
TS 18508 Additional Parallel
Features in Fortran

J3/13-293

30th June 2013 6:05

Draft document for WG5 Ballot

(Blank page)

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

Contents

1 Scope . 1

2 Normative references . 3

3 Terms and definitions . 5

4 Compatibility . 7
4.1 New intrinsic procedures . 7
4.2 Fortran 2008 compatibility . 7

5 Teams of images . 9
5.1 Introduction . 9
5.2 TEAM TYPE . 9
5.3 CHANGE TEAM construct . 9
5.4 Image selectors . 10
5.5 FORM SUBTEAM statement . 10
5.6 SYNC TEAM statement . 11
5.7 STAT FAILED IMAGE . 11

6 Events . 13
6.1 Introduction . 13
6.2 EVENT TYPE . 13
6.3 EVENT POST statement . 13
6.4 EVENT WAIT statement . 13

7 Intrinsic procedures . 15
7.1 General . 15
7.2 Atomic subroutines . 15
7.3 Collective subroutines . 15
7.4 New intrinsic procedures . 16

7.4.1 ATOMIC ADD (ATOM, VALUE [, OLD]) . 16
7.4.2 ATOMIC AND (ATOM, VALUE [, OLD]) . 16
7.4.3 ATOMIC CAS (ATOM, OLD, COMPARE, NEW) . 16
7.4.4 ATOMIC OR (ATOM, VALUE [, OLD]) . 17
7.4.5 ATOMIC XOR (ATOM, VALUE [, OLD]) . 17
7.4.6 CO BROADCAST (SOURCE, SOURCE IMAGE [, STAT, ERRMSG]) 17
7.4.7 CO MAX (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG]) 18
7.4.8 CO MIN (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG]) 18
7.4.9 CO REDUCE (SOURCE, OPERATOR [, RESULT, RESULT IMAGE, STAT, ERRMSG]) 19
7.4.10 CO SUM (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG]) 20
7.4.11 EVENT QUERY (EVENT, COUNT [, STATUS]) . 21
7.4.12 FAILED IMAGES ([KIND]) . 21
7.4.13 SUBTEAM ID ([DISTANCE]) . 21
7.4.14 TEAM DEPTH() . 22

7.5 Modified intrinsic procedures . 23
7.5.1 NUM IMAGES . 23
7.5.2 THIS IMAGE . 23

i

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

8 Required editorial changes to ISO/IEC 1539-1:2010(E) . 25
8.1 General . 25
8.2 Edits to Introduction . 25
8.3 Edits to clause 1 . 25
8.4 Edits to clause 2 . 26
8.5 Edits to clause 6 . 26
8.6 Edits to clause 8 . 27
8.7 Edits to clause 13 . 29
8.8 Edits to clause 16 . 31
8.9 Edits to annex A . 31

Annex A (informative) Extended notes . 33
A.1 Clause 5 notes . 33
A.2 Clause 6 notes . 33
A.3 Clause 7 notes . 35

A.3.1 Collective subroutine examples . 35

ii

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commis-
sion) form the specialized system for worldwide standardization. National bodies that are members of ISO or
IEC participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and nongovernmental,
in liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International Stand-
ards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the national bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, the joint
technical committee may decide to publish an ISO/IEC Technical Specification (ISO/IEC TS), which represents
an agreement between the members of the joint technical committee and is accepted for publication if it is
approved by 2/3 of the members of the committee casting a vote.

An ISO/IEC TS is reviewed after three years in order to decide whether it will be confirmed for a further three
years, revised to become an International Standard, or withdrawn. If the ISO/IEC TS is confirmed, it is reviewed
again after a further three years, at which time it must either be transformed into an International Standard or
be withdrawn.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TS 18508:2014 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC22, Programming languages, their environments and system software interfaces.

iii

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

Introduction

The system for parallel programming in Fortran, as standardized by ISO/IEC 1539-1:2010, defines simple syntax
for access to data on another image of a program, a set of synchronization statements for controlling the ordering
of execution segments between images, and collective allocation and deallocation of memory on all images.

The existing system for parallel programming does not provide for an environment where a subset of the images
can easily work on part of an application while not affecting other images in the program. This complicates
development of independent parts of an application by separate teams of programmers. The existing system
does not provide a mechanism for a processor to identify what images have failed during execution of a program.
This adversely affects the resilience of programs executing on large systems. The synchronization primitives
available in the existing system do not provide for a convenient mechanism for ordering execution segments on
different images without requiring that those images arrive at a synchronization point before either is allowed to
progress. This introduces unnecessary inefficiency into programs. Finally, the existing system does not provide
intrinsic procedures for commonly used collective and atomic memory operations. Intrinsic procedures for these
operations can be highly optimized for the target computational system, providing significantly improved program
performance.

This Technical Specification extends the facilites of Fortran for parallel programming to provide for grouping the
images of a program into nonoverlapping teams that can more effectively execute independently parts of a larger
problem, for the processor to indicate which images have failed during execution and allow continued execution of
the program on the remaining images, for a system of events that can be used for fine grain ordering of execution
segments, and for sets of collective and atomic memory operation subroutines that can provide better performance
for specific operations involving more than one image.

The facility specified in this Technical Specification is a compatible extension of Fortran as standardized by
ISO/IEC 1539-1:2010.

It is the intention of ISO/IEC JTC 1/SC22 that the semantics and syntax specified by this Technical Specification
be included in the next revision of ISO/IEC 1539-1 without change unless experience in the implementation
and use of this feature identifies errors that need to be corrected, or changes are needed to achieve proper
integration, in which case every reasonable effort will be made to minimize the impact of such changes on existing
implementations.

This Technical Specification is organized in 8 clauses:

Scope Clause 1
Normative references Clause 2
Terms and definitions Clause 3
Compatibility Clause 4
Teams of images Clause 5
Events Clause 6
Intrinsic procedures Clause 7
Required editorial changes to ISO/IEC 1539-1:2010(E) Clause 8

It also contains the following nonnormative material:

Extended notes Annex A

iv

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

1 Scope1

This Technical Specification specifies the form and establishes the interpretation of facilities that extend the2

Fortran language defined by ISO/IEC 1539-1:2010. The purpose of this Technical Specification is to promote3

portability, reliability, maintainability, and efficient execution of parallel programs written in Fortran, for use on4

a variety of computing systems.5

1

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

1

(Blank page)2

3

2

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

2 Normative references1

The following referenced standards are indispensable for the application of this document. For dated references,2

only the edition cited applies. For undated references, the latest edition of the referenced document (including3

any amendments) applies.4

ISO/IEC 1539-1:2010, Information technology—Programming languages—Fortran—Part 1:Base language5

3

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

1

(Blank page)2

3

4

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

3 Terms and definitions1

For the purposes of this document, the terms and definitions given in ISO/IEC 1539-1:2010 and the following2

apply. The intrinsic module ISO FORTRAN ENV is extended by this Technical Specification.3

3.14

collective subroutine5

intrinsic subroutine that is invoked on the current team of images to perform a calculation on those images and6

assign the computed value on one or all of them (7.2)7

3.28

team9

set of images that access each other’s data (5.1).10

3.2.111

current team12

the team that includes the executing image (5.1).13

3.2.214

initial team15

the current team when the program began execution (5.1).16

3.2.317

parent team18

team from which the current team was formed by executing a FORM SUBTEAM statement (5.4).19

3.2.420

subteam21

a subset of the set of images in a team (5.1).22

3.2.523

subteam identifier24

integer value identifying a subteam (5.1).25

3.2.626

team distance27

the distance between a team and one of its ancestors (5.1).28

3.329

event variable30

scalar variable of type EVENT TYPE (6.2) from the intrinsic module ISO FORTRAN ENV.31

3.432

team variable33

scalar variable of type TEAM TYPE (5.2) from the intrinsic module ISO FORTRAN ENV.34

5

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

1

(Blank page)2

3

6

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

4 Compatibility1

4.1 New intrinsic procedures2

This Technical Specification defines intrinsic procedures in addition to those specified in ISO/IEC 1539-1:2010.3

Therefore, a Fortran program conforming to ISO/IEC 1539-1:2010 might have a different interpretation under4

this Technical Specification if it invokes an external procedure having the same name as one of the new intrinsic5

procedures, unless that procedure is specified to have the EXTERNAL attribute.6

4.2 Fortran 2008 compatibility7

This Technical Specification specifies an upwardly compatible extension to ISO/IEC 1539-1:2010.8

7

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

1

(Blank page)2

3

8

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

5 Teams of images1

5.1 Introduction2

A team of images is a set of images that access each other’s data and synchronize with each other. The current3

team is the team that includes the executing image. Syntax has been added to image-selector (R624 in ISO/IEC4

1539-1:2010) to permit specification that image indices are relative to a specified team; otherwise, image indices5

are relative to the current team. Except by executing a SYNC TEAM statement, synchronization is possible6

only with other images of the team. Initially, the current team consists of all the images and this is known as the7

initial team. A team is divided into subteams by executing a FORM SUBTEAM statement. Each subteam is8

identified by an integer value known as its subteam identifier. Information about the team to which the current9

image belongs can be determined by the processor from values stored in its team variable.10

