISO/IEC TR xxxxx is a compatible extension of Fortran as standardized by ISO/IEC
1539-1:2010.

4 ISO/IEC TR xxxxx is organized in clauses that relate to clauses of ISO/IEC 1539-1:2010 with the same names,
viz :

Overview Clause 1
Execution control Clause 8
Input/output statements Clause 9
Procedures Clause 12
Intrinsic procedures and modules Clause 13

5 It also contains the following nonnormative material:

Extended notes Annex C

Introduction iii

10-166 WORKING DRAFT 2010/02/18

iv Introduction

2010/02/18 WORKING DRAFT 10-166

Technical Report — Enhanced Parallel Computing1

Facilities —2

1 Overview3

1.1 Scope4

1 ISO/IEC TR xxxxx specifies the form and establishes the interpretation of facilities that extend the Fortran5

language defined by ISO/IEC 1539-1:2010.6

1.2 Normative references7

1 The following referenced standard is indispensable for the application of this document.8

2 ISO/IEC 1539-1:2010, Information technology—Programming languages—Fortran9

1.3 Terms and definitions10

1 For the purposes of this document, the following terms and definitions apply in addition to those defined in11

ISO/IEC 1539-1:2010.12

1 1.3.113

collective subroutine14

intrinsic subroutine that is invoked on a team of images to perform a calculation on those images and assign the15

value of the result on all of them (4.1.1)16

1 1.3.217

connect team18

team of images that can reference an external unit19

1 1.3.320

team21

set of images identified by a scalar data object of type IMAGE TEAM (4.4.2)22

1 1.3.423

team synchronization24

synchronization of the images in a team (2.2)25

1.4 Compatibility26

1.4.1 New intrinsic procedures27

1 ISO/IEC TR xxxxx defines intrinsic procedures in addition to those specified in ISO/IEC 1539-1:2010. Therefore,28

a Fortran program conforming to ISO/IEC 1539-1:2010 might have a different interpretation under ISO/IEC TR29

xxxxx if it invokes an external procedure having the same name as one of the new intrinsic procedures, unless30

that procedure is specified to have the EXTERNAL attribute.31

1.4.2 Fortran 2008 compatibility32

1 ISO/IEC TR xxxxx is an upwardly compatible extension to ISO/IEC 1539-1:2010.33

1 Overview 1

10-166 WORKING DRAFT 2010/02/18

2 Overview 1.4.2

2010/02/18 WORKING DRAFT 10-166

2 Execution control1

2.1 Image control statements2

1 Each of the following is an additional image control statement:3

• SYNC TEAM;4

• NOTIFY;5

• QUERY;6

• OPEN for a file that is being opened on more than one image;7

• CLOSE for a file that is open on more than one image;8

• CALL for a collective subroutine (4.1.1) or FORM TEAM (4.3.11) .9

2 During an execution of a statement that invokes more than one procedure, more than one invocation might cause10

execution of a CLOSE statement for a file with a connect team of only one image.11

2.1.1 Segments12

1 If an image P writes a record during the execution of segment Pi to a file that is opened for direct access with a13

TEAM= specifier, no other image Q shall read or write the record during execution of a segment that is unordered14

with Pi. Furthermore, it shall not read the record in a segment that succeeds Pi unless15

• after image P writes the record, it executes a FLUSH statement for the file during the execution of a segment16

Pk, where k ≥ i, and17

• before image Q reads the record, it executes a FLUSH for the file during the execution of a segment Qj that18

succeeds Pk.19

NOTE 2.1
The incorrect sequencing of image control statements can suspend execution indefinitely. For example,
one image might be executing a blocking QUERY for which an image in its image set never executes the
corresponding NOTIFY.

2.2 SYNC TEAM statement20

1

R201 sync-team-stmt is SYNC TEAM (image-team [, sync-stat-list])
R202 image-team is scalar-variable
C201 The image-team shall be a scalar variable of type IMAGE TEAM from

the intrinsic module ISO FORTRAN ENV.21

2 Execution of a SYNC TEAM statement performs a team synchronization, which is a synchronization of the22

images in a team. The team is specified by the value of image-team and shall include the executing image. All23

images of the team shall execute a SYNC TEAM statement with a value of image-team that was constructed24

by corresponding invocations of the intrinsic subroutine FORM TEAM for the team. They do not commence25

executing subsequent statements until all images in the team have executed a SYNC TEAM statement for the26

team an equal number of times since FORM TEAM was invoked for the team. If images M and T are any two27

members of the team, the segments that execute before the statement on image M precede the segments that28

execute after the statement on image T.29

3 Execution of an OPEN with a TEAM= specifier, a CLOSE for a unit whose connect team consists of more than one30

image, or a CALL for a collective subroutine is interpreted as if an execution of a SYNC TEAM statement for the31

2 Execution control 3

10-166 WORKING DRAFT 2010/02/18

team occurred at the beginning and end of execution of the statement. If the statement contains an image-team,1

it specifies the team and shall satisfy the conditions required of an image-team in a SYNC TEAM statement;2

otherwise, the team is the connect team for the unit in a CLOSE statement or the set of all images for a CALL3

to a collective subroutine.4

NOTE 2.2
Execution of the intrinsic subroutine FORM TEAM also performs a team synchronization.

