J3/14-233 To: J3 Members From: Stan Whitlock Subject: J3 Fortran interp letter ballot #31 - due 6-Oct-2014 Date: 2014 September 08 Enclosed in the next letter ballot on Fortran interpretations. The rules by which we operate say: o J3 votes on the answer at a J3 meeting; a simple majority vote marks the answer as "passed by J3 meeting". o Between J3 meetings the chair of /interp sends a J3 letter ballot to J3 to approve interp answers that have been "passed by J3 meeting". The letter ballot runs for 30 days. Not voting on three of four consecutive J3 letter ballots is grounds to terminate J3 membership. An interp answer passes by a 2/3rds vote; a no vote must be accompanied by an explanation of the changes necessary to change the member's vote to yes. J3/interp reserves the right to recall an interp answer for more study even if the answer passes. 7 Fortran interpretations are currently "Passed by J3 meeting" after J3 meeting #204. This is the letter ballot phase to go from "Passed by J3 meeting" to "Passed by J3 letter ballot". The following Fortran interpretations are being balloted: Yes No Number Title --- --- F08/0108 ultimate components and coarrays --- --- F08/0109 LOCK_TYPE and unlimited polymorphic --- --- F08/0110 Interdependence of specifier values in input/output statements --- --- F08/0111 Undefinition --- --- F08/0112 STAT= and ERRMSG= in ALLOCATE and DEALLOCATE --- --- F08/0113 Specifiers in image control statements --- --- F08/0114 Can LOCK_TYPE components have the POINTER attribute? The text of these interpretations is attached. Each interpretation starts with a row of "-"s. Please mark the above -Y- in the Yes column for "yes", -C- in the Yes column for "yes with comment", or -N- in the No column for a "no" answer {be sure to include your reasons with "no"} and send only the above text {not this entire mail message} with any comments to j3@j3-fortran.org by 11:59:59PM, PDT, Monday, 6-Oct-2014, in order to be counted. Thanks /Stan ------------------------------------------------------------------------ NUMBER: F08/0108 TITLE: ultimate components and coarrays KEYWORD: ultimate components, coarrays DEFECT TYPE: Interpretation STATUS: Passed by J3 meeting QUESTIONS: 1. Is the declaration of V permitted: type :: one real, allocatable :: C[:] end type one type :: two type(one), allocatable :: A end type two type(two), pointer :: V(:) 2. Is the declaration of X permitted: type :: three real :: C end type three type :: four type(three), allocatable :: A[:] end type four type(four) :: X ANSWERS: 1. Type two is not conforming, because the entity A has a coarray ultimate component and C525 requires such an entity to be a nonpointer nonallocatable scalar. Therefore the declaration of V is not permitted. 2. X satisfies C525, so declaration of X is permitted. X has an ultimate (allocatable) coarray component (A[:]), and therefore acording to C526 must be a dummy argument or have the ALLOCATABLE or SAVE attribute. EDITS: None. SUBMITTED BY: Van Snyder HISTORY: 14-163 m204 F08/0108 submitted 14-163r1 m204 Fixed examples in questions, revised answer - passed by J3 meeting ---------------------------------------------------------------------- NUMBER: F08/0109 TITLE: LOCK_TYPE and unlimited polymorphic KEYWORD: LOCK_TYPE, unlimited polymorphic DEFECT TYPE: Erratum STATUS: Passed by J3 meeting QUESTION: Assume type LOCK_TYPE from the intrinsic module ISO_Fortran_Env is available. Q1. Is allocation of X%C permitted? TYPE t TYPE(LOCK_TYPE),ALLOCATABLE :: c END TYPE TYPE(t) :: x[*],y[*] ALLOCATE(y%c) ALLOCATE(x%c,SOURCE=y%c) Q2. Is allocation of C permitted? class(*), pointer :: C type(lock_type), intent(in) :: L[*] allocate ( C, source=L ) Q3. Is allocation of C permitted? class(*), pointer :: C allocate ( LOCK_TYPE :: C ) Q4. Is pointer assignment to C permitted? class(*), pointer :: C type(lock_type), intent(in), target :: L[*] c => L Q5. Is this ALLOCATE statement