Team distance is a measure of the distance between two teams, one of which is an ancestor of the other. The11

team distance between a team and itself is zero. Except for the initial team, every team has a unique parent12

team. The team distance between a team and its parent is one. The team distance between a team T and the13

parent of team A, which is an ancestor of T, is one more than the team distance between teams T and A.14

Within the body of a CHANGE TEAM construct the current team is the subteam specified by the CHANGE15

TEAM statement.16

5.2 TEAM TYPE17

The derived type TEAM TYPE is an extensible type with no type parameters. Its components are private. A18

scalar of this type describes a team that includes the executing image. TEAM TYPE is defined in the intrinsic19

module ISO FORTRAN ENV.20

A scalar variable of type TEAM TYPE is a team variable. A team variable shall not be a coarray or a subcom-21

ponent of a coarray.22

C501 A team variable shall not appear in a variable definition context except as the team-variable in a FORM23

SUBTEAM statement, as an allocate-object in an ALLOCATE statement without a SOURCE=alloc-opt ,24

or as an actual argument in a reference to a procedure with an explicit interface where the corresponding25

dummy argument has INTENT (INOUT).26

C502 A variable with a subobject of type TEAM TYPE shall not have the POINTER attribute and shall not27

appear in a variable definition context except as an allocate-object in an ALLOCATE statement without28

a SOURCE=alloc-opt , or as an actual argument in a reference to a procedure with an explicit interface29

where the corresponding dummy argument has INTENT (INOUT).30

5.3 CHANGE TEAM construct31

The CHANGE TEAM construct changes the current team to which the executing image belongs.32

R501 change-team-construct is change-team-stmt33

block34

end-change-team-stmt35

R502 change-team-stmt is [team-construct-name:] CHANGE TEAM (team-variable36

[, sync-stat-list])37

R503 end-change-team-stmt is END TEAM [team-construct-name]38

9

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

R504 team-variable is scalar-variable1

C503 (R501) A branch within a CHANGE TEAM construct shall not have a branch target that is outside the2

construct.3

C504 (R501) A RETURN statement shall not appear within a CHANGE TEAM construct.4

C505 (R501) A exit-stmt or cycle-stmt within a CHANGE TEAM construct shall not belong to an outer5

construct.6

C506 (R501) If the change-team-stmt of a change-team-construct specifies a team-construct-name, the corres-7

ponding end-change-team-stmt shall specify the same team-construct-name. If the change-team-stmt of a8

change-team-construct does not specify a team-construct-name, the corresponding end-change-team-stmt9

shall not specify a team-construct-name.10

C507 (R504) A team-variable shall be a scalar of the type TEAM TYPE defined in the ISO FORTRAN ENV11

intrinsic module.12

The value of the team-variable shall have been formed by executing a FORM SUBTEAM statement. The team13

executing the change-team-stmt shall be the team that formed the team variable value. The current team for the14

statements of the change-team block is the subteam that was specified for the executing image by the execution15

of a FORM SUBTEAM statement.16

An allocatable coarray that was allocated when execution of a change-team construct began shall not be deal-17

located during the execution of the construct. An allocatable coarray that is allocated when execution of a18

change-team construct completes is deallocated if it was not allocated when execution of the construct began.19

The CHANGE TEAM and END TEAM statements are image control statements. When a CHANGE TEAM20

statement is executed, there is an implicit synchronization of all images of the team identified by team-variable; the21

executing image shall be a member of this team. On each image of the team, execution of the segment following22

the statement is delayed until all the other images of the team have executed the same statement the same number23

of times. When a CHANGE TEAM construct completes execution, there is an implicit synchronization of all24

images in its team. On each image of the team, execution of the segment following the END TEAM statement25

is delayed until all the other images of the team have executed the same construct the same number of times.26

NOTE 5.1
The deallocation of an allocatable coarray that was not allocated at the beginning of a CHANGE TEAM
construct, but was allocated at the end of the construct, occurs even for allocatable coarrays with the SAVE
attribute.

5.4 Image selectors27

The syntax rule R624 image-selector in subclause 6.6 of ISO/IEC 1539-1:2010 is replaced by:28

R624 image-selector is lbracket [team-variable ::] cosubscript-list rbracket29

If team-variable appears, its value shall be the same as that of a team-variable that was assigned a value by a30

FORM SUBTEAM statement for the current team or an ancestor of the current team, and the cosubscripts are31

interpreted as if the current team were the team specified by team-variable.32

5.5 FORM SUBTEAM statement33

R505 form-subteam-stmt is FORM SUBTEAM (subteam-id , team-variable34

[, form-subteam-spec-list])35

R506 subteam-id is scalar-int-expr36

10

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

R507 form-team-spec is NEW INDEX = scalar-int-expr1

or sync-stat2

C508 (R505) No specifier shall appear more than once in a given form-subteam-spec-list .3

The FORM SUBTEAM statement defines team-variable for a subteam. It is an image control statement. The4

value of subteam-id specifies the subteam to which the executing image belongs. The value of subteam-id shall5

be greater than zero and is the same for all images that are members of the same subteam.6

The value of the scalar-int-expr in a NEW INDEX= specifier specifies the image index that the executing image7

will have in the subteam specified by subteam-id . It shall be greater than zero and less than or equal to the8

number of images in the subteam. Images with the same value for subteam-id shall have a different value for the9

NEW INDEX= specifier.10

If the FORM SUBTEAM statement is executed on one image, it shall be executed by the same statement on all11

images of the current team, in execution segments that are not ordered with respect to each other. If team-variable12

contains any subscripts, the values of each shall be the same on all these statements.13

When a FORM SUBTEAM statement is executed, there is an implicit synchronization of all images in the current14

team. On these images, execution of the segment following the statement is delayed until all other images in the15

current team have executed the same statement the same number of times.16

The team variable shall not have the value of a team variable for an ancestor of the current team.17

NOTE 5.2
Executing the statement

FORM SUBTEAM (2-MOD(ME,2), ODD_EVEN)

with ME an integer with value THIS IMAGE() and ODD_EVEN of type TEAM TYPE, divides the current
team into two subteams according to whether the image index is even or odd.

5.6 SYNC TEAM statement18

R508 sync-team-stmt is SYNC TEAM (team-variable [, sync-stat-list])19

The SYNC TEAM statement is an image control statement. The value of team-variable shall have been established20

by an execution of FORM SUBTEAM by the current team or an ancestor of the current team. Execution of21

a SYNC TEAM statement performs a synchronization of the team specified by team-variable. Execution on an22

image, M, of the segment following the SYNC TEAM statement is delayed until each other image of the specified23

team has executed a SYNC TEAM statement specifying the same team as many times as has image M. The24

segments that executed before the SYNC TEAM statement on an image precede the segments that execute after25

the SYNC TEAM statement on another image.26

NOTE 5.3
A SYNC TEAM statement performs a synchronization of images of a particular team whereas a SYNC
ALL statement performs a synchronization of all images of the current team.

5.7 STAT FAILED IMAGE27

The value of the default integer scalar constant STAT FAILED IMAGE is different from the value of STAT -28

STOPPED IMAGE, STAT LOCKED, STAT LOCKED OTHER IMAGE, or STAT UNLOCKED. If the pro-29

cessor has the ability to detect that an image of the current team has failed and does so, the value of STAT -30

FAILED IMAGE is assigned to the variable specified in a STAT=specifier in an execution of an image control31

statement, or the STAT argument in an invocation of a collective procedure. A failed image is one for which32

11

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

references or definitions of variables fail when that variable should be accessible, or the image fails to respond as1

part of a collective activity. A failed image remains failed for the remainder of the program execution. If more2

than one nonzero status value is valid for the execution of a statement, the status variable is defined with a value3

other than STAT FAILED IMAGE. The conditions that cause an image to fail are processor dependent.4

NOTE 5.4
A failed image is usually associated with a hardware failure of the processor, memory system, or intercon-
nection network. A failure that occurs while a coindexed reference or definition, or collective action, is in
progress may leave variables on other images that would be defined by that action in an undefined state.
Similarly, failure while using a file may leave that file in an undefined state. A failure on one image may
cause other images to fail for that reason.

