
X3H5
Parallel Extensions

for Fortran
April 2, 1993

Document Number
X3H5/93-SD2-Revision A

T
C

X
3H

5/
92

-S
D

2-
R

ev
is

io
n

A

Technical
Committee
X3H5/93-
S D 2 -
Revision A

for Parallel Computation-
Parallel Fortran-
Standard

1.0 Introduction . 81
1.1 Conceptual Model of Fortran Program Execution 82
1.2 Pseudo Code Form of the Conceptual Model . 83

2.0 Standard Compliance . 104

3.0 Terminology and Basic Concepts . 115

4.0 Control Structures . 126
4.1 Parallel Region Construct . 127

4.1.1 Syntax for Parallel Regions Construct . 128
4.1.2 Interpretation . 129

4.2 Work Sharing Constructs . 1310
4.2.1 PDO Construct . 1311

4.2.1.1 Syntax for the PDO Construct . 1312
4.2.1.2 Coding Rules . 1313
4.2.1.3 Interpretation . 1314
4.2.1.4 PARALLEL PDO . 1415
4.2.1.4 Parallel PDO Syntax . 1416
4.2.1.6 Examples . 1417

4.2.2 PSECTION Construct . 1618
4.2.2.1 Syntax for the PSECTION Construct 1719
4.2.2.2 Coding Rules for the PSECTION Construct 1720

4.2.2.1 Interpretation . 1721
4.2.3 PARALLEL PSECTIONS Construct . 1922

4.2.3.1 Syntax . 1923
4.2.4 PDONE . 1924

4.2.4.1 Explicit Syntax . 1925
4.2.4.2 Coding Rules . 1926
4.2.4.3 Interpretation . 2027
4.2.4.4 Examples . 2028

4.3 GROUP Construct . 2029
4.3.1 Syntax . 2030
4.3.2 Coding Rules . 2031
4.3.3 Examples . 2132

4.4 Single Process Section . 2233
4.4.1 Explicit Syntax . 2234
4.4.2 Explicit Syntax . 2235
4.4.3. Interpretation . 2236

4.5 Inquiry Functions . 2337
4.5.1 Maximum peformance improvement at this time 2438
4.5.2 Team size . 2439
4.5.3 Looking for work . 2440

3

4.5.4 Blocked processes . 241
4.5.5 Active processes . 242

5.0 Data Environments . 253
5.1 Terminology . 254

5.1.1 The model terminology mapped to Fortran 255
5.1.1.1 Object . 256
5.1.1.2 Read/Modify . 257
5.1.1.3 Data environment . 258
5.1.1.4 Private/Shared . 269

5.1.2 Fortran terminology extended for the model: 2610
5.1.2.1 Scoping Unit . 2611
5.1.2.2 Instance of a subprogram . 2612

5.1.3 New terminology for the binding . 2713
5.1.3.1 Iterative Control Variables . 2714
5.1.3.3 Hidden . 2715

5.2 Allowable Parallel Access Attribute . 2716
5.2.1 Definition of Instance Attribute . 2817

5.2.1.1 Instance Statement Syntax . 2918
5.3 Private/Shared Attribute . 2919

5.3.1 References through Pointers . 3020
5.4 Basic Mechanics . 3021

5.4.1 Types of Data Environments . 3022
5.4.1.1 Initial Data Environment . 3023
5.4.1.2 New Data Environment . 3124
5.4.1.3 Looking for Work Data Environment 3125

5.4.2 Data Environments upon encountering a parallel construct 3126
5.4.3 Object creation . 3127
5.4.4 Destroying Objects . 3228
5.4.5 Exiting parallel constructs . 3229
5.4.6 Early Departures of Team Members . 3330

5.5 Binding Considerations . 3331
5.5.1 APA and P/S Attributes with Fortran Scoping Rules 3332
5.5.2 Data Environments and Lifetime of Fortran Objects 3333
5.5.3 New Instances of Objects for Parallel Constructs 3434

5.5.3.1 Syntax . 3435
5.5.3.2 Interpretation . 3436
5.5.3.3 New Statement . 3537

5.5.3.3.1 NEW Statement Syntax 3538
5.5.3.4 Iterative Control Variables . 3539
5.5.4 Alternative APA Attributes for Always Shared 3540

5.5.4 External Data Objects and Multiple Processes 3641
5.5.5.1 Common and Modules . 3642

5.6 Objects and Synchronization . 3743

4

5.7 Examples . 371

6.0 Input/Output . 472
6.1 Multiple End-of-File Records . 473

6.1.1 Explicit Syntax . 484
6.2 Examples . 485

7.0 Synchronization . 506
7.1 Explicit Synchronization . 507

7.1.1 Extensions Shared by Many Synchronization Methods 508
7.1.1.1 Representing States . 509
7.1.1.2 Testing for Uninitialized State . 5110
7.1.1.3 SYNCHRONIZE Statement . 5111