conforming? CLASS(*),ALLOCATABLE :: C[:] TYPE(LOCK_TYPE) :: X ALLOCATE(C,MOLD=X) ANSWER: A1. Allocation of X%C is not intended to be allowed. An edit is supplied to correct the requirements on allocation of LOCK_TYPE. A2. Allocation of C is not intended to be allowed. An edit is supplied to correct the requirements on allocation of LOCK_TYPE. A3. This allocation of C is permitted. A4. Pointer assignment to C is permitted. A5. This statement was intended to be permitted. An edit is supplied to correct the requirements. EDITS: [6:7+] After definition 1.3.33.2 parent component, insert new term "1.3.33.2a potential subobject component nonpointer component, or potential subobject component of a nonpointer component (4.5.1)". [127:8-9] 6.7.1.1 Syntax, C643, Change "C_PTR," to "C_PTR or" Delete ", LOCK_TYPE ... LOCK_TYPE". [127:9+] Insert new constraint "C643a (R627) If SOURCE= appears, the declared type of shall not be LOCK_TYPE or have a potential subobject component of type LOCK_TYPE." [127:18-19] 6.7.1.1, p4, "If" -> "If an ALLOCATE statement has a SOURCE= specifier and an", {There is no problem with MOLD=. "subcomponent" works ok here because we have an object not a type.} SUBMITTED BY: Van Snyder HISTORY: 14-164 m204 F08/0109 submitted 14-164r3 m204 As amended, passed by J3 meeting ---------------------------------------------------------------------- NUMBER: F08/0110 TITLE: Interdependence of specifier values in input/output statements KEYWORD: specifier, input/output statement DEFECT TYPE: Erratum STATUS: Passed by J3 meeting QUESTIONS: 1. Are the following INQUIRE statements permitted? LOGICAL :: Exist, Opened INQUIRE ( FILE='fred', EXIST=exist ) INQUIRE ( UNIT=42, OPENED=opened 2. Is the following INQUIRE statement permitted? INTEGER :: U INTERFACE FUNCTION P ( A ) INTEGER, INTENT(IN) :: A INTEGER, POINTER :: P END FUNCTION P END INTERFACE INQUIRE ( FILE='fred', NUMBER=u, POSITION=p(u) ) 3. Is the following READ statement permitted? INTEGER :: STATS(42) NAMELIST /IN/ V READ ( *, IN, IOSTAT=STATS(V) ) ANSWERS: 1. According to 9.12p5 "The value of a specifier in an input/output statement shall not depend on the definition or evaluation of any other specifier in the or in that statement." the INQUIRE statements are prohibited because the values of the variables EXIST and OPEN depend upon the values of the FILE= and UNIT= specifiers, respectively. They were intended to be permitted. Edits are provided to correct this mistake. 2. According to 9.12p6 "The value of any subscript or substring bound of a variable that appears in a specifier in an input/output statement shall not depend on any , , or on the definition or evaluation of any other specifier in the or in that statement." the INQUIRE statement is not prohibited because U is not a subscript or substring bound. It was intended to be prohibited. Edits are provided to correct this mistake. 3. According to 9.12p5 "The value of any subscript or substring bound of a variable that appears in a specifier in an input/output statement shall not depend on any , , or on the definition or evaluation of any other specifier in the or in that statement." and 9.12p7 "In a data transfer statement, the variable specified in an IOSTAT=, IOMSG=, or SIZE= specifier, if any, shall not be associated with any entity in the ... ...." and 9.12p8 "In a data transfer statement, if a variable specified in an IOSTAT=, IOMSG=, or SIZE= specifier is an array element reference, its subscript values shall not be affected by the data transfer, the processing, or the definition or evaluation of any other specifier in the ." the READ statement is not prohibited because V does not "depend on any , , or on the definition or evaluation of any other specifier in the or in that statement." Although V is input from namelist, it is not "the variable specified in an IOSTAT=, IOMSG=, or SIZE= specifier." The READ statement was intended to be prohibited. Edits are provided to correct