12

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

6 Events1

6.1 Introduction2

An image can use an EVENT POST statement to notify another image that it can proceed to work on tasks3

that use common resources. An image can wait on events posted by other images and can query if images have4

posted events.5

6.2 EVENT TYPE6

EVENT TYPE is a derived type with private components. It is an extensible type with no type parameters. All7

components have default initialization. EVENT TYPE is defined in the ISO FORTRAN ENV intrinsic module.8

A scalar variable of type EVENT TYPE is an event variable. An event variable includes a count of the difference9

between the number of successful posts and successful waits for the event variable. The initial value of the event10

count of an event variable is zero. The processor shall support a maximum value of the event count of at least11

HUGE(0).12

C601 A named variable of type EVENT TYPE shall be a coarray. A named variable with a noncoarray13

subcomponent of type EVENT TYPE shall be a coarray.14

C602 An event variable shall not appear in a variable definition context except as the event-variable in a15

EVENT POST or EVENT WAIT statement, as an allocate-object in an ALLOCATE statement without16

a SOURCE= alloc-opt , or as an actual argument in a reference to a procedure with an explicit interface17

where the corresponding dummy argument has INTENT (INOUT).18

C603 A variable with a subobject of type EVENT TYPE shall not appear in a variable definition context19

except as an allocate-object in an ALLOCATE statement without a SOURCE= alloc-opt , or as an20

actual argument in a reference to a procedure with an explicit interface where the corresponding dummy21

argument has INTENT (INOUT).22

6.3 EVENT POST statement23

The EVENT POST statement provides a way to post an event. It is an image control statement.24

R601 event-post-stmt is EVENT POST(event-variable [, sync-stat-list])25

R602 event-variable is scalar-variable26

C604 (R602) An event-variable shall be of the type EVENT TYPE defined in the ISO FORTRAN ENV in-27

trinsic module.28

A successful post to an event variable increments its count. An unsuccessful post does not change the count.29

6.4 EVENT WAIT statement30

The EVENT WAIT statement provides a way to wait until an event is posted. It is an image control statement.31

R603 event-wait-stmt is EVENT WAIT(event-variable [, sync-stat-list])32

C605 (R603) An event-variable in an event-wait-stmt shall not be coindexed.33

13

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

If the count of the event-variable is zero, the executing image waits until the count is positive. A successful wait1

for an event variable decrements its count. Unsuccessful waits do not change the count.2

During the execution of the program, the count of an event variable is changed by the execution of a sequence of3

EVENT POST and EVENT WAIT statements. If the count of an event variable increases through the execution4

of an EVENT POST statement on image M and later in the sequence decreases through the execution of an5

EVENT WAIT statement on image T, the segments preceding the EVENT POST statement on image M precede6

the segments following the EVENT WAIT statement on image T.7

NOTE 6.1
The segment that follows the execution of an EVENT WAIT statement is ordered with respect to all the
segments that precede EVENT POST statements that caused prior changes in the sequence of values of
the event variable.

NOTE 6.2
Event variables of type EVENT TYPE are restricted so that EVENT WAIT statements can only wait on
an event variable on the executing image. This enables more efficient implementation of this concept.

14

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

7 Intrinsic procedures1

7.1 General2

Detailed specifications of the generic intrinsic procedures ATOMIC ADD, ATOMIC AND, ATOMIC CAS, ATOMIC -3

OR, ATOMIC XOR, CO BROADCAST, CO MAX, CO MIN, CO REDUCE, CO SUM, EVENT QUERY, FAILED -4

IMAGES, SUBTEAM ID, and TEAM DEPTH are provided in 7.4. The types and type parameters of the argu-5

ments to these intrinsic procedures are determined by these specifications. The “Argument” paragraphs specify6

requirements on the actual arguments of the procedures. All of these intrinsics are pure.7

The intrinsic procedures THIS IMAGE and NUM IMAGES described in clause 13 of ISO/IEC 1539-1:2010 are8

extended as described in 7.5.9

7.2 Atomic subroutines10

An atomic subroutine is an intrinsic subroutine that performs an action on its ATOM argument atomically. The11

effect of executing an atomic subroutine is as if the subroutine were executed instantaneously, thus not overlapping12

other atomic actions that might occur asynchronously. The sequence of atomic actions within ordered segments is13

specified in 2.3.5 of ISO/IEC 1539-1:2010. How sequences of atomic actions in unordered segments interleave with14

each other is processor dependent. For invocation of an atomic subroutine with an argument OLD, the assignment15

of the value to OLD is not part of the atomic action. For invocation of an atomic subroutine, evaluation of an16

INTENT(IN) argument is not part of the atomic action.17

7.3 Collective subroutines18

A collective subroutine is one that is invoked on each image of the current team to perform a calculation on19

those images and that assigns the computed value on one or all of them. If it is invoked by one image, it shall20

be invoked by the same statement on all images of the current team in execution segments that are not ordered21

with respect to each other. From the beginning of execution as the current team, the sequence of invocations of22

collective subroutines shall be the same on all images of the current team. A call to a collective subroutine shall23

appear only in a context that allows an image control statement.24

If an argument to a collective subroutine is a whole coarray the corresponding ultimate arguments on all images25

of the current team shall be corresponding coarrays as described in 2.4.7 of ISO/IEC 1539-1:2010.26

All the collective subroutines have the optional arguments STAT and ERRMSG. If the STAT argument is present27

in the invocation on one image it shall be present on the corresponding invocations on all of the images of the28

current team.29

If the STAT argument is present, successful invocation of a collective subroutine causes the argument to become30

defined with the value zero.31

If the STAT argument is present in an invocation of a collective subroutine and an error condition occurs,32

the argument is assigned a nonzero value and the effect is otherwise the same as that of executing the SYNC33

MEMORY statement. If execution involves synchronization with an image that has stopped, the argument is34

assigned the value of STAT STOPPED IMAGE in the intrinsic module ISO FORTRAN ENV; otherwise, if no35

image of the current team has stopped or failed, the argument is assigned a processor-dependent positive value36

that is different from the value of STAT STOPPED IMAGE or STAT FAILED IMAGE in the intrinsic module37

ISO FORTRAN ENV. If an image had failed, but no other error condition occurred, the argument is assigned38

the value of the constant STAT FAILED IMAGE.39

15

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

If a condition occurs that would assign a nonzero value to a STAT argument but the STAT argument is not1

present, error termination is initiated.2

If an ERRMSG argument is present in an invocation of a collective subroutine and an error condition occurs3

during its execution, the processor shall assign an explanatory message to the argument. If no such condition4

occurs, the processor shall not change the value of the argument.5

7.4 New intrinsic procedures6

7.4.1 ATOMIC ADD (ATOM, VALUE [, OLD])7

Description. Atomic add operation.8

Class. Atomic subroutine.9

Arguments.10

ATOM shall be scalar and of type integer with kind ATOMIC INT KIND, where ATOMIC INT KIND11

is the named constant in the intrinsic module ISO FORTRAN ENV. It is an INTENT (INOUT)12

argument. ATOM becomes defined with the value of ATOM + VALUE.13

VALUE shall be scalar and of type integer. It is an INTENT (IN) argument.14

OLD (optional) shall be scalar of the same type as ATOM. It is an INTENT (OUT) argument. If it is present,15

it is defined with the value of ATOM that was used for performing the ADD operation.16

Examples.17

CALL ATOMIC ADD(I[3], 42) causes the value of I on image 3 to have its to become its previous value plus 42.18

CALL ATOMIC ADD(M[4], N, ORIG) causes the value of M on image 4 to become its previous value plus the19

value of N on this image. ORIG is defined with 99 if the previous value of M was 99 on image 4.20

7.4.2 ATOMIC AND (ATOM, VALUE [, OLD])21

Description. Atomic bitwise AND operation.22

Class. Atomic subroutine.23

Arguments.24

ATOM shall be scalar and of type integer with kind ATOMIC INT KIND, where ATOMIC INT KIND is a25

named constant in the intrinsic module ISO FORTRAN ENV. It is an INTENT (INOUT) argument.26

ATOM becomes defined with the value IAND(ATOM,INT(VALUE,ATOMIC INT KIND)).27

VALUE shall be scalar and of type integer. It is an INTENT(IN) argument.28

OLD (optional) shall be scalar of the same type as ATOM. It is an INTENT (OUT) argument. If it is present,29

it is defined with the value of ATOM that was used for performing the bitwise AND operation.30

Example. CALL ATOMIC AND (I[3], 6, Iold) causes I on image 3 to become defined with the value 4 and the31

value of Iold on the image executing the statement to be defined with the value 5 if the value of I[3] was 5 when32

the bitwise AND operation executed.33

7.4.3 ATOMIC CAS (ATOM, OLD, COMPARE, NEW)34

Description. Atomic compare and swap.35

Class. Atomic subroutine.36

Arguments.37

16

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

ATOM shall be scalar and of type integer with kind ATOMIC INT KIND or of type logical with kind1

ATOMIC LOGICAL KIND, where ATOMIC INT KIND and ATOMIC LOGICAL KIND are the2

named constants in the intrinsic module ISO FORTRAN ENV. It is an INTENT (INOUT) argu-3

ment. If the value of ATOM is equal to the value of COMPARE, ATOM becomes defined with the4

value of INT (NEW, ATOMIC INT KIND) if it is of type integer, and with the value of NEW if it5

of type logical.6

OLD shall be scalar and of the same type as ATOM. It is an INTENT (OUT) argument. It is defined7

with the value of ATOM that was used for performing the compare operation.8

COMPARE shall be scalar and of the same type and kind as ATOM. It is an INTENT(IN) argument.9