NOTE 2.3
In this example the images are divided into two teams, one for an ocean calculation and one for an atmo-
sphere calculation.

USE, INTRINSIC :: ISO_FORTRAN_ENV
TYPE(IMAGE_TEAM) :: TEAM
INTEGER :: N2, STEP, NSTEPS
LOGICAL :: OCEAN

N2 = NUM_IMAGES()/2
OCEAN = (THIS_IMAGE()<=N2)
IF (OCEAN) THEN

CALL FORM_TEAM (TEAM, [(I, I=1,N2)])
ELSE

CALL FORM_TEAM (TEAM, [(I, I=N2+1,NUM_IMAGES())])
END IF

: ! Initial calculation
SYNC ALL
DO STEP = 1, NSTEPS

IF (OCEAN) THEN
DO

: ! Ocean calculation
SYNC TEAM (TEAM)
IF (...) EXIT ! Ready to swap data

END DO
ELSE

DO
: ! Atmosphere calculation
SYNC TEAM (TEAM)
IF (...) EXIT ! Ready to swap data

END DO
END IF
SYNC ALL
: ! Swap data

END DO

In the inner loops, each set of images first works entirely with its own data and each image synchronizes
with the rest of its team. The number of synchronizations for the ocean team might differ from the number
for the atmosphere team. The SYNC ALL that follows is needed to ensure that both teams have done their
calculations before data are swapped.

4 Execution control 2.3

2010/02/18 WORKING DRAFT 10-166

2.3 NOTIFY and QUERY statements1

1

R203 notify-stmt is NOTIFY (image-set [, sync-stat-list])
R204 query-stmt is QUERY (image-set [, query-spec-list])
R205 query-spec is READY = scalar-logical-variable

or sync-stat
C202 (R204) No specifier shall appear more than once in a given query-spec-list.2

2 Execution on image M of a NOTIFY statement with a different image T in its image-set increments by 1 a record3

of the number of times, NM→T , image M executed such a NOTIFY statement.4

3 A QUERY statement is blocking if and only if it has no READY= specifier. A QUERY statement is satisfied on5

completion of its execution if and only if it is a blocking QUERY statement or it set the variable specified by its6

READY= specifier to true.7

4 Let QM←T denote the number of times image M has completed the execution of a satisfied QUERY statement8

with a different image T in its image set. Completion of execution on image M of a blocking QUERY statement9

is delayed until, for each different T in its image set, NT→M > QM←T .10

5 Execution of a non-blocking QUERY statement on image M causes the scalar-logical-variable of its READY=11

specifier to be assigned the value false if, for a different image T in the image set, NT→M ≤ QM←T ; otherwise,12

true is assigned.13

6 A NOTIFY statement execution on image T and a satisfied QUERY statement execution on image M correspond14

if and only if15

• the NOTIFY statement’s image set includes image M,16

• the QUERY statement’s image set includes image T, and17

• after execution of both statements has completed, NT→M = QM←T .18

7 Segments on an image executed before the execution of a NOTIFY statement precede the segments on other19

images that follow execution of its corresponding QUERY statements.20

NOTE 2.4
The NOTIFY and QUERY statements can be used to order statement executions between a producer and
consumer image.

INTEGER,PARAMETER :: PRODUCER = 1, CONSUMER = 2
INTEGER :: VALUE[*]
LOGICAL :: READY

SELECT CASE (THIS_IMAGE())
CASE (PRODUCER)

VALUE[CONSUMER] = 3
NOTIFY (CONSUMER)

CASE (CONSUMER)
WaitLoop: DO

QUERY (PRODUCER,READY=READY)
IF (READY) EXIT WaitLoop
! Statements neither referencing VALUE[CONSUMER], nor causing it to
! become defined or undefined

END DO WaitLoop
! references to VALUE

CASE DEFAULT
! Statements neither referencing VALUE[CONSUMER], nor causing it to
! become defined or undefined

2.3 Execution control 5

10-166 WORKING DRAFT 2010/02/18

NOTE 2.4 (cont.)

END SELECT

Unlike SYNC IMAGES statements, the number of notifications and corresponding queries may be unequal.
A program can complete with an excess number of notifies.

NOTE 2.5
NOTIFY/QUERY pairs can be used in place of SYNC ALL and SYNC IMAGES to achieve better load
balancing and allow one image to proceed with calculations while another image is catching up. For example,

IF (THIS_IMAGE()==1) THEN
DO I=1,100

... ! Primary processing of column I
NOTIFY(2) ! Done with column I

END DO
SYNC IMAGES(2)

ELSE IF (THIS_IMAGE()==2) THEN
DO I=1,100

QUERY(1) ! Wait until image 1 is done with column I
... ! Secondary processing of column I

END DO
SYNC IMAGES(1)

END IF

6 Execution control 2.3

2010/02/18 WORKING DRAFT 10-166

3 Input/output statements1

3.1 OPEN statement2

3.1.1 TEAM= specifier in the OPEN statement3

1 The OPEN statement has the additional specifier TEAM= image-team. The image-team specifies the connect4

team for the unit. If there is no TEAM= specifier, the connect team consists of only the executing image.5