this mistake. EDITS to 10-007r1: [243:3-4 9.12p5] Within the first sentence, as amended by Corrigendum 2, replace "input/output" with "data transfer" and delete "or ", so that the sentence, as amended by Corrigendum 2, becomes "The value of a specifier in a data transfer statement shall not depend on the evaluation of any other specifier in the in that statement." If we assume that the UNIT= , FILE= , or ID= in an are established before the values of any of the s are changed, we need not append "The value of a , , or in an shall not depend upon the definition of any variable in that ." [243:6, 12-15 9.12p6,8] Replace the paragraphs: "In an input/output statement, the value of any argument in a function reference that is a , any subscript, or any substring bound, that appears in a specifier in that statement, shall not be affected by data transfer or processing caused by that statement, or definition or evaluation of any other specifier in the or in that statement." SUBMITTED BY: Van Snyder HISTORY: 14-193 m204 F08/0110 submitted 14-193r1 m204 Passed by J3 meeting ---------------------------------------------------------------------- NUMBER: F08/0111 TITLE: Undefinition KEYWORD: undefinition DEFECT TYPE: Erratum STATUS: Passed by J3 meeting QUESTIONS: 1. Does the following cause D to become undefined? Ought it? integer :: I(2) double precision :: D equivalence ( D, I ) d = 42.0 i(1) = 666 2. Does the following cause C to become undefined? Ought it? integer, parameter :: RK = kind(0.0d0) real(rk), pointer :: P complex(rk), target :: C = ( 1.0, 2.0 ) c = ( 1.0d0, 2.0d0 ) p => c%re p = 24.0d0 3. Does the following cause D1 to become undefined? Does it cause C%IM to become undefined? Ought it? integer, parameter :: RK = kind(0.0d0) real(rk), pointer :: D1, D2 complex(rk), target :: C c = ( 1.0d0, 2.0d0 ) d1 => c%re d2 => c%im call s ( d2 ) ... contains subroutine S ( D ) real(rk), intent(out) :: D .... 4. Does the following cause Y to become undefined? Ought it? type :: T1 sequence integer :: C1 = 42 end type T1 type :: T2 sequence real :: C1 = 42.0e0 end type T2 type(t1) :: X type(t2) :: Y equivalence ( X, Y ) x = t1(21) ANSWERS: 1. Item (1) in subclause 16.6.6 says "When a scalar variable of intrinsic type becomes defined, all totally associated variables of different type become undefined.... When a scalar variable becomes undefined, all partially associated double precision scalar variables become undefined." D is not totally associated with I. I does not become undefined. Therefore, D does not become undefined. D ought to become undefined. Edits are provided to correct this mistake. 2. Item (1) in subclause 16.6.6 says "When a double precision scalar variable becomes defined, all partially associated scalar variables become undefined." P is partly associated with C, and therefore C becomes undefined by the assignment to the scalar variable P. C ought not to become undefined. Edits are provided to correct this mistake. 3. Item (1) in subclause 16.6.6 says "When a scalar variable becomes undefined, all partially associated double precision scalar variables become undefined." Subclause 16.6.1p5 says "A complex... scalar object is defined if and only if all of its subobjects are defined." The association of the scalar variable D2 with an INTENT(OUT) dummy argument causes it become undefined. 16.6.6p1(1) does not specify that when a scalar real variable becomes undefined, a totally associated part of a complex variable becomes undefined. Assuming C%IM ought to become undefined, then C ought to become undefined, even though C%RE is not undefined. D1 is associated with the C%RE, and therefore becomes undefined when C%IM becomes undefined. C%IM ought to become undefined, and D1 ought not to become undefined. Edits are provided to correct this mistake. 