NEW shall be scalar and of the same type as ATOM. It is an INTENT(IN) argument.10

Example. CALL ATOMIC CAS(I[3], OLD, Z, 1) causes I on image 3 to become defined with the value 1 if its11

value is that of Z, and OLD to be defined with the value of I on image 3 prior to the comparison.12

7.4.4 ATOMIC OR (ATOM, VALUE [, OLD])13

Description. Atomic bitwise OR operation.14

Class. Atomic subroutine.15

Arguments.16

ATOM shall be scalar and of type integer with kind ATOMIC INT KIND, where ATOMIC INT KIND is a17

named constant in the intrinsic module ISO FORTRAN ENV. It is an INTENT (INOUT) argument.18

ATOM becomes defined with the value IOR(ATOM,INT(VALUE,ATOMIC INT KIND)).19

VALUE shall be scalar and of type integer. It is an INTENT(IN) argument.20

OLD (optional) shall be scalar of the same type as ATOM. It is an INTENT (OUT) argument. If it is present,21

it is defined with the value of ATOM that was used for performing the bitwise OR operation.22

Example. CALL ATOMIC OR (I[3], 1, Iold) causes I on image 3 to become defined with the value 3 and the23

value of Iold on the image executing the statement to be defined with the value 2 if the value of I[3] was 2 when24

the bitwise OR operation executed.25

7.4.5 ATOMIC XOR (ATOM, VALUE [, OLD])26

Description. Atomic bitwise exclusive OR operation.27

Class. Atomic subroutine.28

Arguments.29

ATOM shall be scalar and of type integer with kind ATOMIC INT KIND, where ATOMIC INT KIND is a30

named constant in the intrinsic module ISO FORTRAN ENV. It is an INTENT (INOUT) argument.31

ATOM becomes defined with the value IEOR(ATOM,INT(VALUE,ATOMIC INT KIND)).32

VALUE shall be scalar and of type integer. It is an INTENT(IN) argument.33

OLD (optional) shall be scalar of the same type as ATOM. It is an INTENT (OUT) argument. If it is present, it34

is defined with the value of ATOM that was used for performing the bitwise exclusive OR operation.35

Example. CALL ATOMIC XOR (I[3], 1, Iold) causes I on image 3 to become defined with the value 2 and the36

value of Iold on the image executing the statement to be defined with the value 3 if the value of I[3] was 3 when37

the bitwise exclusive OR operation executed.38

7.4.6 CO BROADCAST (SOURCE, SOURCE IMAGE [, STAT, ERRMSG])39

Description. Copy a variable to all images of the current team.40

Class. Collective subroutine.41

17

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

Arguments.1

SOURCE shall be a coarray. It is an INTENT(INOUT) argument. SOURCE becomes defined, as if by intrinsic2

assignment, on all images of the current team with the value of SOURCE on image SOURCE -3

IMAGE.4

SOURCE IMAGE shall be of type integer. It is an INTENT(IN) argument. It shall be an image index and have5

the same value on all images of the current team.6

STAT (optional) shall be a scalar integer. It is an INTENT(OUT) argument.7

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.8

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.9

Example. If SOURCE is the array [1, 5, 3] on image one, after execution of CALL CO BROADCAST(SOURCE,1)10

the value of SOURCE on all images of the current team is [1, 5, 3].11

7.4.7 CO MAX (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG])12

Description. Compute elemental maximum value on the current team of images.13

Class. Collective subroutine.14

Arguments.15

SOURCE shall be of type integer, real, or character. It is an INTENT(INOUT) argument. If it is a scalar,16

the computed value is equal to the maximum value of SOURCE on all images of the current team.17

If it is an array it shall have the same shape and type parameters on all images of the current team18

and each element of the computed value is equal to the maximum value of all the corresponding19

elements of SOURCE on the images of the current team.20

RESULT (optional) shall be of the same type, type parameters, and shape as SOURCE. It is an INTENT(OUT)21

argument. If RESULT is present it shall be present on all images of the current team.22

RESULT IMAGE (optional) shall be of type integer. It is an INTENT(IN) argument. If it is present, it shall be23

present on all images of the current team, have the same value on all images of the current team,24

and that value shall be an image index.25

STAT (optional) shall be a scalar integer. It is an INTENT(OUT) argument.26

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.27

If RESULT and RESULT IMAGE are not present, the computed value is assigned to SOURCE on all the images28

of the current team. If RESULT is not present and RESULT IMAGE is present, the computed value is assigned to29

SOURCE on image RESULT IMAGE and SOURCE on all other images of the current team becomes undefined.30

If RESULT is present and RESULT IMAGE is not present, the computed value is assigned to RESULT on all31

images of the current team. If RESULT and RESULT IMAGE are present, the computed value is assigned to32

RESULT on image RESULT IMAGE and RESULT on all other images of the current team becomes undefined.33

If RESULT is present, SOURCE is not modified.34

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.35

Example. If the number of images in the current team is two and SOURCE is the array [1, 5, 3] on one image36

and [4, 1, 6] on the other image, the value of RESULT after executing the statement CALL CO MAX(SOURCE,37

RESULT) is [4, 5, 6] on both images.38

7.4.8 CO MIN (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG])39

Description. Compute elemental minimum value on the current team of images.40

Class. Collective subroutine.41

Arguments.42

18

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

SOURCE shall be of type integer, real, or character. It is an INTENT(INOUT) argument. If it is a scalar,1

the computed value is equal to the minimum value of SOURCE on all images of the current team.2

If it is an array it shall have the same shape and type parameters on all images of the current team3

and each element of the computed value is equal to the minimum value of all the corresponding4

elements of SOURCE on the images of the current team.5

RESULT (optional) shall be of the same type, type parameters, and shape as SOURCE. It is an INTENT(OUT)6

argument. If RESULT is present it shall be present on all images of the current team.7

RESULT IMAGE (optional) shall be of type integer. It is an INTENT(IN) argument. If it is present, it shall be8

present on all images of the current team, have the same value on all images of the current team,9

and that value shall be an image index.10

STAT (optional) shall be a scalar integer. It is an INTENT(OUT) argument.11

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.12

If RESULT and RESULT IMAGE are not present, the computed value is assigned to SOURCE on all the images13

of the current team. If RESULT is not present and RESULT IMAGE is present, the computed value is assigned to14

SOURCE on image RESULT IMAGE and SOURCE on all other images of the current team becomes undefined.15

If RESULT is present and RESULT IMAGE is not present, the computed value is assigned to RESULT on all16

images of the current team. If RESULT and RESULT IMAGE are present, the computed value is assigned to17

RESULT on image RESULT IMAGE and RESULT on all other images of the current team becomes undefined.18

If RESULT is present, SOURCE is not modified.19

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.20

Example. If the number of images in the current team is two and SOURCE is the array [1, 5, 3] on one image21

and [4, 1, 6] on the other image, the value of RESULT after executing the statement CALL CO MIN(SOURCE,22

RESULT) is [1, 1, 3] on both images.23

7.4.9 CO REDUCE (SOURCE, OPERATOR [, RESULT, RESULT IMAGE, STAT, ER-24

RMSG])25

Description. General reduction of elements on the current team of images.26

Class. Collective subroutine.27

Arguments.28

SOURCE is an INTENT(INOUT) argument. It shall not be polymorphic. If SOURCE is a scalar, the29

computed value is the reduction operation of applying OPERATOR to the values of SOURCE on30

all images of the current team. If SOURCE is an array it shall have the same shape and type31

parameters on all images of the current team and each element of the computed value is equal to32

the value of the reduction operation of applying OPERATOR to all the corresponding elements of33

SOURCE on all the images of the current team.34

OPERATOR shall be a pure elemental function with two arguments of the same type and type parameters as35

SOURCE. Its result shall have the same type and type parameters as SOURCE. The arguments36

and result shall not be polymorphic. OPERATOR shall implement a mathematically commutative37

operation. If the operation implemented by OPERATOR is not associative, the computed value of38

the reduction is processor dependent.39

RESULT (optional) shall be of the same type, type parameters, and shape as SOURCE. It is an INTENT(OUT)40

argument. If RESULT is present it shall be present on all images of the current team.41

RESULT IMAGE (optional) shall be of type integer. It is an INTENT(IN) argument. If it is present, it shall be42

present on all images of the current team, have the same value on all images of the current team,43

and that value shall be an image index.44

STAT (optional) shall be a scalar integer. It is an INTENT(OUT) argument.45

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.46

19

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

If RESULT and RESULT IMAGE are not present, the computed value is assigned to SOURCE on all the images1

of the current team. If RESULT is not present and RESULT IMAGE is present, the computed value is assigned to2

SOURCE on image RESULT IMAGE and SOURCE on all other images of the current team becomes undefined.3

If RESULT is present and RESULT IMAGE is not present, the computed value is assigned to RESULT on all4

images of the current team. If RESULT and RESULT IMAGE are present, the computed value is assigned to5