2 A named file that is opened with the TEAM= specifier is opened using the same name on each image of the6

team.7

3 If the file is already connected on the image and the previous connect team has more than one image, the new8

connect team shall be the same.9

4 Each record shall be read or written by a single image. The processor shall ensure that once an image commences10

transferring the data of a record to the file, no other image transfers data to the file until the whole record has11

been transferred.12

5 If no error occurs during the execution of the OPEN statement with a NEWUNIT= specifier, the variable is13

defined with a processor determined NEWUNIT value that is the same on all images in the connect team.14

6 All images in the connect team shall execute the same OPEN statement with identical values for the connect-specs,15

except for ERR=, IOMSG=, IOSTAT=, NEWUNIT=, and TEAM=. There is an implicit team synchronization16

(2.2).17

7 If the OPEN statement has a STATUS= specifier with the value SCRATCH, the processor shall connect the18

same file to the unit on all images in the connect team.19

8 If the connect team contains more than one image, the OPEN statement shall20

• specify direct access or21

• specify sequential access and have an ACTION= specifier that evaluates to WRITE.22

NOTE 3.1
Writing to a sequential file from more than one image without using synchronization is permitted, but is
only useful for situations in which the ordering of records is unimportant. An example is for diagnostic
output that is labeled with the image index.

9 A unit that is neither connected nor preconnected has an empty connect team.23

10 The units identified by the values OUTPUT UNIT and ERROR UNIT in the intrinsic module ISO FORTRAN -24

ENV are preconnected on all images. The unit identified by the value INPUT UNIT in the intrinsic module ISO -25

FORTRAN ENV is preconnected on image 1 and is not preconnected on other images. All other preconnected26

units have a connect team consisting of the executing image.27

3.2 CLOSE statement28

1 If an image executes a CLOSE statement, all images in the connect team of the unit specified shall execute a29

CLOSE statement for the unit with the same disposition. There is an implicit team synchronization associated30

with the execution of a CLOSE statement for a unit with a connect team that has more than one image (2.2).31

3 Input/output statements 7

10-166 WORKING DRAFT 2010/02/18

2 During the completion step of termination of execution of a program, all units that are connected are closed.1

NOTE 3.2
The effect is as though a CLOSE statement without a STATUS= specifier were executed on each connected
unit, but without team synchronization for units with a connect team of more than one image.

3.3 File positioning statements2

1 A unit whose connect team has more than one image shall not be referred to by a BACKSPACE, ENDFILE, or3

REWIND statement.4

3.4 FLUSH statement5

1 The FLUSH statement has the additional specifier TEAM= image-team.6

2 Execution of a FLUSH statement causes data written to an external unit to be made available to other images7

of the unit’s connect team which execute a FLUSH statement in a subsequent segment for that unit.8

3.5 File inquiry statement9

3.5.1 NEXTREC= specifier in the INQUIRE statement10

1 The scalar-int-variable in the NEXTREC= specifier is assigned the value n + 1, where n is the record number of11

the last record read from or written to the connection for direct access by the executing image.12

3.5.2 TEAM= specifier in the INQUIRE statement13

1 The INQUIRE statement has the additional specifier TEAM= image-team.14

2 The image-team in the TEAM= specifier is assigned the value of the connect team if the file or unit is connected;15

otherwise it is assigned a value that identifies an empty image set.16

NOTE 3.3
The indices of the images in a team may be obtained by using TEAM IMAGES (4.3.12).

3.6 Error conditions and the ERR= specifier17

1 If an error condition occurs during execution of an OPEN or CLOSE statement on any of the images in the18

connect team, an error condition occurs on all images in the connect team.19

3.7 IOSTAT= specifier20

1 Execution of an input/output statement containing the IOSTAT= specifier causes the scalar-int-variable in the21

IOSTAT= specifier to become defined with the processor-dependent positive integer value of the constant STAT -22

STOPPED IMAGE if the operation involves a team with more than one image and at least one of the images of23

the team initiates termination of execution.24

8 Input/output statements 3.3

2010/02/18 WORKING DRAFT 10-166

4 Intrinsic procedures1

4.1 Specification of the standard intrinsic procedures2

4.1.1 Collective subroutine3

1 A collective subroutine is one that is invoked on a team of images to perform a calculation on those images and4

which assigns the value of the result on all of them. If it is invoked by one image of a team, it shall be invoked by5

the same statement on all images of the team. There is an implicit team synchronization (2.2) at the beginning6

and end of the execution of a collective subroutine.7

4.1.2 Arguments to collective subroutines8

1 Each actual argument to a collective subroutine shall have the same bounds, cobounds, and type parameters as9

the corresponding actual argument on any other image of the team. Each actual argument corresponding to an10

INTENT (IN) argument of type IMAGE TEAM shall have a value constructed by an invocation of FORM TEAM11

for the team on that image.12

2 On any two images of the team, the ultimate arguments for the first coarray dummy argument shall be cor-13

responding coarrays as described in 2.4.7 of ISO/IEC 1539-1:2010, and the ultimate arguments of the RESULT14

dummy argument shall be corresponding coarrays.15

4.2 Standard generic intrinsic procedures16

1 In the Class column of Table 4.1,17

C indicates that the procedure is a collective subroutine,18

T indicates that the procedure in a transformational function.19

Table 4.1: Standard generic intrinsic procedure summary
Procedure Arguments Class Description
CO ALL (MASK, RESULT [,

TEAM])
C Determine whether all corresponding

elements of MASK are true on a team
of images.

