
Units of Measure in Fortran

Van Snyder
van.snyder@jpl.nasa.gov

Caltech Jet Propulsion Laboratory

8 November 2012

The Problem

Incorrect use of physical units is the third-most-common error in
scientific or engineering software, coming immediately after
mismatched, missing or excess actual arguments in procedure
references, and out-of-bounds array references. Explicit interfaces
largely solve the second problem and help the third problem, but
do nothing directly for the first.

Expensive example

On September 23, 1999, the NASA/JPL Mars Climate Orbiter
spacecraft arrived at Mars 67 kilometers lower than expected. As a
result, it was destroyed by atmospheric stresses. The cost of the
mission was $US 300 million.

The cause of the accident was improper units of measure.

Proposal
Define a language-based system that shall

I check units in expressions, assignment, and procedure
references at compile time,

I distinguish different measures of the same fundamental
quantity, and provide for explicit conversion between them,

I not increase execution time, except where conversion is
explicitly requested,

I not require additional storage,

I allow to output units, and to check and convert units during
input,

I require minimal labor, and

I support abstract units, which specify the relationship of units
of dummy arguments and function results, and thereby the
relationship of corresponding actual arguments and function
results, without requiring specific units.

Alternatives based upon derived types

There are at least three methods based upon derived types that
can provide some support for units. Each would have a real
component to represent the value of the object.

I Specify exponents of fundamental units using kind type
parameters.

I Specify exponents of fundamental units using integer
components. Different measures of the same unit could be
distinguished and converted by providing for scale and offset
using additional real components.

I Use a different type for each unit of measure.

General drawbacks of methods based upon derived types

I No method based upon derived types can provide abstract
units.

I All such methods increase execution time.

I All such methods have larger labor cost than the proposed
method.

Kind type parameters to represent exponents

Assume one wishes to check and compose only the exponents of
units. The meaningful ranges of the exponents of SI units in most
applications are:

Exponent Number of
Unit Measure Range exponents

length meter −3 · · ·+ 3 7
time second −3 · · ·+ 1 5
mass kilogram −1 · · ·+ 1 3
temperature Kelvin −1 · · ·+ 1 3
electric current Ampere −1 · · ·+ 1 3
quantity of a substance mole −1 · · ·+ 1 3
luminous intensity candela −1 · · ·+ 1 3
angle1 radian −2 · · ·+ 2 5

1Not an SI unit

Kind type parameters (cont.)

Compile-time checking and composition of exponents of these units could
be provided by a type with eight kind type parameters, one for each
exponent, and a real component to represent the value of the object.

If one wishes to provide procedures for all possible combinations of
exponents, one needs 10× (7× 5× 35 × 5) = 425, 250 procedures for
identity, negation, addition, subtraction, and comparison, for each REAL
kind. For multiplication and division, one needs an additional
2×

∏8
i=1 f (ai , bi) procedures, where

f (a, b) = (b − a + 1)2 + a(1− a)/2− b(1 + b)/2 and ai , bi are the
exponent bounds in the table, or 425, 351, 556 procedures, assuming one
wants not to produce any exponents outside the above ranges.

Defined formatted I/O, to output units or check input units automaticaly,
requires an additional 85,500 procedures, for each REAL kind.

Exponentiation by an integer requires an additional type with one kind
type parameter, and about 150,000 more procedures, for each REAL kind.

Altogether, about 426 million procedures, for each REAL kind.

Kind type parameters (cont.)
It is clearly out of the question to produce, in advance, a library of more
than 425 million procedures, or 1.7 billion for all possible combinations of
only two real kinds.

Fortran does not yet provide for macros, parameterized modules, or
parameterized procedures.

One would therefore need either to write a preprocessor to generate the
procedures needed for a specific application, use a macro processor to do
so, or write them manually. Each method has substantial labor cost.

Using kind type parameters, one gets compile-time checking of exponents
of units, but no checking or conversion, at compile time or run time, of
different measures of the same unit, such as feet and meters.