RESULT on image RESULT IMAGE and RESULT on all other images of the current team becomes undefined.6

If RESULT is present, SOURCE is not modified.7

The computed value of a reduction operation over a set of values is the result of an iterative process. Each8

iteration involves the execution of r = OPERATOR(x,y) for x and y in the set, the removal of x and y from the9

set, and the addition of r to the set. The process continues until the set has only one element which is the value10

of the reduction.11

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.12

Example. If the number of images in the current team is two and SOURCE is the array [1, 5, 3] on one image13

and [4, 1, 6] on the other image, and MyADD is a function that returns the sum of its two integer arguments,14

the value of RESULT after executing the statement CALL CO REDUCE(SOURCE, MyADD, RESULT) is [5,15

6, 9] on both images.16

7.4.10 CO SUM (SOURCE [, RESULT, RESULT IMAGE, STAT, ERRMSG])17

Description. Sum elements on the current team of images.18

Class. Collective subroutine.19

Arguments.20

SOURCE shall be of numeric type. It is an INTENT(INOUT) argument. If it is a scalar, the computed value21

is equal to a processor-dependent and image-dependent approximation to the sum of the values of22

SOURCE on all images of the current team. If it is an array it shall have the same shape on all23

images of the current team and each element of the computed value is equal to a processor-dependent24

and image-dependent approximation to the sum of all the corresponding elements of SOURCE on25

the images of the current team.26

RESULT (optional) shall be of the same type, type parameters, and shape as SOURCE. It is an INTENT(OUT)27

argument. If RESULT is present it shall be present on all images of the current team.28

RESULT IMAGE (optional) shall be of type integer. It is an INTENT(IN) argument. If it is present, it shall be29

present on all images of the current team, have the same value on all images of the current team,30

and that value shall be an image index.31

STAT (optional) shall be a scalar integer. It is an INTENT(OUT) argument.32

ERRMSG (optional) shall be a scalar of type default character. It is an INTENT(INOUT) argument.33

If RESULT and RESULT IMAGE are not present, the computed value is assigned to SOURCE on all the images34

of the current team. If RESULT is not present and RESULT IMAGE is present, the computed value is assigned to35

SOURCE on image RESULT IMAGE and SOURCE on all other images of the current team becomes undefined.36

If RESULT is present and RESULT IMAGE is not present, the computed value is assigned to RESULT on all37

images of the current team. If RESULT and RESULT IMAGE are present, the computed value is assigned to38

RESULT on image RESULT IMAGE and RESULT on all other images of the current team becomes undefined.39

If RESULT is present, SOURCE is not modified.40

The effect of the presence of the optional arguments STAT and ERRMSG is described in 7.3.41

Example. If the number of images in the current team is two and SOURCE is the array [1, 5, 3] on one image42

and [4, 1, 6] on the other image, the value of RESULT after executing the statement CALL CO SUM(SOURCE,43

RESULT) is [5, 6, 9] on both images.44

20

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

7.4.11 EVENT QUERY (EVENT, COUNT [, STATUS])1

Description. Query the count of an event variable.2

Class. Subroutine.3

Arguments.4

EVENT shall be scalar and of type EVENT TYPE defined in the ISO FORTRAN ENV intrinsic module.5

It is an INTENT(IN) argument.6

COUNT shall be scalar and of type default integer. It is an INTENT(OUT) argument. If the invocation7

is successful, COUNT becomes defined with the difference between the number of successful posts8

and successful waits for EVENT. Otherwise, it is given the value 0.9

STATUS (optional) shall be scalar and of type default integer. It is an INTENT(OUT) argument. It becomes10

defined with value 0 if the invocation is successful and with a processor-defined nonzero value if the11

invocation is unsuccessful.12

Example. If EVENT is an event variable for which there have been no successful posts or waits, after the13

invocation14

CALL EVENT_QUERY (EVENT, COUNT)15

the integer variable COUNT has the value 0. If there have been 10 successful posts and 2 successful waits to16

EVENT[2], after the invocation17

CALL EVENT_QUERY (EVENT[2], COUNT)18

COUNT has the value 8.19

NOTE 7.1
Execution of EVENT QUERY does not imply any synchronization.

7.4.12 FAILED IMAGES ([KIND])20

Description. Indices of failed images.21

Class. Transformational function.22

Argument. KIND (optional) shall be a scalar integer constant expression. Its value shall be the value of a23

kind type parameter for the type INTEGER. The range for integers of this kind shall be at least as large as for24

default integer.25

Result Characteristics. Integer. If KIND is present, the kind type parameter is that specified by the value26

of KIND; otherwise, the kind type parameter is that of default integer type. The result is an array of rank one27

whose size is equal to the number of failed images.28

Result Value. The elements of the result are the values of the image indices of the failed images in the current29

team, in numerically increasing order.30

Examples. If image 3 is the only failed image in the current team, FAILED IMAGES() has the value [3]. If31

there are no failed images in the current team, FAILED IMAGES() is a zero-sized array.32

7.4.13 SUBTEAM ID ([DISTANCE])33

Description. Subteam identifier.34

Class. Transformational function.35

21

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

Argument. DISTANCE (optional) shall be a scalar nonnegative integer.1

Result Characteristics. Default integer scalar.2

Result Value. If DISTANCE is not present, the result value is the subteam identifier of the invoking image3

in the current team. If DISTANCE is present with a value less than or equal to the team distance between the4

current team and the initial team, the result has the value of the subteam identifier that the invoking image had5

when it was a member of the team with a team distance of DISTANCE from the current team. Otherwise, the6

result has the value 1.7

Example. The following code illustrates the use of SUBTEAM ID to control which code is executed.8

TYPE(TEAM_TYPE) :: ODD_EVEN9

:10

ME = THIS_IMAGE()11

FORM SUBTEAM (2-MOD(ME,2), ODD_EVEN)12

CHANGE TEAM (ODD_EVEN)13

SELECT CASE (SUBTEAM_ID())14

CASE (1)15

: ! Code for odd images in parent team16

CASE (2)17

: ! Code for even images in parent team18

END SELECT19

END TEAM20

7.4.14 TEAM DEPTH()21

Description. Team depth for the current team.22

Class. Transformational function.23

Arguments. None.24

Result Characteristics. Scalar default integer.25

Result Value. The result of TEAM DEPTH is an integer with a value equal to the team distance between the26

current team and the initial team.27

Example.28

PROGRAM TD29

USE,INTRINSIC :: ISO_FORTRAN_ENV30

INTEGER :: I_TEAM_DEPTH31

TYPE(TEAM_TYPE) :: SUBTEAM32

33

FORM SUBTEAMS(1, SUBTEAM)34

CHANGE TEAM(SUBTEAM)35

I_TEAM_DEPTH = TEAM_DEPTH()36

END TEAM37

END38

On completion of the CHANGE TEAM construct, I TEAM DEPTH has the value 1.39

22

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

7.5 Modified intrinsic procedures1

7.5.1 NUM IMAGES2

The description of the intrinsic function NUM IMAGES in ISO/IEC 1539-1:2010 is changed by adding two3

optional arguments DISTANCE and FAILED and a modified result if either is present.4

The DISTANCE argument shall be a nonnegative scalar integer. If DISTANCE is not present the result value is5

the number of images in the current team.6

If DISTANCE is present with a value less than or equal to the team distance between the current team and the7

initial team, the team specified is the team of which the invoking image was a member with a team distance of8

DISTANCE from the current team; otherwise, the team specified is the initial team.9

The FAILED argument shall be a scalar LOGICAL argument. Its value determines whether the result is the10

number of failed images or the number of nonfailed images. If DISTANCE is present, the result applies to the11

team it specifies, otherwise the result applies to the current team. If FAILED is present with the value true, the12

result is the number of failed images in the applicable team, otherwise the result is the total number of nonfailed13

images in the applicable team.14

7.5.2 THIS IMAGE15

The description of the intrinsic function THIS IMAGE() in ISO/IEC 1539-1:2010 is changed by adding an16

optional argument DISTANCE and a modified result if DISTANCE is present.17

The DISTANCE argument shall be a scalar integer. It shall be nonnegative. If DISTANCE is not present, the18

result value is the image index of the invoking image in the current team. If DISTANCE is present with a value19

less than or equal to the team distance between the current team and the initial team, the result has the value of20

the image index in the team of which the invoking image was last a member with a team distance of DISTANCE21

from the current team; otherwise, the result has the value of the image index that the invoking image had in the22

initial team.23

23

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

1

(Blank page)2

3

24

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

8 Required editorial changes to ISO/IEC 1539-1:2010(E)1

8.1 General2

The following editorial changes, if implemented, would provide the facilities described in foregoing clauses of this3

Technical Specification. Descriptions of how and where to place the new material are enclosed in braces {}. Edits4

to different places within the same clause are separated by horizontal lines.5

In the edits, except as specified otherwise by the editorial instructions, underwave (
::::::::::
underwave) and strike-out6