7.1.1.3.1 Proposed X3H5 Extended Syntax Rule 5112
7.1.1.3.2 Consistency Rules for the SYNCHRONIZE13

Statement . 5214
7.1.1.4 Representing Synchronization Operations 5215
7.1.1.5 Use of Control Types and Assignment 5316

7.1.2 Limiting Synchronization Overhead . 5317
7.1.2.1 Proposed X3H5 Extended Syntax Rule 5318
7.1.2.2 GUARDS Attribute . 5319

7.1.3 Critical Sections . 5420
7.1.3.1 Proposed X3H5 Extended Syntax Rule 5421
7.1.3.2 Consistency Rules for CRITICAL SECTION 5422
7.1.3.3 Operations on Objects of TYPE (LATCH) 5423
7.1.3.4 Default Latch . 5524

7.1.4 Locks . 5525
7.1.5 Events . 5626
7.1.6 Sequences . 5627

7.2 Explicit Synchronization . 5628
7.2.1 Critical Sections . 5729
7.2.1.1 Explicit Syntax . 5730
7.2.1.2 Coding Rules . 5831
7.2.1.3 Interpretation . 5832
7.2.1.4 Examples . 5833
7.2.2 Event Synchronization . 6334
7.2.2.1 Explicit Syntax . 6335
7.2.2.2 Coding Rules . 6336
7.2.2.3 Interpretation . 6337
7.2.2.4 Examples . 6438
7.2.2.5 Intrinsic Functions for Events . 6439
7.2.3 Sequences: Ordinal Synchronization . 6540
7.2.3.1 Explicit Syntax . 6641
7.2.3.2 Coding Rules . 6642

5

7.2.3.3 Interpretation . 661
7.2.3.4 Examples . 672
7.2.3.5 Intrinsic Functions for Ordinals . 703
7.2.4 Unstructured synchronization - Locks . 704
7.2.4.1 Explicit Syntax . 705
7.2.4.2 Coding Rules . 716
7.2.4.3 Interpretation . 717

7.2.4.4 Examples . 728
7.2.4.5 Intrinsic Functions for Locks . 729

8.0 Nondeterministic Programs . 7510

A.0 X3H5 Directive Binding . 7611
A.1 Directives - Introduction . 7612

A.1.1 Role of the Directive Binding . 7613
A.1.2 Single Process Execution Requirement for Compliant Programs . . . 7614
A.1.3 Synchronization and Serial Execution . 7715

A.1.3.2 Scoping at Parallel Constructs and Serial Execution 7716
Alternate Intrinsic Functions . 7817

A.1.4 Terminology . 7818
A.1.5 Directives - General Usage Requirements in Parallel Programs 7819

A.1.5.1 Continued Directive . 7820
A.1.6 Parallel Intrinsic Functions . 7821

A.1.6.1 Parallel Intrinsic Behavior for Equivalent Serial22
Execution . 7923

A.1.6.2 Functionality Not Supported Under Serial Interpretation . . 7924
A.2 Syntax Rules . 7925

A.2.1 Parallel Do Construct . 7926
A.2.1.1 Syntax . 7927
A.2.1.2 Coding Rules . 7928
A.2.1.3 Examples . 7929

A.2.2 Parallel Sections Construct . 8030
A.2.2.1 Syntax . 8031
A.2.2.2 Interpretation . 8032
A.2.2.3 Examples . 8133

A.2.3 Synchronization Declarations . 8234
A.2.3.1 Syntax . 8235
A.2.3.2 Coding Rules . 8336

A.2.4 Unstructured Locking Synchronization . 8337
A.2.4.1 Syntax . 8338
A.2.4.2 Examples . 8339

A.2.4.2.1 Function Values for GATEs in Serial40
Execution . 8541

A.2.5 Critical Sections . 8542

6

A.2.5.1 Syntax . 851
A.2.5.1 Examples . 852

A.2.6 Event Synchronization . 883
A.2.6.1 Syntax . 884

A.2.6.1.1 Function Values for Events in Serial5
Execution . 896

A.2.7 Ordinal (Sequence) Synchronization . 897
A.2.7.1 Syntax . 898

A.2.7.1.1 Function Values for Counters in Serial9
Execution . 9110

A.3 Data Sharing . 9111
A.3.1 Data Sharing Directives . 9112

A.3.1.1 Syntax . 9113
A.3.1.2 Rules . 9214

A.3.2 Partially Shared Common Blocks . 9215
A.3.2.1 Syntax . 9216
A.3.2.2 Rules . 9217

A.4 Parallel Region Construct . 9418
A.4.1 Syntax . 9419
A.4.2 Single Process Sections . 9820