Unless procedures are inlined and optimized, execution time would be
increased.

Additional units for different applications, such as decibels, currency,
safety rates. . . , would require additional kind type parameters, and
additional procedures.

Support for fractional exponents would require enormously more
procedures.

Components to represent exponents

Grant Petty described a system to check and compose exponents
of units using a derived type with integer components for the
exponents. A description appeared in Software–Practice and
Experience 31, pp 1067–1076 (2001), and a module to implement
it is available online at
http://sleet.aos.wisc.edu/∼gpetty/wp/?page_id=684.
The module defines 116 procedures.

The number of exponent components is specified by a named
constant, with a value of eight in the distributed module.

The values of exponent components of arguments are compared in
procedures for addition, subtraction, comparison, and assignment.
The program stops if any are unequal. Pointer assignment is not
checked.

The values of exponent components of the function result are
computed in procedures for multiplication, division, and
exponentiation.

Components to represent exponents (cont.)

There is significant internal overhead in Petty’s type and
procedures. In some applications this is not important. In others,
it is intolerable.

Petty suggests removing the exponent components, and simplifying
the procedures to eliminate checking and composition of
exponents, when the program is deployed. Even so, execution time
would be increased unless procedures are inlined and optimized.

Edsgar Dijkstra likened this to being required to fasten your seat
belt while the airplane taxies about the airport, but then the flight
attendant takes it away before the airplane takes off.

Components to represent exponents (cont.)

Petty’s scheme does not distinguish measures of the same
fundamental unit, such as feet and meters. Doing so would require
additional components for scale and offset, which would mostly not
do anything, and could not be removed in production.

If one of Petty’s procedures discovers an error, it executes a STOP
statement. Most processors do not provide an indication where in
a program this occurs.

Petty’s scheme provides no compile-time checking.

Different type for each measure

One could provide complete compile-time checking of exponents of
units, and distinguish and convert between different measures of
the same unit, by using a different type for each unit.

The number of types would depend upon the application.

The number of procedures would be on the order of the square of
the number of types.

The amount of labor required would depend upon the application.

A library hoping to provide all meaningful types and procedures for
a broad area of applications, such as mechanics, electronics, or
thermodynamics, could be very large.

Execution time would be increased, unless procedures are inlined
and optimized.

Proposed language-based method

The proposed language-based method adds syntax to define units
and attributes of units, and to specify the UNIT attribute for real
variables, components, and named constants.

A unit can be an atomic, composite, conversion, or abstract unit.

Specifications of how units are used in expressions, assignment,
ASSOCIATE and SELECT TYPE constructs, procedure arguments
and function results, input/output, generic resolution, and intrinsic
procedures, are included, but require no new syntax.

Unit definition statement

Syntax for a UNIT definition statement is specified:

UNIT [[unit-attr-list] ::] unit-name

[= unit-expression]

Unit attributes are ABSTRACT, EXCLUDE ADD, or an access
specification.

If no unit-expression is specified, the unit is atomic.

If a unit-expression is specified, it can either specify

I composition involving multiplication and division of
previously-defined units, and exponentiation of a unit by a
rational exponent, or

I a conversion from a previously-defined unit, boiling down to
an expression of the form a× x + b, where a and b are unitless
constant expressions, a is nonzero, and x is a unit name.

Intrinsic atomic units UNITLESS and RADIAN are defined.

Unit definition statement examples

! Atomic units:
UNIT, PUBLIC :: METER, SECOND, KILOGRAM, KELVIN
UNIT, PUBLIC, EXCLUDE_ADD :: DECIBEL

! Composite units:
UNIT :: CENTARE = METER**2
UNIT :: STERE = METER**3
UNIT :: VELOCITY = METER / SECOND
UNIT :: DENSITY = KILOGRAM / STERE

! Conversion units:
UNIT :: CM = 100 * METER
UNIT :: HECTARE = CENTARE / 10000.0
UNIT :: INCH = CM / 2.54
UNIT :: CELSIUS = KELVIN - 273.15
UNIT :: FAHRENHEIT = 9.0 * CELSIUS / 5.0 + 32.0

Unit attribute declaration

A real variable, component, or named constant, can be declared to
have the UNIT attribute.