(strike-out) are used to indicate insertion and deletion of text.7

8.2 Edits to Introduction8

Include clauses a needed.9

{In paragraph 1 of the Introduction}10

After “informally known as Fortran 2008, plus the facilities defined in ISO/IEC TS 29113:2012” add “and ISO/IEC11

TS 18508:2014”.12

{After paragraph 3 of the Introduction and after the paragraph added by ISO/IEC TS 29113:2012, insert new13

paragraph}14

ISO/IEC TS 18508 provides additional facilities for parallel programming:15

• teams provide a capability to restrict the image set of remote memory references, coarray allocations, and16

synchronizations to a subset of all the images of the program;17

• collective subroutines perform computations based on values on all the images, offering the possibility of efficient18

execution of reduction operations;19

• atomic memory operations provide powerful low-level primitives for synchronization of activities among images;20

• tagged events allow one-sided ordering of execution segments;21

• features for the support of continued execution after one or more images have failed; and22

• features to detect which images have failed.23

8.3 Edits to clause 124

{In 1.3 Terms and definitions, insert new terms as follows}25

1.3.30a26

collective subroutine27

intrinsic subroutine that is invoked on the current team of images to perform a calculation on those images and28

assign the computed value on one or all of them (13.1)29

1.3.145a30

team31

set of images that access each others data (2.3.4).32

25

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

1.3.145a.11

current team2

the team that includes the executing image (2.3.4).3

1.3.145a.24

initial team5

the current team when the program began execution (2.3.4).6

1.3.145a.37

parent team8

team from which the current team was formed by executing a FORM SUBTEAM statement (8.5.2c).9

1.3.145a.410

subteam11

a subset of the set of images in a team (2.3.4).12

1.3.145a.513

subteam identifier14

integer value identifying a subteam (2.3.4).15

1.3.145a.616

team distance17

the distance between a team and one of its ancestors (2.3.4).18

1.3.154.1-19

event variable20

scalar variable of type EVENT TYPE (13.8.2.8a) from the intrinsic module ISO FORTRAN ENV.21

1.3.154.322

team variable23

scalar variable of type TEAM TYPE (13.8.2.26) from the intrinsic module ISO FORTRAN ENV.24

8.4 Edits to clause 225

{At the end of 2.3.4 Program execution insert three new paragraphs}26

A team of images is a set of images that access each other’s data and synchronize with each other. The current27

team is the team that includes the executing image. Unless team-variable is specified in an image-selector28

(R624), all image indices are relative to the current team. Except by executing a SYNC TEAM statement29

(8.5.5a), synchronization is possible only with other images of the team. Initially, the current team consists of30

all the images and this is known as the initial team. A team is divided into subteams by executing a FORM31

SUBTEAM statement (8.5.2c). Each subteam is identified by an integer value known as its subteam identifier.32

Information about the team to which the current image belongs can be determined by the processor from values33

stored in its team variable.34

Team distance is a measure of the distance between two teams, one of which is an ancestor of the other. The35

team distance between a team and itself is zero. Except for the initial team, every team has a unique parent36

team. The team distance between a team and its parent is one. The team distance between a team T and the37

parent of team A, which is an ancestor of T, is one more than the team distance between teams T and A.38

Within the body of a CHANGE TEAM construct (8.1.4a) the current team is the subteam specified by the39

CHANGE TEAM statement.40

8.5 Edits to clause 641

{In 6.6 Image selectors, replace R624 with}42

26

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

R624 image-selector is lbracket [team-variable ::] cosubscript-list rbracket1

{In 6.6 Image selectors, after paragraph 2 insert}2

If team-variable appears, its value shall be the same as that of a team-variable that was assigned a value by a3

FORM SUBTEAM (8.5.2c) statement for the current team or an ancestor of the current team, and the cosubscripts4

are interpreted as if the current team were the team specified by team-variable.5

{In 6.7.1.2, Execution of an ALLOCATE statement, edit paragraphs 3 and 4 as follows}6

If an allocation specifies a coarray, its dynamic type and the values of corresponding type parameters shall be the7

same on every image
::
in

::::
the

:::::::
current

::::::
team. The values of corresponding bounds and corresponding cobounds shall8

be the same on every image
:::::
these

:::::::
images. If the coarray is a dummy argument, its ultimate argument (12.5.2.3)9

shall be the same coarray on every image
:::::
these

:::::::
images.10

When an ALLOCATE statement is executed for which an allocate-object is a coarray, there is an implicit syn-11

chronization of all images
::
in

:::
the

::::::::
current

::::::
team. On each image

:::::
these

:::::::
images, execution of the segment (8.5.2)12

following the statement is delayed until all other images
:
in

::::
the

::::::::
current

:::::
team have executed the same statement13

the same number of times.14

{In 6.7.3.2, Deallocation of allocatable variables, edit paragraphs 11 and 12 as follows}15

When a DEALLOCATE statement is executed for which an allocate-object is a coarray, there is an implicit16

synchronization of all images
::
in

::::
the

:::::::
current

::::::
team. On each image

:::::
these

:::::::
images, execution of the segment (8.5.2)17

following the statement is delayed until all other images
:
in

::::
the

::::::::
current

:::::
team have executed the same statement18

the same number of times. If the coarray is a dummy argument, its ultimate argument (12.5.2.3) shall be the19

same coarray on every image
:::::
these

:::::::
images.20

There is also an implicit synchronization of all images
::
in

:::
the

::::::::
current

:::::
team in association with the deallocation of21

a coarray or coarray subcomponent caused by the execution of a RETURN or END statement or the termination22

of a BLOCK construct.23

8.6 Edits to clause 824

{In 8.1.1 General, paragraph 1, following the BLOCK construct entry in the list of constructs insert}25

• CHANGE TEAM construct;26

{Following 8.1.4 BLOCK construct insert 5.3 CHANGE TEAM construct from this Technical Specification as27

8.1.4a, with rule, constraint, and Note numbers modified.}28

{In 8.5.1 Image control statements, paragraph 2, insert extra bullet points following the CRITICAL and END29

CRITICAL line}30

• CHANGE TEAM and END TEAM;31

• EVENT POST and EVENT WAIT;32

• FORM SUBTEAM;33

• SYNC TEAM;34

{In 8.5.1 Image control statements, edit paragraph 3 as follows}35

All image control statements except CRITICAL, END CRITICAL,
::::::
FORM

:::::::::::::
SUBTEAM, LOCK, and UNLOCK36

include the effect of executing a SYNC MEMORY statement (8.5.5).37

{In 8.5.2 Segments, after the first sentence of paragraph 3, insert the following }38

27

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

A coarray that is of type EVENT TYPE may be referenced or defined during the execution of a segment that is1

unordered relative to the execution of another segment in which that coarray of type EVENT TYPE is defined.2

{Following 8.5.2 Segments insert 6.3 EVENT POST statement from this Technical Specification as 8.5.2a, with3

rule and constraint numbers modified.}4

{Following 8.5.2 Segments insert 6.4 EVENT WAIT statement from this Technical Specification as 8.5.2b, with5

rule and constraint numbers modified.}6

{Following 8.5.2 Segments insert 5.4 FORM SUBTEAM statement from this Technical Specification as 8.5.2c,7

with rule and Note numbers modified.}8

{In 8.5.3 SYNC ALL statement, edit paragraph 2 as follows}9

Execution of a SYNC ALL statement performs a synchronization of all images
::
in

::::
the

:::::::
current

::::::
team. Execution10

on an image, M, of the segment following the SYNC ALL statement is delayed until each other image
::
in

::::
the11

:::::
team has executed a SYNC ALL statement as many times as has image M. The segments that executed before12

the SYNC ALL statement on an image precede the segments that execute after the SYNC ALL statement on13

another image.14

{In 8.5.4 SYNC IMAGES, edit paragraphs 1 through 3 as follows}15

If image-set is an array expression, the value of each element shall be positive and not greater than the number16

of images
:
in

::::
the

::::::::
current

:::::
team, and there shall be no repeated values.17

If image-set is a scalar expression, its value shall be positive and not greater than the number of images
:
in

::::
the18

:::::::
current

:::::
team.19

An image-set that is an asterisk specifies all images
::
in

::::
the

:::::::
current

::::::
team.20

{Following 8.5.5 SYNC MEMORY statement, insert 5.5 SYNC TEAM statement from this Technical Specification21

as 8.5.5a, with the rule number modified.}22

{In 8.5.7 STAT= and ERRMSG= specifiers in image control statements replace paragraphs 1 and 2 by}23

The appearance of a STAT= or ERRMSG= specifier in a CHANGE TEAM statement is treated as an appearance24

both there and in the corresponding END TEAM statement.25

If the STAT= specifier appears, successful execution of a CHANGE TEAM, END TEAM, FORM SUBTEAM,26