A.4.2.1 Syntax . 9821
A.5 Exits from Parallel Constructs . 9922

A.5.1 Syntax . 9923
A.6 Extended Intrinsic . 10024

A.6.1 Parallel Intrinsic Functions . 10025
A.6.2 Definition of Serial Execution Library . 10026

B.0 Syntax Rules (Informative) . 10227

C.0 Lex/Yacc Syntax Rules (Informative) . 10528

7

1.0 Introduction1

This standard defines parallel language extensions for Fortran. All of the extensions are designed2
to feel Fortran-like to the programmer to be consistent with the X3H5 Language Independent3
Model for Parallel Computation (X3H5/93-SD1-Revision A).4

Wherever possible, the X3H5 extensions are described in terms of those entities which are5
imported via a MODULE (TYPE definitions, FUNCTIONS, and SUBROUTINES). There is no6
presumption that this is, in fact, how they shall be implemented.7

Where the gain in functionality is sufficiently meritorious, the extensions are additions to the8
syntax definition of Fortran. When the X3H5 module is not used, a conformant implementation9
need not accept these syntax extensions.10

1.1 Conceptual Model of Fortran Program Execution11

A parallel program written using the ANSI X3H5 Fortran Language (ANSI X3H5 FL), begins12
execution in the Fortran main program as it would for an ordinary Fortran program. The initial13
process as defined in the ANSI X3H5 language Independent Model, begins execution of the14
main program. Execution proceeds as it would for a serial program until a parallel construct is15
encountered. A parallel construct is defined by PARALLEL and END PARALLEL statements.16
A worksharing construct is defined by PDO and END PDO or PSECTION and END PSECTION17
statements.18

The following statement combinations define both a parallel construct and a worksharing19
construct: PARALLEL PDO and END PARALLEL PDO; PARALLEL SECTION and END20
PARALLEL SECTION.21

Implicit synchronizations occur at: PARALLEL, END PARALLEL, PARALLEL PDO, END22
PARALLEL PDO, PARALLEL SECTIONS and END PARALLEL SECTIONS.23

A group construct is defined by PGROUP and END PGROUP statements.24

1.2 Pseudo Code Form of the Conceptual Model25

The following is a pseudo code skeleton of a parallel program that uses the constructs described26
herein.27

program main28
! only the initial process is active here29
! serial execution occurs here30

parallel31
! each team member performs the same actions32
pdo i=1,n,1 ! beginning of worksharing construct33

8

! iterative work is distributed among team members1
...2

end pdo ! end of worksharing construct3
...4

group ! beginning of group construct5
! replicated code here executed by all team members6

...7
psection ! beginning of worksharing construct8
...9
psection10
...11
end psection ! end of worksharing construct12

end group ! end of group construct13
parallel do j=1,m,1 ! nested parallelism14

...15
end parallel do ! end of nested parallelism16

end parallel ! end of parallel construct17
! serial program execution18
! possibly more parallel constructs19
...20

end21

9

2.0 Standard Compliance1

This standard describes all standard conforming programs. A program is standard conforming2
if it uses only those forms and relationships described in this standard and if that program has3
an interpretation according to this standard. A program unit is standard conforming if it can be4
included in a program in a manner that allows the program to be standard conforming.5

A standard conforming implementation executes a standard conforming program in a manner that6
fulfills the interpretations prescribed by this standard. A standard conforming implementation7
may allow additional forms and relationships provided that such additions do not conflict with8
the standard forms and relationships. In order to avoid name space pollution, all standard9
conforming programs must contain a USE X3H5 statement. A standard conforming processor10
may ignore all X3H5 constructs when USE X3H5 is omitted.11

10

3.0 Terminology and Basic Concepts1

The first time a word or phrase with a special or restricted meaning is used in this document, it2
is boldfaced and defined. An example of this convention is the word, Fortran, (any dialect of3
ISO/IEC 1539:1991 (E) Fortran 90). All definitions are repeated in the glossary.4

In describing the form of statements or constructs, or in explaining examples, the following5
metalanguage conventions and symbols are used. These are similar to those defined by Fortran6
90 (S8 Version 118, X3.198-1991 American National Standard Fortran 90, ISO/IEC 1539:1991)7
on pages 3-5.8

1. The courier type font, such as ABCDEFGHIJKLMNOP, are characters from the Fortran9
character set and are to be written as shown, except as otherwise noted.10

2. A construct is referenced by capitalizing the first letter of the words that make up11
the construct name (e.g., the Parallel Do construct).12

3. A statement is referenced by capitalizing all of the letters that make up the13
statement key words (e.g., the PARALLEL PDO statement).14

4. Entities written in lower case italics, such as name, indicate general entities for15
which specific entities must be substituted in actual statements.16

Once a given name is used in a syntactic specification to represent an entity, all17
subsequent occurrences of that name represent the same entity, until that name is18
used in a subsequent syntactic specification to represent a different entity.19

5. The entity name-list indicates a comma separated list of name. The entity name-20
list will not be further defined, but name will be.21