4. Item (1) in subclause 16.6.6 says "When a scalar variable of intrinsic type becomes defined, all totally associated variables of different type become undefined. X and Y are totally associated, and of different type, but neither one is of intrinsic type. Therefore, Y does not become undefined as a consequence of X becoming defined. Y ought to become undefined. Edits are provided to correct this mistake. EDITS: In Subclause 16.6.6p1, item(1), within the first sentence, remove "of intrinsic type". Before "different" insert "the same type with different values of kind type parameters, or of" In Subclause 16.6.6p1, replace item(1) with the following four sentences (all in one paragraph) "When a scalar variable becomes defined, all totally associated variables of different type become undefined. {Removing "of intrinsic type" from the existing first sentence of 16.6.6p1(1) addresses question 4.} When a scalar variable becomes defined, all partially associated variables of different type, or of the same type if corresponding kind type parameters have different values, become undefined, unless the scalar variable is totally associated with a subobject of the partially associated variable, that subobject is of the same type as the scalar variable, and corresponding kind type parameters have the same values. {This addresses questions 1 and 2. The references to kind type parameter values address the possibility of partially associating a double precision variable with a default real variable. Default real and double precision are now the same type (since 1990), but with a different kind type parameter value.} When a scalar variable becomes undefined, all partially associated variables become undefined, unless the partially associated variable is totally associated with a subobject of the scalar variable that does not become undefined. When a scalar variable becomes undefined, all totally associated subobjects of other variables become undefined if those subobjects are of different type from the scalar variable, or corresponding kind type parameters have different values." {The third and fourth sentences address question 3.} SUBMITTED BY: Van Snyder HISTORY: 14-195 m204 F08/0111 submitted - passed by J3 meeting ---------------------------------------------------------------------- NUMBER: F08/0112 TITLE: STAT= and ERRMSG= in ALLOCATE and DEALLOCATE KEYWORDS: STAT=, ERRMSG=, ALLOCATE, DEALLOCATE DEFECT TYPE: Erratum STATUS: Passed by J3 meeting QUESTION: Consider CHARACTER(80) text(0:100), msg INTEGER stat,istat(0:80) REAL,ALLOCATABLE :: x(:),y(:,:) ... ALLOCATE(x(10),STAT=stat,ERRMSG=text(stat)) ! A DEALLOCATE(x,STAT=stat,ERRMSG=text(stat)) ! B msg = '' ALLOCATE(y(999999,999999),STAT=istat(LEN_TRIM(msg)),ERRMSG=msg) ! C msg = '' DEALLOCATE(x,STAT=istat(LEN_TRIM(msg)),ERRMSG=msg) ! D In each of the statements labelled A-D, there is a dependency between the STAT= specifier and the ERRMSG= specifier (from STAT= to ERRMSG= in A and B, and from ERRMSG= to STAT in C and D). There appears to be no prohibition against this (though there are many prohibitions against other dependencies in ALLOCATE and DEALLOCATE). Are all these examples conforming, and if so, is the dependent variable referenced with the value of the other variable at the beginning of execution of the statement or at the end of execution of the statement? ANSWER: These are not standard-conforming, as no interpretation is established for them. An edit is supplied to clarify this prohibition. EDITS: [132:4] 6.7.4 STAT= specifier, p1, append "The shall not depend on the value of the .". [132:22] 6.7.5 ERRMSG= specifier, p1, append "The shall not depend on the value of the .". SUBMITTED BY: Malcolm Cohen HISTORY: 14-208 m204 F08/0112 submitted - passed by J3 meeting ---------------------------------------------------------------------- NUMBER: F08/0113 TITLE: Specifiers in image control statements KEYWORDS: STAT=, ERRMSG=, ACQUIRED_LOCK=, image control DEFECT TYPE: Erratum STATUS: Passed by J3 meeting QUESTION: Consider CHARACTER(80) text(0:100),msg INTEGER