CO ANY (MASK, RESULT [,
TEAM])

C Determine whether any corresponding
element of MASK is true on a team of
images.

CO COUNT (MASK, RESULT [,
TEAM])

C Count the numbers of true elements on
a team of images.

CO FINDLOC (SOURCE, VALUE,
RESULT, TEAM [, BACK])
or (SOURCE, VALUE,
RESULT [, BACK])

C Determine the image indeximage indices
of the first or last image, in image in-
dex order, having a value that matches
VALUE, on a team of images.

CO MAXLOC (SOURCE, RESULT [,
TEAM])

C Determine the image indices of the max-
imum values of the elements on a team
of images.

CO MAXVAL (SOURCE, RESULT [,
TEAM])

C Determine the maximum values of the
elements on a team of images.

CO MINLOC (SOURCE, RESULT [,
TEAM])

C Determine the image indices of the min-
imum values of the elements on a team
of images.

4 Intrinsic procedures 9

10-166 WORKING DRAFT 2010/02/18

Table 4.1: Standard generic intrinsic procedure summary (cont.)
Procedure Arguments Class Description
CO MINVAL (SOURCE, RESULT [,

TEAM])
C Determine the minimum values of the

elements on a team of images.
CO PRODUCT (SOURCE, RESULT [,

TEAM])
C Compute the products of elements on a

team of images.
CO SUM (SOURCE, RESULT [,

TEAM])
C Sum elements on a team of images.

FORM TEAM (TEAM, IMAGES [, STAT,
ERRMSG])

S Form a team of images.

TEAM IMAGES (TEAM) T Rank one array of the indices of the im-
ages in a team.

4.3 Specifications of the standard intrinsic procedures1

4.3.1 CO ALL (MASK, RESULT [, TEAM])2

1 Description. Determine whether all corresponding elements of MASK are true on a team of images.3

2 Class. Collective subroutine.4

3 Arguments.5

MASK shall be a coarray of type logical. It may be a scalar or an array. It is an INTENT (IN) argument.6

RESULT shall be a coarray of type logical and shall have the same shape as MASK. It is an INTENT (OUT)7

argument. If it is scalar, it is assigned the value true if the value of MASK is true on all the images8

of the team, and the value false otherwise. If it is an array, each element is assigned the value true9

if all corresponding elements of MASK are true on all the images of the team, and the value false10

otherwise.11

TEAM (optional) shall be a scalar of type IMAGE TEAM(4.4.2). It is an INTENT (IN) argument that specifies12

the team for which CO ALL is performed. If TEAM is not present, the team consists of all images.13

4 Example. If the number of images is two and MASK is the array [true, false, true] on one image and14

[true, true, true] on the other image, the value of RESULT after executing the statement CALL CO ALL (MASK, RES-15

ULT) is [true, false, true].16

4.3.2 CO ANY (MASK, RESULT [, TEAM])17

1 Description. Determine whether any corresponding element of MASK is true on a team of images.18

2 Class. Collective subroutine.19

3 Arguments.20

MASK shall be a coarray of type logical. It may be a scalar or an array. It is an INTENT (IN) argument.21

RESULT shall be a coarray of type logical and shall have the same shape as MASK. It is an INTENT (OUT)22

argument. If it is scalar it is assigned the value true if any value of MASK is true on any image of23

the team, and false otherwise. If it is an array, each element is assigned the value true if any of the24

corresponding elements of MASK are true on any image of the team, and false otherwise.25

TEAM (optional) shall be a scalar of type IMAGE TEAM(4.4.2). It is an INTENT (IN) argument that specifies26

the team for which CO ANY is performed. If TEAM is not present, the team consists of all images.27

4 Example. If the number of images is two and MASK is the array [true, false, false] on one image and28

[true, true, false] on the other image, the value of RESULT after executing the statement CALL CO ANY (MASK,29

10 Intrinsic procedures 4.3

2010/02/18 WORKING DRAFT 10-166

RESULT) is [true, true, false].1

4.3.3 CO COUNT (MASK, RESULT [, TEAM])2

1 Description. Count the numbers of true elements on a team of images.3

2 Class. Collective subroutine.4

3 Arguments.5

MASK shall be a coarray of type logical. It may be a scalar or an array. It is an INTENT (IN) argument.6

RESULT shall be a coarray of type integer and shall have the same shape as MASK. It is an INTENT (OUT)7

argument. If it is scalar, it is assigned a value equal to the number of images of the team for which8

MASK has the value true. If it is an array, each element is assigned a value equal to the number of9

corresponding elements of MASK on the images of the team that have the value true.10

TEAM (optional) shall be a scalar of type IMAGE TEAM(4.4.2). It is an INTENT (IN) argument that specifies11

the team for which CO COUNT is performed. If TEAM is not present, the team consists of all12

images.13

4 Example. If the number of images is two and MASK is the array [true, false, false] on one image and14

[true, true, false] on the other image, the value of RESULT after executing the statement15