LOCK, SYNC ALL, SYNC IMAGES, SYNC MEMORY, or UNLOCK statement causes the specified variable to27

become defined with the value zero.28

If the STAT= specifier appears in a CHANGE TEAM, END TEAM, FORM SUBTEAM, LOCK, SYNC ALL,29

SYNC IMAGES, SYNC MEMORY, or UNLOCK statement and its execution is not successful, the specified30

variable becomes defined with a nonzero value and the effect is otherwise the same as that of executing the31

SYNC MEMORY statement. If there is a stopped image in the current team, the variable becomes defined with32

the constant STAT STOPPED IMAGE in the intrinsic module ISO FORTRAN ENV (13.8.2); otherwise, if no33

image of the current team has been detected as stopped or failed, the variable becomes defined with a processor-34

dependent positive value that is different from the value of STAT STOPPED IMAGE or STAT FAILED IMAGE35

in the intrinsic module ISO FORTRAN ENV (13.8.2). If an image had been detected as failed, the variable36

becomes defined with the the constant STAT FAILED IMAGE.37

{In 8.5.7 STAT= and ERRMSG= specifiers in image control statements replace paragraphs 4 and 5 by}38

If the STAT= specifier does not appear in a CHANGE TEAM, END TEAM, FORM SUBTEAM, LOCK, SYNC39

ALL, SYNC IMAGES, SYNC MEMORY, or UNLOCK statement and its execution is not successful, error40

termination is initiated.41

28

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

If an ERRMSG= specifier appears in a CHANGE TEAM, END TEAM, FORM SUBTEAM, LOCK, SYNC ALL,1

SYNC IMAGES, SYNC MEMORY, or UNLOCK statement and its execution is not successful, the processor2

shall assign an explanatory message to the specified variable. If the execution is successful, the processor shall3

not change the value of the variable.4

8.7 Edits to clause 135

{In 13.1 Classes of intrinsic procedures, edit paragraph 1 as follows}6

Intrinsic procedures are divided into seven
:::::
eight classes: inquiry functions, elemental functions, transformational7

functions, elemental subroutines, pure subroutines, atomic subroutines,
::::::::
collective

:::::::::::::
subroutines, and (impure)8

subroutines.9

{In 13.1 Classes of intrinsic procedures, append the following text to the end of paragraph 3}10

For invocation of an atomic subroutine with an argument OLD, the assignment of the value to OLD is not part11

of the atomic action. For invocation of an atomic subroutine, evaluation of an INTENT(IN) argument is not part12

of the atomic action.13

{In 13.1 Classes of intrinsic procedures, insert six new paragraphs following paragraph 3 and Note 13.1}14

A collective subroutine is one that is invoked on each image of the current team to perform a calculation on those15

images and that assigns the computed value on one or all of them. If it is invoked by one image, it shall be16

invoked by the same statement on all images of the current team in execution segments that are not ordered with17

respect to each other. From the beginning of execution as the current team, the sequence of calls to collective18

subroutines shall be the same on all images of the current team. A call to a collective subroutine shall appear19

only in a context that allows an image control statement.20

If an argument to a collective subroutine is a whole coarray the corresponding ultimate arguments on all images21

of the current team shall be corresponding coarrays as described in 2.4.7.22

All the collective subroutines have the optional arguments STAT and ERRMSG.23

If the STAT argument is present, successful invocation of a collective subroutine causes the argument to become24

defined with the value zero.25

If the STAT argument is present in an invocation of a collective subroutine and an error condition occurs, the26

argument is assigned a nonzero value and the effect is otherwise the same as that of executing the SYNC MEMORY27

statement. If execution involves synchronization with an image that has stopped, the argument becomes defined28

with the value of STAT STOPPED IMAGE in the intrinsic module ISO FORTRAN ENV (13.8.2); otherwise, if29

no image of the current team has stopped or failed, the argument is assigned a processor-dependent positive value30

that is different from the value of STAT STOPPED IMAGE or STAT FAILED IMAGE in the intrinsic module31

ISO FORTRAN ENV (13.8.2). If an image had been detected as failed, but no other error condition occurred,32

the argument is assigned the value of the constant STAT FAILED IMAGE.33

If an ERRMSG argument is present in an invocation of a collective subroutine and an error condition occurs34

during its execution, the processor shall assign an explanatory message to the argument. If no such condition35

occurs, the processor shall not change the value of the argument.36

{In 13.5 Standard generic intrinsic procedures, paragraph 2 after the line ”A indicates ... atomic subroutine”37

insert a new line}38

C indicates that the procedure is a collective subroutine39

{In 13.5 Standard generic intrinsic procedures, Table 13.1, insert new entries into the table, alphabetically}40

ATOMIC ADD (ATOM, VALUE [,OLD]) A Atomic ADD operation.41

29

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

ATOMIC AND (ATOM, VALUE [,OLD]) A Atomic bitwise AND operation.1

ATOMIC CAS (ATOM, OLD, COMPARE, NEW) A Atomic compare and swap.2

ATOMIC OR (ATOM, VALUE [,OLD]) A Atomic bitwise OR operation.3

ATOMIC XOR (ATOM, VALUE [,OLD]) A Atomic bitwise exclusive OR operation.4

CO BROADCAST (SOURCE, SOURCE IMAGE) C Copy a variable to all images.5

CO MAX (SOURCE [, RESULT, RESULT IMAGE]) C Compute maximum of elements on all images.6

CO MIN (SOURCE [, RESULT, RESULT IMAGE]) C Compute minimum of elements on all images.7

CO REDUCE (SOURCE, OPERATOR [, RESULT, C General reduction of elements on all images.8

RESULT IMAGE])9

CO SUM (SOURCE [, RESULT, RESULT IMAGE]) C Sum elements on all images.10

EVENT QUERY (EVENT, COUNT[, STATUS]) S Count of an event.11

FAILED IMAGES ([KIND]) T Indices of failed images.12

SUBTEAM ID ([DISTANCE]) T Subteam identifier.13

TEAM DEPTH () T Team depth for this image.14

{In 13.5 Standard generic intrinsic procedures, Table 13.1, edit the entries for NUM IMAGES() and THIS -15

IMAGE() as follows}16

NUM IMAGES (
:::::::::::::
[DISTANCE,

:::::::::
FAILED]) T Number of images.17

THIS IMAGE (
:::::::::::::
[DISTANCE]) T Index of the invoking image.18

{In 13.7 Specifications of the standard intrinsic procedures, insert subclauses 7.3.1 through 7.3.14 of this Technical19

Specification in order alphabetically, with subcaluse numbers adjusted accordingly.}20

{In 13.7.126 NUM IMAGES, edit the subclause title as follows}21

13.7.126 NUM IMAGES (
:::::::::::::
[DISTANCE,

:::::::::
FAILED])22

{In 13.7.126 NUM IMAGES, replace paragraph 3 with}23

Arguments.24

DISTANCE (optional) shall be a nonnegative scalar integer. It is an INTENT(IN) argument.25

FAILED (optional) shall be a scalar LOGICAL argument. Its value determines whether the result is the number26

of failed images or the number of nonfailed images. It is an INTENT(IN) argument.27

{In 13.7.126 NUM IMAGES, replace paragraph 5 with}28

Result Value. If DISTANCE is not present the result value is the number of images in the current team.29

If DISTANCE is present with a value less than or equal to the team distance between the current team and30

the initial team, the team specified is the team of which invoking image was a member with a team distance of31

DISTANCE from the current team; otherwise, the team specified is the initial team.32

If DISTANCE is present, the result applies to the team it specifies, otherwise the result applies to the current33

team. If FAILED is present with the value true, the result is the number of failed images in the applicable team,34

30

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

otherwise the result is the total number of nonfailed images in the applicable team.1

{In 13.7.165 THIS IMAGE () or THIS IMAGE (COARRAY [, DIM]) edit the subclause title as follows }2

13.7.165 THIS IMAGE (
::::::::::::
[DISTANCE]) or THIS IMAGE (COARRAY [, DIM])3

{In 13.7.165 THIS IMAGE () or THIS IMAGE (COARRAY [, DIM]) insert a new argument at the end of4

paragraph 3 }5

DISTANCE (optional) shall be a scalar integer. It shall be nonnegative. It shall not be a coarray.6

{In 13.7.165 THIS IMAGE () or THIS IMAGE (COARRAY [, DIM]) replace Case(i): in paragraph 5 with }7

Case (i): If DISTANCE is not present the result value is the image index of the invoking image in the current8

team. If DISTANCE is present with a value less than or equal to the team distance between the9

current team and the initial team, the result has the value of the image index in the team of10

which the invoking image was member with a team distance of DISTANCE from the current team;11

otherwise, the result has the value of the image index that the invoking image had in the initial12

team.13

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, insert a new subclause 13.8.2.8a consisting of subclause14

6.2 EVENT TYPE of this Technical Specification, but omitting the final sentence of the first paragraph.}15

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, insert a new subclause 13.8.2.21b consisting of subclause16

5.6 STAT FAILED IMAGE of this Technical Specification.}17

{In 13.8.2 The ISO FORTRAN ENV intrinsic module, append a new subclause 13.8.2.26 consisting of subclause18