A UNIT(unit-name) attribute specification can appear in a type
declaration statement and a component declaration.

Alternatively, a real variable or named constant may be declared to
have the UNIT attribute using a UNIT(unit-name) statement.

Examples:

REAL, UNIT(KELVIN) :: K
REAL :: F
UNIT(FAHRENHEIT) :: F

Units in expressions and assignment

Where operands are added or subtracted, their units shall be
equivalent.

Where operands are multiplied, the result units are the product of
their operand’s units.

Where operands are divided, the result units are the units of the
first operand divided by the units of the second operand.

Where an operand is raised to a constant integer power, the units
of the result are the units of the operand raised to the same
constant integer power.

Where an operand is raised to a power that is not constant or not
an integer, the operand shall be unitless and the result is unitless.

In intrinsic assignment or pointer assignment, the units of the left-
and right-hand sides shall be equivalent.

Atomic form of a unit and unit equivalence

The atomic form of an atomic or conversion unit is that unit.

The atomic form of a composite unit is obtained by replacing each
composite unit in its definition by that unit’s atomic form.

The atomic form of a unit is an algebraic expression of the form∏n
i=1 aei

i , where ai is a unit name, each ai is unique, and ei is a
rational number.

Atomic or conversion units are equivalent if their local names refer
to the same unit definition.

If the atomic forms of two composite units are
∏n

i=1 aei
i and∏m

j=1 b
e′
j

j , the units are equivalent if m = n, there is a one-to-one
equivalence between ai and bj , and where ai and bj are equivalent,
ei = e ′

j .

Unit conversion

Definition of a conversion unit defines an elemental generic
function of the same name, with one real argument that is the unit
that appears in the definition, and a real result with the specified
units. The function evaluates the defining expression.

An elemental generic function that has the name and real result
units of the unit that appears in the definition, and an argument
that is the unit being defined, is also defined. The function
evaluates the inverse of the defining expression. This is trivial:
Because the unit definition is of the form y = a× x + b, where y
and x are unit names and a is nonzero, x = (y − b)/a.

Conversion in expressions only occurs were explicitly invoked.
Conversion functions are automatically composed as necessary.
Example:
K = 273.15
print *, FAHRENHEIT(K) ! prints 32.0
F = 32.0
print *, KELVIN(F) ! prints 273.15

Units as arguments and function results

Units of arguments and function results, whether they are abstract,
and if they are abstract their relationship to other units, are
characteristics of a procedure.

If a dummy argument has nonabstract units, corresponding actual
arguments shall have equivalent units.

Nonabstract units of arguments participate in generic resolution.

If a function result variable has nonabstract units, the units of the
function invocation are the units of the result variable.

Units as arguments and function results (cont.)

If a dummy argument has atomic abstract units, the corresponding
actual argument can have any unit.

If a dummy argument has composite abstract units, the
corresponding actual argument shall have units related to units of
other actual arguments in the same way that the abstract units of
dummy arguments corresponding to those other actual arguments
are related.

If a function result variable has abstract units, the units of the
function invocation are related to the units of the actual arguments
in the same way as the units of the function result are related to
the units of the dummy arguments.

Abstract units example

interface
real function CBRT (X) ! cube root of X
unit, abstract :: A, R = A ** (1 / 3)
real, unit(A) :: X
unit(R) :: CBRT

end function CBRT
end interface

real, unit(CENTARE) :: B
B = CBRT(METER(2.0)**3) ** 2 ! B = CENTARE (4.0)

Units of actual and dummy argument are METER**3.

Units of result of CBRT are ((METER**3) ** (1/3)).