CALL CO COUNT (MASK, RESULT) is [2, 1, 0].16

4.3.4 CO FINDLOC (SOURCE, VALUE, RESULT, TEAM [, BACK]) or
CO FINDLOC (SOURCE, VALUE, RESULT [, BACK])17

1 Description. Determine the image indices of the first or last image, in image index order, having a value that18

matches VALUE, on a team of images.19

2 Class. Collective subroutine.20

3 Arguments.21

SOURCE shall be a coarray of intrinsic type. It may be a scalar or an array. It is an INTENT (IN) argument.22

VALUE shall be scalar and in type conformance with ARRAY, as specified in Table 7.3 of ISO/IEC 1539-23

1:2010 for relational intrinsic operations. It is an INTENT (IN) argument.24

RESULT shall be a coarray of type integer and shall have the same shape as SOURCE. It is an INTENT25

(OUT) argument.26

Case (i): RESULT is scalar. It is assigned the image index of an image of the team whose value27

of SOURCE matches VALUE, or zero if no such image exists.28

Case (ii): RESULT is an array. Each element is assigned the image index of an image of the29

team whose corresponding element of SOURCE matches VALUE, or zero if no such30

image exists.31

If both SOURCE and VALUE are of type logical, the comparison is performed using .EQV.; other-32

wise, the comparison is performed using == (.EQ.). If the value of the comparison is true, SOURCE33

or the element of SOURCE matches VALUE.34

TEAM (optional) shall be a scalar of type IMAGE TEAM(4.4.2). It is an INTENT (IN) argument that specifies35

the team for which CO FINDLOC is performed. If TEAM does not appear, the team consists of36

all images.37

BACK (optional) shall be a logical scalar. It is an INTENT (IN) argument.38

If more than one image has a value that matches VALUE, and BACK is absent or present with39

the value false, the smallest such image index is assigned to RESULT. If BACK is present with the40

value true, the image whose index is assigned to RESULT is the largest such image index.41

4 Examples. If the number of images is four and SOURCE is a scalar with the values 2, 4, 6, and 8 on the four42

different images, the value of RESULT after the statement CALL CO FINDLOC (SOURCE, 6, RESULT) is 343

4.3.3 Intrinsic procedures 11

10-166 WORKING DRAFT 2010/02/18

on all images.1

5 If the number of images is two and SOURCE is the array [6, 5, 6] on the first image and [4, 6, 6] on the second2

image, the value of RESULT after the statement CALL CO FINDLOC (SOURCE, 6, RESULT) is [1, 2, 1] and3

the value after the statement CALL CO FINDLOC (SOURCE, 6, RESULT, .TRUE.) is [1, 2, 2].4

4.3.5 CO MAXLOC (SOURCE, RESULT [, TEAM])5

1 Description. Determine the image indices of the maximum values of the elements on a team of images.6

2 Class. Collective subroutine.7

3 Arguments.8

SOURCE shall be a coarray of type integer, real, or character. It may be a scalar or an array. It is an INTENT9

(IN) argument.10

RESULT shall be a coarray of type integer and shall have the same shape as SOURCE. It is an INTENT11

(OUT) argument. If it is scalar, it is assigned a value equal to the image index of the maximum12

value of SOURCE on the images of the team; if more than one image has the maximum value, the13

smallest such image index is assigned. If RESULT is an array, each element of RESULT is assigned a14

value equal to the image index of the maximum value of all the corresponding elements of SOURCE15

on the images of the team; if more than one image has the maximum value, the smallest such image16

index is assigned.17

If SOURCE is of type character, the result is the value that would be selected by application18

of intrinsic relational operators; that is, the collating sequence for characters with the kind type19

parameter of the argument is applied.20

TEAM (optional) shall be a scalar of type IMAGE TEAM(4.4.2). It is an INTENT (IN) argument that specifies21

the team for which CO MAXLOC is performed. If TEAM is not present, the team consists of all22

images.23

4 Example. If the number of images is two and SOURCE is the array [1, 5, 6] on one image and [4, 1, 6] on the24

other image, the value of RESULT after executing the statement25

CALL CO MAXLOC (SOURCE, RESULT) is [2, 1, 1].26

4.3.6 CO MAXVAL (SOURCE, RESULT [, TEAM])27

1 Description. Determine the maximum values of the elements on a team of images.28

2 Class. Collective subroutine.29

3 Arguments.30

SOURCE shall be a coarray of type integer, real, or character. It may be a scalar or an array. It is an INTENT31

(IN) argument.32

RESULT shall be a coarray of the same type, type parameters and shape as SOURCE. It is an INTENT33

(OUT) argument. If it is scalar, it is assigned a value equal to the maximum value of SOURCE on34

all the images of the team. If it is an array, each element is assigned a value equal to the maximum35

value of all the corresponding elements of SOURCE on all the images of the team.36