6. Square brackets (i.e., "[]") are used to indicate optional items.22

7. Ellipses (i.e., "...") are used to indicate that only an abbreviated form of a23
statement has been used, and that any form is allowed.24

8. Blanks are used to improve readability, but unless otherwise noted, have no25
significance.26

9. The entity statements indicates zero or more statements.27

10. The entity int-exp represents an integer expression.28

References to sections in this document consist of section number and section title (e.g., "2.29
Terminology and Basic Concepts").30

11

4.0 Control Structures1

4.1 Parallel Region Construct2

The Parallel Region construct and associated grouping and worksharing constructs are all block3
structured constructs. All of the constructs follow the Fortran rules for block structured4
constructs.5

4.1.1 Syntax for Parallel Regions Construct6

A parallel-region-construct is:7

[name:] PARALLEL [(parallel-option)]8
data-sharing-spec9
parallel-body10

END PARALLEL [name]11

where12
parallel-option is MAX PARALLEL = int-expr |13

ORDERED |14
MAX PARALLEL = int-expr, ORDERED |15
ORDERED, MAX PARALLEL = int-expr16

parallel-body is statements |17
parallel-construct18

parallel-construct is parallel-region-construct |19
pdo-construct |20
psections-construct |21
group-construct |22
parallel-pdo-construct |23
parallel-psections-construct |24
single-process-construct25

Contstraint: If the parallel-construct has a name prefix, then the it must have26
the same name as a suffix.27

4.1.2 Interpretation28

The Parallel Region construct is used to specify parallel execution of a block of code. The29
process that executes the PARALLEL statement becomes the base process. The processes that30
enter the Parallel Region construct are those on the team.31

32
If the MAX PARALLEL qualifier is not specified on the PARALLEL statement, then the number33
of processes on this team is limited only by the maximum number of processes available to the34
program. (See the intrinsic function NPSAVL)35

36
If the MAX PARALLEL qualifier is specified on the PARALLEL statement, then the number37
of processes on this team is limited by the iexp1.38

12

1
All code inside a Parallel Region that is not enclosed by a worksharing construct shall be2
redundantly executed by all of the processes on the team.3

4
If one or more processes execute a statement that causes a transfer of control out of the block5
defined by the parallel region, then the program is not standard conforming. Worksharing6
constructs are used to identify work that is to be spread among all of the processes on the team7
that encounter the worksharing construct.8

4.2 Work Sharing Constructs9

Worksharing constructs define units of work that shall bedistributed among the team within a10
parallel region. Work sharing constructs may be coded outside of the lexical scope of a parallel11
region. However, if parallel performance is to be achieved, a worksharing construct should be12
encountered within a parallel region construct. Inside a worksharing construct, no new13
parallelism shal begin unless a parallel construct is encountered to signal the formation of a new14
team. Unless it is enclosed in an intervening parallel construct, the innermost of two nested15
worksharing constructs shall be executed solely by the process that encounters it, even if idle16
team members are available.17

4.2.1 PDO Construct18

PDO is an iterative worksharing construct as described in the LIM.19

4.2.1.1 Syntax for the PDO Construct20
[name:] PDO [(parallel-options)]21

parallel-body22
END PDO [name]23

4.2.1.2 Coding Rules24

4.2.1.3 Interpretation25

If the MAX PARALLEL qualifier is not specified on a PDO or PSECTIONS statement, then the26
number of processes on this team that may enter the worksharing construct is limited only by the27
number of processes on the team. (See the intrinsic function NPSTM (what is the new name for28
NPSTM?))29

30
If the MAX PARALLEL qualifier is specified on PDO or PSECTIONS statement, then the31
number of processes on this team that may enter the worksharing construct is limited by the32
iexp2.33

34

13

A Pdo construct may be executed by a single process. A process executes multiple units of1
parallel work from a Pdo construct as specified by the the Language Independent Model for2
Parallel Computation. For example it must:3

1. for each unit of parallel work to be executed:4
a. assign the appropriate value to its index variable5
b. execute the iterative portion6
c. if EXTEND is specified, execute the statements up to the END .*7

EXTEND statement8

2. make all shared objects updated by this process within the Pdo and the group9
block available to all processes10

3. wait for all processes that participated in executing the Pdo to complete step 2)11

The value of the loop index of a Parallel Do construct is undefined outside the scope of the12
Parallel Do construct. The value of a loop index contained within a parallel construct is undefined13
outside the scope of the enclosing parallel construct. The value of the index of an implied DO14
contained within a parallel construct is undefined outside the scope of the enclosing parallel15
construct.16

4.2.1.4 PARALLEL PDO17
The PARALLEL PDO construct is a combined parallel construct and worksharing construct and18
has the same meaning as19