5.2 TEAM TYPE of this Technical Specification, but omitting the final sentence of the first paragraph.}19

8.8 Edits to clause 1620

{At the end of the list of variable definition contexts in 16.6.7p1, replace the “.” at the end of entry (15) with21

“;” and add two new entries as follows}22

(16) a team-variable in a FORM SUBTEAM statement;23

(17) an event-variable in an EVENT POST or EVENT WAIT statement.24

8.9 Edits to annex A25

{At the end of A.2 Processor dependencies, replace the final full stop with a semicolon and add new items as26

follows}27

• the conditions that cause an image to fail;28

• the computed value of the CO SUM intrinsic function;29

• the computed value of the CO REDUCE intrinsic function.30

31

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

32

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

Annex A1

(Informative)2

Extended notes3

A.1 Clause 5 notes4

Example: Compute fluxes over land, sea and ice in different teams based on surface properties. Assumption:5

Each image deals with areas containing exactly one of the three surface types.6

SUBROUTINE COMPUTE_FLUXES(FLUX_MOM, FLUX_SENS, FLUX_LAT)7

USE,INTRINSIC :: ISO_FORTRAN_ENV8

REAL, INTENT(OUT) :: FLUX_MOM(:,:), FLUX_SENS(:,:), FLUX_LAT(:,:)9

INTEGER, PARAMETER :: LAND=1, SEA=2, ICE=310

CHARACTER(LEN=10) :: SURFACE_TYPE11

INTEGER :: MY_SURFACE_TYPE, N_IMAGE12

TYPE(TEAM_TYPE) :: SUBTEAM_SURFACE_TYPE13

14

CALL GET_SURFACE_TYPE(THIS_IMAGE(), SURFACE_TYPE) ! Surface type15

SELECT CASE (SURFACE_TYPE) ! of the executing image16

CASE (’LAND’)17

MY_SURFACE_TYPE = LAND18

CASE (’SEA’)19

MY_SURFACE_TYPE = SEA20

CASE (’ICE’)21

MY_SURFACE_TYPE = ICE22

CASE DEFAULT23

ERROR STOP24

END SELECT25

FORM SUBTEAM(MY_SURFACE_TYPE, SUBTEAM_SURFACE_TYPE)26

27

CHANGE TEAM(SUBTEAM_SURFACE_TYPE)28

SELECT CASE (SUBTEAM_ID())29

CASE (LAND) ! Compute fluxes over land surface30

CALL COMPUTE_FLUXES_LAND(FLUX_MOM, FLUX_SENS, FLUX_LAT)31

CASE (SEA) ! Compute fluxes over sea surface32

CALL COMPUTE_FLUXES_SEA(FLUX_MOM, FLUX_SENS, FLUX_LAT)33

CASE (ICE) ! Compute fluxes over ice surface34

CALL COMPUTE_FLUXES_ICE(FLUX_MOM, FLUX_SENS, FLUX_LAT)35

CASE DEFAULT36

ERROR STOP37

END SELECT38

END TEAM39

END SUBROUTINE COMPUTE_FLUXES40

A.2 Clause 6 notes41

Example 1: Use of EVENT QUERY.42

USE,INTRINSIC :: ISO_FORTRAN_ENV43

INTEGER :: COUNT, STATUS44

33

J3/13-293 TS 18508 Additional Parallel Features in Fortran 2013/6/30

TYPE(EVENT_TYPE) :: EVENT[*]1

2

CALL EVENT_QUERY(EVENT, COUNT, STATUS)3

IF (STATUS /= 0) THEN4

PRINT*,’PROBLEM WITH EVENT QUERYING’5

ELSE6

IF (COUNT == 0) THEN7

! Do some useful work not related to the event.8

ELSE9

EVENT WAIT(EVENT, STAT=STATUS)10

IF (STATUS /= 0) THEN11

PRINT*,’PROBLEM WITH EVENT WAITING’12

ELSE13

! Do the work related to the event.14

ENDIF15

ENDIF16

ENDIF17

Example 2: Producer consumer program.18

PROGRAM PROD_CONS19

USE, INTRINSIC :: ISO_FORTRAN_ENV20

INTEGER :: I, COUNT, STATUS21

TYPE(EVENT_TYPE) :: EVENT[*]22

DO23

DO I = 1, NUM_IMAGES()24

CALL EVENT_QUERY(EVENT[I], COUNT, STATUS)25

IF (STATUS /= 0) THEN26

PRINT*,’PROBLEM QUERYING EVENT’27

ELSE28

IF (I /= THIS_IMAGE()) THEN29

IF (COUNT == 0) THEN30

! Produce some work31

EVENT POST(EVENT[I], STATUS)32

IF (STATUS /= 0) THEN33

PRINT*,’PROBLEM POSTING EVENT’34

ENDIF35

ENDIF36

ELSE37

EVENT WAIT(EVENT, STATUS)38

IF (STATUS /= 0) THEN39

PRINT*,’PROBLEM WAITING FOR EVENT’40

ELSE41

! Consume some work42

ENDIF43

ENDIF44

ENDIF45

ENDDO46

ENDDO47

END PROD_CONS48

34

2013/6/30 TS 18508 Additional Parallel Features in Fortran J3/13-293

A.3 Clause 7 notes1

A.3.1 Collective subroutine examples2

The following example computes a dot product of two scalar coarrays using the co sum intrinsic to store the3

result in a noncoarray scalar variable:4

subroutine codot(x,y,x_dot_y)5

real :: x[*],y[*],x_dot_y6

x_dot_y = x*y7

call co_sum(x_dot_y)8

end subroutine codot9

The function below demonstrates passing a noncoarray dummy argument to the co max intrinsic. The function10

uses co max to find the maximum value of the dummy argument across all images. Then the function flags all11

images that hold values matching the maximum. The function then returns the maximum image index for an12

image that holds the maximum value:13

function find_max(j) result(j_max_location)14

integer, intent(in) :: j15

integer j_max,j_max_location16

call co_max(j,j_max)17

! Flag images that hold the maximum j18

if (j==j_max) then19

j_max_location = this_image()20

else21

j_max_location = 022

end if23

! Return highest image index associated with a maximal j24

call co_max(j_max_location)25

end function find_max26

35

	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Compatibility
	4.1 New intrinsic procedures
	4.2 Fortran 2008 compatibility

	5 Teams of images
	5.1 Introduction
	5.2 TEAM_TYPE
	5.3 CHANGE TEAM construct
	5.4 Image selectors
	5.5 FORM SUBTEAM statement
	5.6 SYNC TEAM statement
	5.7 STAT_FAILED_IMAGE

	6 Events
	6.1 Introduction
	6.2 EVENT_TYPE
	6.3 EVENT POST statement
	6.4 EVENT WAIT statement

	7 Intrinsic procedures
	7.1 General
	7.2 Atomic subroutines
	7.3 Collective subroutines
	7.4 New intrinsic procedures
	7.4.1 ATOMIC_ADD (ATOM, VALUE [, OLD])
	7.4.2 ATOMIC_AND (ATOM, VALUE [, OLD])
	7.4.3 ATOMIC_CAS (ATOM, OLD, COMPARE, NEW)
	7.4.4 ATOMIC_OR (ATOM, VALUE [, OLD])
	7.4.5 ATOMIC_XOR (ATOM, VALUE [, OLD])
	7.4.6 CO_BROADCAST (SOURCE, SOURCE_IMAGE [, STAT, ERRMSG])
	7.4.7 CO_MAX (SOURCE [, RESULT, RESULT_IMAGE, STAT, ERRMSG])
	7.4.8 CO_MIN (SOURCE [, RESULT, RESULT_IMAGE, STAT, ERRMSG])
	7.4.9 CO_REDUCE (SOURCE, OPERATOR [, RESULT, RESULT_IMAGE, STAT, ERRMSG])
	7.4.10 CO_SUM (SOURCE [, RESULT, RESULT_IMAGE, STAT, ERRMSG])
	7.4.11 EVENT_QUERY (EVENT, COUNT [, STATUS])
	7.4.12 FAILED_IMAGES ([KIND])
	7.4.13 SUBTEAM_ID ([DISTANCE])
	7.4.14 TEAM_DEPTH()

	7.5 Modified intrinsic procedures
	7.5.1 NUM_IMAGES
	7.5.2 THIS_IMAGE

	8 Required editorial changes to ISO/IEC 1539-1:2010(E)
	8.1 General
	8.2 Edits to Introduction
	8.3 Edits to clause 1
	8.4 Edits to clause 2
	8.5 Edits to clause 6
	8.6 Edits to clause 8
	8.7 Edits to clause 13
	8.8 Edits to clause 16
	8.9 Edits to annex A

	Annex A (informative) Extended notes
	A.1 Clause 5 notes
	A.2 Clause 6 notes
	A.3 Clause 7 notes
	A.3.1 Collective subroutine examples