If SOURCE is of type character, the result is the value that would be selected by application37

of intrinsic relational operators; that is, the collating sequence for characters with the kind type38

parameter of the argument is applied.39

TEAM (optional) shall be a scalar of type IMAGE TEAM(4.4.2). It is an INTENT (IN) argument that specifies40

the team for which CO MAXVAL is performed. If TEAM is not present, the team consists of all41

images.42

4 Example. If the number of images is two and SOURCE is the array [1, 5, 3] on one image and [4, 1, 6] on the43

other image, the value of RESULT after executing the statement44

12 Intrinsic procedures 4.3.5

2010/02/18 WORKING DRAFT 10-166

CALL CO MAXVAL (SOURCE, RESULT) is [4, 5, 6].1

4.3.7 CO MINLOC (SOURCE, RESULT [, TEAM])2

1 Description. Determine the image indices of the minimum values of the elements on a team of images.3

2 Class. Collective subroutine.4

3 Arguments.5

SOURCE shall be a coarray of type integer, real, or character. It may be a scalar or an array. It is an INTENT6

(IN) argument.7

RESULT shall be a coarray of type integer and shall have the same shape as SOURCE. It is an INTENT8

(OUT) argument. If it is scalar, it is assigned a value equal to the image index of the minimum9

value of SOURCE on all the images of the team; if more than one image has the minimum value,10

the smallest such image index is assigned. If it is an array, each element is assigned a value equal11

to the image index of the minimum value of all the corresponding elements of SOURCE on the12

images of the team; if more than one image has the minimum value, the smallest such image index13

is assigned.14

If SOURCE is of type character, the result is the value that would be selected by application15

of intrinsic relational operators; that is, the collating sequence for characters with the kind type16

parameter of the argument is applied.17

TEAM (optional) shall be a scalar of type IMAGE TEAM(4.4.2). It is an INTENT (IN) argument that specifies18

the team for which CO MINLOC is performed. If TEAM is not present, the team consists of all19

images.20

4 Example. If the number of images is two and SOURCE is the array [1, 5, 6] on one image and [4, 1, 6] on the21

other image, the value of RESULT after executing the statement22

CALL CO MINLOC (ARRAY, RESULT) is [1, 2, 1].23

4.3.8 CO MINVAL (SOURCE, RESULT [, TEAM])24

1 Description. Determine the minimum values of the elements on a team of images.25

2 Class. Collective subroutine.26

3 Arguments.27

SOURCE shall be a coarray of type integer, real, or character. It may be a scalar or an array. It is an INTENT28

(IN) argument.29

RESULT shall be a coarray of the same type, type parameters, and shape as SOURCE. It is an INTENT30

(OUT) argument. If it is scalar it is assigned a value equal to the minimum value of SOURCE on31

all the images of the team. If it is an array, each element is assigned a value equal to the minimum32

value of all the corresponding elements of SOURCE on all the images of the team.33

If SOURCE is of type character, the result is the value that would be selected by application34

of intrinsic relational operators; that is, the collating sequence for characters with the kind type35

parameter of the argument is applied.36

TEAM (optional) shall be a scalar of type IMAGE TEAM(4.4.2). It is an INTENT (IN) argument that specifies37

the team for which CO MINVAL is performed. If TEAM is not present, the team consists of all38

images.39

4 Example. If the number of images is two and SOURCE is the array [1, 5, 3] on one image and [4, 1, 6] on the40

other image, the value of RESULT after executing the statement41

CALL CO MINVAL (SOURCE, RESULT) is [1, 1, 3].42

4.3.9 CO PRODUCT (SOURCE, RESULT [, TEAM])43

4.3.7 Intrinsic procedures 13

10-166 WORKING DRAFT 2010/02/18

1 Description. Compute the products of elements on a team of images.1

2 Class. Collective subroutine.2

3 Arguments.3

SOURCE shall be a coarray of numeric type. It may be a scalar or an array. It is an INTENT (IN) argument.4

RESULT shall be a coarray of the same type, type parameters, and shape as SOURCE. It is an INTENT5

(OUT) argument. If it is scalar, it is assigned a value equal to a processor-dependent and image-6

dependent approximation to the product of the values of SOURCE on all the images of the team. If7

it is an array, each element is assigned a value equal to a processor-dependent and image-dependent8

approximation to the product of all the corresponding elements of SOURCE on the images of the9

team.10

TEAM (optional) shall be a scalar of type IMAGE TEAM(4.4.2). It is an INTENT (IN) argument that specifies11

the team for which CO PRODUCT is performed. If TEAM is not present, the team consists of all12

images.13

4 Example. If the number of images is two and SOURCE is the array [1, 5, 3] on one image and [4, 1, 6] on the14

other image, the value of RESULT after executing the statement15

CALL CO PRODUCT (SOURCE, RESULT) is [4, 5, 18].16

4.3.10 CO SUM (SOURCE, RESULT [, TEAM])17

1 Description. Sum elements on a team of images.18

2 Class. Collective subroutine.19

3 Arguments.20

SOURCE shall be a coarray of numeric type. It may be a scalar or an array. It is an INTENT (IN) argument.21

RESULT shall be a coarray of the same type, type parameters, and shape as SOURCE. It is an INTENT22

(OUT) argument. If it is scalar, it is assigned a value equal to a processor-dependent and image-23

dependent approximation to the sum of the values of SOURCE on all the images of the team. If it24

is an array, each element is assigned a value equal to a processor-dependent and image-dependent25

approximation to the sum of all the corresponding elements of SOURCE on the images of the team.26