PARALLEL20
PDO21

4.2.1.4 Parallel PDO Syntax22

The syntax for the PARALLEL PDO is:23
[name:] PARALLEL PDO iter-specification parallel-option-list24

data-sharing-spec25
parallel-body26

END PARALLEL PDO [name]27

4.2.1.6 Examples28

Example SUBROUTINE EX48 (A,B,C,N)29
REAL A(N),B(N),C(N)30
PARALLEL PDO I=1,N-131
NEW T32
T = A(I)*B(I)33
C(I+1) = T * (T-1.0)34

END PARALLEL PDO35
END36

37

14

Example SUBROUTINE EX49 (A,B,C,N)1
REAL A(N),B(N),C(N)2
PARALLEL3
NEW T4
PDO I=1,N-15

T = A(I)*B(I)6
C(I+1) = T * (T-1.0)7

END PDO8
END PARALLEL9
END10

Example ? shows the Parallel Region equivalent form of the Parallel Do construct shown in11
Example ?. Examples ? and ? compute the same results and exhibit the same amount of12
parallelism.13

14
Example 50 SUBROUTINE EX50 (ZA,ZB,ZC,ZD,N)15

REAL ZA(N),ZB(N),ZC(N),ZD(N)16
PARALLEL SECTIONS17
NEW T18
SECTION19

DO 10 I=1,N20
T = ZFUNC(ZA(I))21
ZC(I) = T * T22

10 END DO23
SECTION24

DO 20 I=1,N25
T = ZFUNC(ZB(I)-ZA(I))26
ZD(I) = T * T27

20 END DO28
END PARALLEL SECTIONS29
END30

31
Example 51 SUBROUTINE EX51 (ZA,ZB,ZC,ZD,N)32

REAL ZA(N),ZB(N),ZC(N),ZD(N)33
PARALLEL34
NEW T35
PSECTIONS36
SECTION37

DO 10 I=1,N38
T = ZFUNC(ZA(I))39
ZC(I) = T * T40

10 END DO41
SECTION42

NEW T43
DO 20 I=1,N44
T = ZFUNC(ZB(I)-ZA(I))45
ZD(I) = T * T46

20 END DO47
END PSECTIONS48

END PARALLEL49
END50

Example 51 shows the Parallel Region equivalent form of the Parallel Sections construct shown51
in Example 50. Examples 50 and 51 compute the same results and exhibit the same amount of52
parallelism.53

54
Example 52 SUBROUTINE EX52 (A)55

REAL A(*)56

15

GETLOCK B1
GUARDS B(SUM)2
UNLOCK(B)3
SUM=0.04
PARALLEL5
NEW SUML6
SUML = 0.07
GROUP8
PDO I=1,N9

SUML = SUML + A(I)10
END PDO11

CRITICAL SECTION (B)12
SUM = SUM + SUML13

END CRITICAL SECTION (B)14
END GROUP15

END PARALLEL16
END17

Example 52 shows a typical method for computing a reduction on a machine with a relatively18
small number of processes. All of the processes initialize their new copy of SUML to zero, then19
sum up the elements of A that correspond to the iterations assigned to each process, then, without20
waiting for the other processes on the team, update the global SUM from their local sum21
(SUML). All of the processes on the team wait at the END GROUP statement before continuing.22

23
Example 53 SUBROUTINE EX53 (A,B,C,D,N,M)24

REAL A(N),B(N),C(N),D(N)25
PARALLEL26
PDO I=1,N27

A(I) = B(I) * C(I)28
END PDO29
PDO I=1,M30

D(I) = A(I) - C(I)31
END PDO32

END PARALLEL33
END34

Example 53 shows a typical method for reducing fork/join overhead by placing two adjacent35
parallel loops inside a single Parallel Region. Because GROUP is not coded, the team members36
wait at the end of the first Pdo construct for all of the work to be complete, and then begin37
working on the second Pdo construct.38

39
Example 54 SUBROUTINE EX54 (A,C,N,M)40

REAL A(N,0:M),C(N,M)41
PARALLEL42
DO 10 J=1,M43

PDO I=1,N44
A(I,J) = C(I,J)/A(I,J-1)45

END PDO46
10 END DO47

END PARALLEL48
END49

50
Example 54 shows a typical method for greatly reducing fork/join overhead by floating the51
Parallel Region outside of a serial loop.52

16

4.2.2 PSECTION Construct1

Psection is a non-iterative worksharing construct as described in the LIM.2

4.2.2.1 Syntax for the PSECTION Construct3

[name:] PSECTION4
sections5

END PSECTIONS [name]6

where7
sections is [sections section]8

section is SECTION [name] [WAIT (name-list)]9
parallel-region10

4.2.2.2 Coding Rules for the PSECTION Construct11

The Parallel Sections construct is a block structured construct. The SECTION statements mark12
the beginning of each block. The end of each block is delimited by either another SECTION13
statement or the END PARALLEL SECTIONS statement. The Parallel Sections construct follows14
all of the rules of Fortran block structured constructs.15