Units of RHS are ((METER**3) ** (1/3)) ** 2 =
METER ** 2, which are equivalent to CENTARE.

This is impossible with schemes based upon derived types.

Units in I/O

Units can be output. Units are checked on input, and converted if
necessary.

A U[w] edit descriptor is defined. It can follow a D, E, F or G edit
descriptor, and be separated from it only by commas, X edit
descriptors, or character string edit descriptors that have no
nonblank characters.

Where a U[w] edit descriptor appears for output, the local unit
name of the list item corresponding to the preceding D, E, F or G
edit descriptor is output, using the same rules as for the A[w] edit
descriptor. The item shall be real and not unitless.

For list-directed or namelist output, no unit is produced for a
unitless item.

Units in I/O (cont.)

For list-directed or namelist output, If a scalar item has units other
than unitless, the local name of the unit is produced, separated
from the value by one space. If an array item has units other than
unitless, the local name of the unit is produced only after the value
of the first array element, separated from the value by one space.

If an output item is not unitless, it shall have a unit name. For
example, a list item of X**3 where X has units METER is prohibited,
while STERE(X**3) is permitted (STERE in this case is a units
confirmation function).

Where a U[w] edit descriptor appears for input, the list item shall
be real and not unitless, and the unit name that appears in the
input shall be the same as the local unit name of the list item
corresponding to the preceding D, E, F or G edit descriptor, or
related to it by a sequence of conversions. If the input unit is not
the same as the list item’s unit name, conversion is applied, as
specified by the appropriate unit definitions.

Units in I/O (cont.)

For list-directed or namelist input of scalars, a unit name shall
appear after the value and be separated from it by one or more
spaces. The unit name that appears in the input shall be the same
as the local unit name of the input item, or related to it by a
sequence of conversions.

For list-directed or namelist input of arrays, a unit name shall
appear after the first value, may appear after other values, and be
separated from the preceding value by one or more spaces. If no
unit name appears, the unit of the value is assumed to be the same
as the previous one.

If the input unit is not the same as the list item’s unit name,
conversion is applied, as specified by the appropriate unit
definitions.

Intrinsic functions

Intrinsic functions UNITLESS and RATIONAL POWER are
defined.

UNITLESS has a real argument with any units, and a real result of
the same kind as the argument, without units.

RATIONAL POWER has three arguments X, N and D, where X is
real, and N and D are integer. If X is not unitless, N and D shall be
constants. The result value is X raised to the rational power N/D.
X has an abstract unit A. The units of the result are A**(N/D).

Intrinsic functions having real arguments and result type other
than real have unitless arguments.

Intrinsic functions (cont.)

With the following exceptions, the units of real arguments of an
intrinsic function with real result are the same abstract unit, and
the units of the result are that abstract unit.

The arguments of ATAN2, or ATAN with two arguments, have the
same abstract unit. The result is unitless.

Trigonometric functions have arguments with units either
UNITLESS or RADIAN, and the results are unitless.

Where DOT PRODUCT, DPROD, OR MATMUL have real
arguments, the arguments have abstract units A and B, and the
units of the result are A*B.

Where the arguments of MOD or MODULO are real, they have
different abstract units, and the units of the result are those of the
first actual argument.

Intrinsic functions (cont.)

The argument of RANDOM NUMBER has an abstract unit.

The argument of the SQRT function has an abstract unit A and
the unit of the result is A**(1/2).

The arguments and results of the following functions are unitless.

Hyperbolic functions Inverse hyperbolic functions Bessel functions
Error functions CMPLX EXP
FRACTION GAMMA LOG
LOG GAMMA LOG10 PRODUCT
RRSPACING TRANSFER
Inverse trigonometric functions other than ATAN2,
or ATAN with two arguments

Simplifications

Composition of conversions could be required to be explicit.

K = 273.15
print *, FAHRENHEIT(K) ! Illegal
print *, FAHRENHEIT(CELSIUS(K)) ! prints 32.0