TEAM (optional) shall be a scalar of type IMAGE TEAM(4.4.2). It is an INTENT (IN) argument that specifies27

the team for which CO SUM is performed. If TEAM is not present, the team consists of all images.28

4 Example. If the number of images is two and SOURCE is the array [1, 5, 3] on one image and [4, 1, 6] on the29

other image, the value of RESULT after executing the statement30

CALL CO SUM (SOURCE, RESULT) is [5, 6, 9].31

4.3.11 FORM TEAM (TEAM, IMAGES [, STAT, ERRMSG])32

1 Description. Form a team of images.33

2 Class. Subroutine.34

3 Arguments.35

TEAM shall be a scalar of type IMAGE TEAM(4.4.2). It is an INTENT (OUT) argument.36

IMAGES shall be a rank-one integer array. It is an INTENT (IN) argument that specifies the image indices37

of the team members. An error condition occurs if38

• IMAGES does not specify the same set of images on all images of the team,39

• any element of IMAGES is not in the range 1, . . . , NUM IMAGES (),40

• any element of IMAGES has the same value as another element, or41

• no element of IMAGES has the value THIS IMAGE ().42

14 Intrinsic procedures 4.3.10

2010/02/18 WORKING DRAFT 10-166

STAT (optional) shall be a default integer scalar. It is an INTENT (OUT) argument. If no error occurs it is1

assigned the value zero. If any of the images of the team has initiated termination of execution2

it is assigned the value of the constant STAT STOPPED IMAGE in the intrinsic module ISO -3

FORTRAN ENV. If any other error occurs, it is assigned a processor-dependent positive value4

different from STAT STOPPED IMAGE.5

ERRMSG (optional) shall be a default character scalar. It is an INTENT (INOUT) argument. If an error con-6

dition occurs, it is assigned a processor-dependent explanatory message; otherwise, it is unchanged.7

4 If FORM TEAM is invoked by an image, an error condition occurs if it is not invoked by the same statement on all8

images specified by the IMAGES argument. If no error condition occurs, there is an implicit team synchronization9

after the team is formed.10

5 If an error condition occurs and STAT is not present, error termination of execution is initiated.11

6 Example. The following code fragment splits images into two groups and implicitly synchronizes each of the12

teams if there are two or more images. If there is only one image, that image becomes the only team member.13

The members of the team may be specified in a different order on different images.14

7 USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY: IMAGE_TEAM15

INTEGER :: I16

TYPE(IMAGE_TEAM) :: TEAM17

IF (THIS_IMAGE()<=NUM_IMAGES()/2) THEN18

CALL FORM_TEAM(TEAM, [(I,I=1,NUM_IMAGES()/2)])19

ELSE20

CALL FORM_TEAM(TEAM, [(I,I=NUM_IMAGES()/2+1,NUM_IMAGES())])21

END IF22

4.3.12 TEAM IMAGES (TEAM)23

1 Description. Rank one array of the indices of the images in a team.24

2 Class. Transformatiional function.25

3 Argument. TEAM shall be a scalar of type IMAGE TEAM(4.4.2).26

4 Result Characteristics. The result is a default integer array of rank one and of size equal to the number of27

images in the team identified by TEAM.28

5 Result Value. The result is a rank-one array whose element values are the indices, in increasing order, of the29

images in the team identified by TEAM.30

6 Examples. If the value of TEAM was defined by the statement CALL FORM TEAM (TEAM, [4, 2, 1]) then31

TEAM IMAGES (TEAM) has the value [1, 2, 4]. For a value of TEAM that identifies an empty image set, the32

result is an array of size zero.33

4.4 The ISO FORTRAN ENV intrinsic module34

4.4.1 General35

1 ISO/IEC TR xxxxx defines an additional object in the ISO FORTRAN ENV intrinsic module.36

4.4.2 IMAGE TEAM37

1 A scalar object of type IMAGE TEAM identifies a team of images. This type is extensible, has only private38

components, has pointer components but no allocatable components, has no type parameters, and has default39

initialization to a value that identifies an empty image set.40

4.3.12 Intrinsic procedures 15

10-166 WORKING DRAFT 2010/02/18

NOTE 4.1
When values of type IMAGE TEAM are constructed by calling the intrinsic subroutine FORM TEAM on
the images of a team, the processor may choose to store information in such values to speed later processing
of team synchronizations and collective subroutine calls. This information is likely to vary between images.
The standard treats the information as if held in pointer components in order that copying a value of type
IMAGE TEAM to another image causes its value on the other image to become undefined.

16 Intrinsic procedures 4.4.2

2010/02/18 WORKING DRAFT 10-166

Annex A1

(Informative)2

Extended notes3

A.1 Notes re Clause 2 of ISO/IEC 1539-1:20104

A.1.1 Normal and error termination of execution5

1 This code fragment illustrates the use of STOP and ALL STOP in a climate model that uses two teams, one for6

the ocean and one for the atmosphere.7

2 If something goes badly wrong in the atmosphere calculation, the whole model is invalid and a restart is impossible,8

so all images stop as soon as possible without trying to preserve any data.9

3 If something goes slightly wrong with the atmosphere calculation, the images in the atmosphere team write10

their data to files and stop, but their data remain available to the ocean images which complete execution of11

the OCEAN subroutine. On return from the computation routines, if something went slightly wrong with the12

atmosphere calculation, the ocean images write data to files and stop, ready for a restart in a later run.13