16
The identifier used for a section-name is a seventh class of local names in the sense of Fortran17
page 18-2. This means that18

A section-name must be unique within a program unit (ISO/IEC 1539:1991 Section 2.2)19
20

Section-names share the single name space already shared by array, variable, constant,21
statement function, intrinsic function, and dummy procedure names22

23
In a standard conforming program the WAIT clause shall only reference the section-name of a24
lexically preceding SECTION statement of the same Parallel Sections construct.25

26
27

4.2.2.1 Interpretation28

The Parallel Sections construct is used to specify parallel execution of the identified sections of29
code. Each section of code identified in a Parallel Sections construct is interpreted as a unit of30
work.31

32
In a standard conforming program the sections of code shall be data independent, except where33
appropriate synchronization mechanisms are used.34

35
A section-name is a label with no programmer-visible storage association.36

17

A Psections construct may be executed by one or more processes. A process executes multiple1
units of parallel work from a Psections construct by performing this sequence:2

1. for each unit of parallel work to be executed:3
a. if a WAIT clause is coded for this section, then wait until the sections4

indicated by the WAIT clause have completed execution5
b. execute the corresponding section of code6

2. if the EXTEND qualifier is specified, execute the statements up to the END7
EXTEND statement8

3. make all shared objects updated by this process within the Psections construct9
available to all processes10

4. wait for all processes that participated in executing the Psections construct to11
arrive at step 2)12

If the MAX PARALLEL qualifier is not specified on a PDO or PSECTIONS statement, then the13
number of processes on this team that may enter the worksharing construct is limited only by the14
number of processes on the team. (See the intrinsic function NPSTM (what is the new name for15
NPSTM?))16

17
If the MAX PARALLEL qualifier is specified on PDO or PSECTIONS statement, then the18
number of processes on this team that may enter the worksharing construct is limited by the19
iexp2.20

If one or more processes executes a statement that causes a transfer of control out of the blocks21
defined by the Parallel Sections construct, then the program is not standard conforming. <Do we22
need our CYCLE and EXIT words here?>23

24
The WAIT clause specifies a partial ordering among the sections of code. All sections whose25
names are listed as section-names in the WAIT clause of a section must complete before that26
section can begin. The WAIT clause does not require use of the ORDERED qualifier.27

28
The GUARDS clause shall only be specified on the SECTION statement if the WAIT clause is29
specified. The GUARDS clause explicitly identifies the names of objects that shall be made30
consistent for the process executing the waiting section.31

32
The GUARDS clause explicitly identifies the objects that must be made consistent and removes33
a requirement for an implementation to make any other objects consistent at the point it is34
specified.35

36

18

If the ORDERED qualifier is not specified, then, except for the partial ordering specified by1
WAIT clauses, the sections of code must be execution order independent. The implementation2
may assign the processes to sections of code in any order allowed by the partial ordering3
specified by the WAIT clauses.4

5
If the ORDERED qualifier is specified, then synchronization mechanisms may be used that6
require some portion of an earlier (in lexical order) section to complete execution before some7
portion of a later section begins execution. While use of the ORDERED qualifier in a Parallel8
Sections construct that does not contain synchronization is standard conforming, it may incur a9
performance penalty on some implementations.10

11
If the MAX PARALLEL qualifier is not specified, then the number of processes on this team is12
limited only by the number of Sections defined or the maximum number of processes available13
to the program. If the MAX PARALLEL qualifier is specified, then the number of processes on14
this team must be greater than zero and less than or equal to int-exp. Any lexically contained15
do loop index variables are treated as newly scoped objects for the parallel section. They inherit16
the same type as the objects of the same name outside of the parallel section. They have the17
automatic storage class and have no storage associations thru equivalence classes or common18
blocks.19
There is an implicit synchronization at the end of a Parallel Sections construct.20

4.2.3 PARALLEL PSECTIONS Construct21

The PARALLEL PSECTIONS construct is a combination of the PARALLEL and PSECTIONS22
constructs.23

4.2.3.1 Syntax24

[name:] PARALLEL PSECTIONS [parallel-options]25
data-sharing-spec26
sections27

END PARALLEL PSECTIONS [name]28

4.2.4 PDONE29

The PDONE statement shall be used to indicate early completion of work30
within a worksharing construct.31

4.2.4.1 Explicit Syntax32

PDONE33

4.2.4.2 Coding Rules34

19

The PDONE statement is an executable statement.1

The PDONE statement shall occur lexically nested within a worksharing2
construct.3

4.2.4.3 Interpretation4

Coded directly inside of a worksharing construct, the PDONE statement5
is used to indicate that no more units of work need to be distributed.6
Any units of work that have been distributed shall be completed.7
A standard conforming implementation may complete all of the work8
specified by the worksharing construct even though a PDONE statement9
is encountered.10