stat,istat(2) REAL,ALLOCATABLE :: x(:) TYPE(LOCK_TYPE) :: lock[*], alock(0:80)[*] LOGICAL acq, aacq(0:80) ... SYNC ALL(STAT=stat,ERRMSG=text(stat)) ! A SYNC IMAGES (*,STAT=stat,ERRMSG=text(stat)) ! B SYNC MEMORY(STAT=stat,ERRMSG=text(stat)) ! C LOCK(lock,ACQUIRED_LOCK=acq, & STAT=istat(MERGE(1,2,acq)), & ERRMSG=text(istat(MERGE(1,2,acq)))) ! D UNLOCK(lock,STAT=stat,ERRMSG=text(stat)) ! E LOCK(alock(stat),STAT=stat) ! F msg = '' UNLOCK(alock(LEN_TRIM(msg)),STAT=stat, & ERRMSG=msg) ! G stat = 13 SYNC IMAGES(stat,STAT=stat) ! H msg = 'oops' SYNC IMAGES(LEN_TRIM(msg),STAT=stat, & ERRMSG=msg) ! I In each of the statements labelled A-F, there is a dependency between the STAT= specifier and the ERRMSG= specifier. There appears to be no prohibition against this. Additionally, in the LOCK statement (D), there is a dependency between the ACQUIRED_LOCK= specifier and the STAT= specifier (there is no dependency between ACQUIRED_LOCK= and ERRMSG= because the former is only set on successful execution and the latter is only set on an error condition). There appears to be no restrictions at all on any dependencies from ACQUIRED_LOCK=. In the LOCK statement (F), there is a dependency between the STAT= specifier and the lock variable. Similarly for the UNLOCK (G), there is a dependency between the lock variable and the ERRMSG= specifier. In the SYNC IMAGES statement (H), there is a dependency between the STAT= variable and the image set. In the SYNC IMAGES statement (I), there is a dependency between the ERRMSG= variable and the image set. Are all these examples conforming, and if so, is the dependent variable referenced with the value of the other variable at the beginning of execution of the statement or at the end of execution of the statement? ANSWER: No interpretation is established and therefore these are not conforming. An edit is provided to clarify this. EDITS: [190:16-] 8.5.4 SYNC IMAGES statement, insert new p1, "The value of shall not depend on the value of or .". [194:6-] 8.5.6 LOCK and UNLOCK statements, insert new p1, "The shall not depend on the value of , , or the in the ACQUIRED_LOCK= specifier. The shall not depend on the , , or .". [195:2-] 8.5.7 STAT= and ERRMSG= specifiers..., insert new p1, "The shall not depend on the value of the , , or the in the ACQUIRED_LOCK= specifier. The shall not depend on the value of the , , or the in the ACQUIRED_LOCK= specifier.". SUBMITTED BY: Malcolm Cohen HISTORY: 14-209 m204 F08/0113 submitted - passed by J3 meeting ---------------------------------------------------------------------- NUMBER: F08/0114 TITLE: Can LOCK_TYPE components have the POINTER attribute? KEYWORD: LOCK_TYPE component, POINTER DEFECT TYPE: Erratum STATUS: Passed by J3 meeting Assume LOCK_TYPE is accessible from ISO_Fortran_Env. QUESTION: The following type definition and variable declaration are permitted by C1302: type :: One type(lock_type), pointer :: L end type One type(one), allocatable :: L1[*] C1302 requires a named variable of LOCK_TYPE to be a coarray. C526 requires a coarray to be allocatable or to have the SAVE attribute. The following declaration is apparently prohibited because L4 is not a coarray: type(lock_type), pointer :: L4 Was it intended that pointer components of type LOCK_TYPE be permitted, but that named variables of type LOCK_TYPE with the POINTER attribute be prohibited? ANSWER: It was intended that components of type LOCK_TYPE not be permitted to have the POINTER attribute. Edits are provided to correct this mistake. EDITS: [399:18+] 13.8.2.16 LOCK_TYPE, after C1302, insert new constraint "C1302a A component of type LOCK_TYPE, or that has a nonallocatable direct component of type LOCK_TYPE, shall not have the POINTER attribute.". SUBMITTED BY: Van Snyder HISTORY: 14-140 m204 F08/0114 submitted 14-140r1 m204 Revised to reverse decision 14-140r2 m204 Passed by J3 meeting ----------------------------------------------------------------------