4 USE,INTRINSIC :: ISO_FORTRAN_ENV14

TYPE(IMAGE_TEAM) :: OCEAN_TEAM, ATMOSPHERE_TEAM15

INTEGER :: I, SYNC_STAT16

:17

! Form two teams18

CALL FORM_TEAM (OCEAN_TEAM, [I,I=1,NUM_IMAGES()/2])19

CALL FORM_TEAM (ATMOSPHERE_TEAM, [I,I=1+NUM_IMAGES()/2,NUM_IMAGES()])20

:21

! Perform independent calculations22

IF (THIS_IMAGE() > NUM_IMAGES()/2) THEN23

CALL ATMOSPHERE (ATMOSPHERE_TEAM)24

ELSE25

CALL OCEAN (OCEAN_TEAM)26

END IF27

! Wait for both teams to finish28

SYNC ALL (STAT=SYNC_STAT)29

IF (SYNC_STAT == SYNC_STOPPED_IMAGE) THEN30

: ! preserve data on file31

STOP32

END IF33

CALL EXCHANGE_DATA ! Exchange data between teams34

:35

CONTAINS36

SUBROUTINE ATMOSPHERE (TEAM)37

TYPE(IMAGE_TEAM) :: TEAM38

: ! Perform atmosphere calculation.39

IF (...) THEN ! something has gone slightly wrong40

: ! preserve data on file41

STOP42

END IF43

:44

A Extended notes 17

10-166 WORKING DRAFT 2010/02/18

IF (...) ALL STOP ! something has gone very badly wrong1

:2

SYNC TEAM (TEAM, STAT=SYNC_STAT))3

IF (SYNC_STAT == SYNC_STOPPED_IMAGE) THEN4

: ! remaining atmosphere images preserve data in a file5

STOP6

END IF7

END SUBROUTINE ATMOSPHERE8

A.2 Notes re Clause 13 of ISO/IEC 1539-1:20109

A.2.1 Collective coarray subroutine variations10

1 For a scalar coarray, an intrinsic collective subroutine applies an operation to the values of all the corresponding11

coarrays on a set of images and provides the result on all the images of the set in a scalar argument of INTENT12

(OUT). For a coarray that is an array, the operation is applied to each set of corresponding elements and the13

result is provided on all the images in an array of the shape of the coarray.14

2 Simple routines can be written to also apply the operation to the elements of the coarray on an image. Various15

versions of a global sum can be programmed, for example:16

3 MODULE global_sum_module17

INTRINSIC, PRIVATE :: CO_SUM, SIZE, SUM18

CONTAINS19

REAL FUNCTION global_sum(array)20

REAL,INTENT(IN) :: array(:,:)[*]21

REAL,SAVE :: temp[*]22

temp = SUM(array) ! Sum on the executing image23

CALL CO_SUM(temp, global_sum)24

END FUNCTION global_sum25

26

REAL FUNCTION global_sum_mask(array, mask)27

REAL,INTENT(IN) :: array(:,:)[*]28

LOGICAL,INTENT(IN) :: mask(:,:)29

REAL,SAVE :: temp[*]30

temp = SUM(array, MASK=mask) ! Sum on the executing image31

CALL CO_SUM(temp, global_sum_mask)32

END FUNCTION global_sum_mask33

34

FUNCTION global_sum_dim(array, dim)35

REAL, INTENT(IN) :: array(:,:)[*]36

INTEGER, INTENT(IN) :: dim37

REAL, ALLOCATABLE :: global_sum_dim(:)38

REAL, ALLOCATABLE :: temp(:)[:]39

ALLOCATE (global_sum_dim(SIZE(array, 3-dim)))40

ALLOCATE (temp(SIZE(array, 3-dim))[*])41

temp = SUM(array, dim) ! Sum of the local part of the coarray.42

CALL CO_SUM(temp, global_sum_dim)43

END FUNCTION global_sum_dim44

END MODULE global_sum_module45

18 Extended notes A.2

	 Overview
	Scope
	Normative references
	Terms and definitions
	Compatibility
	New intrinsic procedures
	Fortran 2008 compatibility

	 Execution control
	Image control statements
	Segments

	SYNC TEAM statement
	NOTIFY and QUERY statements

	 Input/output statements
	OPEN statement
	TEAM= specifier in the OPEN statement

	CLOSE statement
	File positioning statements
	FLUSH statement
	File inquiry statement
	NEXTREC= specifier in the INQUIRE statement
	TEAM= specifier in the INQUIRE statement

	Error conditions and the ERR= specifier
	IOSTAT= specifier

	 Intrinsic procedures
	Specification of the standard intrinsic procedures
	Collective subroutine
	Arguments to collective subroutines

	Standard generic intrinsic procedures
	Specifications of the standard intrinsic procedures
	The ISO_FORTRAN_ENV intrinsic module
	General
	IMAGE_TEAM

	Annex (informative) Extended notes
	Notes re Clause 2 of ISO/IEC 1539-1:2010
	Normal and error termination of execution

	Notes re Clause 13 of ISO/IEC 1539-1:2010
	Collective coarray subroutine variations