4.2.4.4 Examples11

Subroutine EX58(x,y)12
Double precision x(100),y(100)13
parallel do i=1,10014

if (y(i) .eq. 0.0D0) then15
print*,i16
pdone17
cycle18

endif19
x(i)=1.0/y(i)20

end parallel do21
return22
end23

In example 58, a process that finds a 0 in Y will print the index and24
indicate that no more iterations need to be done. The other processes25
will complete execution of any iterations the have begun. The CYCLE26
statement must be specified if the iteration setting PDONE is to skip27
the rest of its current iteration.28

4.3 GROUP Construct29

The Group construct is a grouping construct. By default there is a barrier at the end of the30
Group construct. The barrier is removed by coding the NOWAIT option for the Group construct.31

4.3.1 Syntax32

[name:] GROUP [(group-option)]33
parallel-body34

END GROUP [name]35

20

where1
group-option is NOWAIT2

4.3.2 Coding Rules3

The Pdo, Psections, and Group constructs may be coded outside of the lexical scope of a parallel4
region. In addition, PDO and PSECTION may be coded outside of the lexical scope of an5
associated Group.6

4.3.3 Examples7
8

Example 52 SUBROUTINE EX52 (A)9
REAL A(*)10
GETLOCK B11
GUARDS B(SUM)12
UNLOCK(B)13
SUM=0.014
PARALLEL15
NEW SUML16
SUML = 0.017
GROUP18
PDO I=1,N19

SUML = SUML + A(I)20
END PDO21

CRITICAL SECTION (B)22
SUM = SUM + SUML23

END CRITICAL SECTION (B)24
END GROUP25

END PARALLEL26
END27

Example 52 shows a typical method for computing a reduction on a machine with a relatively28
small number of processes. All of the processes initialize their new copy of SUML to zero, then29
sum up the elements of A that correspond to the iterations assigned to each process, then, without30
waiting for the other processes on the team, update the global SUM from their local sum31
(SUML). All of the processes on the team wait at the END GROUP statement before continuing.32

33
Example 53 SUBROUTINE EX53 (A,B,C,D,N,M)34

REAL A(N),B(N),C(N),D(N)35
PARALLEL36
PDO I=1,N37

A(I) = B(I) * C(I)38
END PDO39
PDO I=1,M40

D(I) = A(I) - C(I)41
END PDO42

END PARALLEL43
END44

Example 53 shows a typical method for reducing fork/join overhead by placing two adjacent45
parallel loops inside a single Parallel Region. Because GROUP is not coded, the team members46
wait at the end of the first Pdo construct for all of the work to be complete, and then begin47
working on the second Pdo construct.48

21

1
Example 54 SUBROUTINE EX54 (A,C,N,M)2

REAL A(N,0:M),C(N,M)3
PARALLEL4
DO 10 J=1,M5

PDO I=1,N6
A(I,J) = C(I,J)/A(I,J-1)7

END PDO8
10 END DO9

END PARALLEL10
END11

12
Example 54 shows a typical method for greatly reducing fork/join overhead by floating the13
Parallel Region outside of a serial loop.14

4.4 Single Process Section15

When executing inside a Parallel Region construct, it is often convenient to use a single process16
to update objects that are shared among the team. The Single Process construct is a worksharing17
construct with exactly one unit of work.18

19
4.4.1 Explicit Syntax20

Statement Forms21
SINGLE PROCESS22

23
END SINGLE PROCESS24

25
Structured As26

SINGLE PROCESS27
statements28

END SINGLE PROCESS29

4.4.2 Explicit Syntax30

The Single Process construct follows all of the rules of Fortran block structured constructs.31

4.4.3. Interpretation32

A block of code surrounded by a Single Process construct is executed by exactly one process of33
a team per encounter.34

35
Example 55 SUBROUTINE EX55 (A,B,N)36

REAL A(N),B(N)37
PARALLEL38
PDO I=1,N39

A(I) = 1.0 / A(I)40
END PDO41
SINGLE PROCESS42

IF (A(1) .GT. 1.0) A(1) = 1.043
END SINGLE PROCESS44

22

PDO I=1,N1
B(I) = B(I) / A(1)2

END PDO3
END PARALLEL4
END5

Example 56 SUBROUTINE EX56 (A,B,N)6
REAL A(N),B(N)7
PARALLEL8
PDO I=1,N9

A(I) = 1.0 / A(I)10
END PDO11
PSECTIONS12
SECTION13

IF (A(1) .GT. 1.0) A(1) = 1.014
END PSECTIONS15
PDO I=1,N16

B(I) = B(I) / A(1)17
END PDO18

END PARALLEL19
END20

Example 56 illustrates the equivalence between a worksharing construct with a single unit of21
work and a Single Process construct demonstrated in Example 55. Examples 55 and 56 produce22
the same results and exhibit the same degree of parallelism.23

24
Example 57 SUBROUTINE EX57 (A,AMAX,N)25

REAL A(0:N)26
AMAX = 0.027
PARALLEL28
NEW ALMAX29
BEGIN GROUP30
PDO I=1,N31

IF (ABS(A(I)) .GT. ABS(ALMAX)) ALMAX = A(I)32
END PDO33

CRITICAL SECTION34
IF (ABS(ALMAX) .GT. ABS(AMAX)) AMAX = ALMAX35

END CRITICAL SECTION36
END GROUP37
SINGLE PROCESS38

ALMAX = A(1)+A(N)39
IF (AMAX .LT. ALMAX) AMAX = 1.0 + AMAX40

END SINGLE PROCESS41
PDO I=1,N42

A(I) = ABS(A(I) / AMAX)43
END PDO44

END PARALLEL45
END46

47
In Example 57, after the maximum absolute value of an array is computed by the first Pdo48
construct, a single process performs some manipulation of the maximum value prior to its use49
in the final Pdo construct. Because AMAX is a shared variable being updated within a Parallel50
Region construct, but outside of a worksharing construct, some synchronization mechanism must51
be employed to ensure that only one process performs the update.52

23

4.5 Inquiry Functions1

The following intrinsic functions shall be provided:2

4.5.1 Maximum peformance improvement at this time3

DOUBLE PRECISION FUNCTION PERFMAX()4

Returns an implementation dependent run-time measurement that5
indicates the maximum improvement in performance the program could6
reasonabley expect to achieve as described in the ANSI X3H5 LIM.7

4.5.2 Team size8

INTEGER FUNCTION NPTEAM()9

Returns the number of processes (active and blocked) on the team for10
the current parallel construct.11

4.5.3 Looking for work12

INTEGER FUNCTION NPLOOK()13

Returns the number of processes that are currently looking for work as14
defined in the ANSI X3H5 LIM.15

4.5.4 Blocked processes16

INTEGER FUNCTION NPBLOCK()17

Returns the number of processes that are currently blocked as18
defined in the ANSI X3H5 LIM.19

4.5.5 Active processes20

INTEGER FUNCTION NPACTIVE()21

Returns the number of processes that are currently active as defined22
in the ANSI X3H5 LIM.23

24

5.0 Data Environments1

This section describes the data environments of processes in a parallel Fortran 90 program.2

5.1 Terminology3

5.1.1 The model terminology mapped to Fortran4

5.1.1.1 Object5

An object as described by the the model is a Fortran data object1 (constant, variable or6
subobject), or a Fortran common block2.7

Composite objects are variables that are Fortran arrays and Fortran structures (or derived data8
types) ; and Fortran common blocks.9

5.1.1.2 Read/Modify10

An object or a subobject of the object is read as described by the the model when it is11
referenced3 as described by Fortran 90.12

An object or a subobject of the object is modified as described by the model when it is used in13
a way that causes it to become defined as described by Fortran 904. A Fortran constant cannot14
be modified5.15

5.1.1.3 Data environment16

1Fortran data object Section 2.4.3.1, page 13, line 39 of17
Fortran 90. A Fortran structure is a variable. Fortran structure18
Section 5.1.1.7, page 43, line 24 of Fortran 90.19

2Fortran common block Section 5.5.2, page 58, line 18 of20
Fortran 90.21

3referenced Section 2.5.5, lines 20-26; and Section 6, page 6122
lines 3,4.23

4defines Section 14.7.5, page 250, lines 4-10.24

5Fortran constant Section 6, page 61, line 37, 38.25

25

A data environment as described by the the model is a collection of objects as defined in1
section 5.1.1.1. (Data enviroment as used in this document is distiguished from data environment2
as used in Fortran 906 by the inclusion of common blocks.)3

5.1.1.4 Private/Shared4

An object that has a P/S attribute of private for a parallel construct shall be part of only one team5
member’s data environment. (Note that Fortran 90 uses the adjective private for access attributes6
also. This is distinct from P/S attributes.)7

An object that has a P/S attribute of shared for a parallel construct shall be part of all team8
members’ data environments for that parallel construct.9

5.1.2 Fortran terminology extended for the model:10

5.1.2.1 Scoping Unit11

A scoping unit in the binding is a Fortran scoping unit7 augmented to include a parallel12
construct.13

5.1.2.2 Instance of a subprogram14

An instance of a subprogram is restricted to a single process as defined in section ??? of model15
document. The application of this statement modifies the Fortran 90 definition in the following16
way: :h5.17

(NOTE - ??? was to be added to model document as of 3/93 meeting, but haven’t seen latest18
copy to get correct reference.)19

An instance of a subprogram in the binding is defined with respect to a process. When a20
function or subroutine defined by a subprogram is invoked, an instance of that subprogram is21
created for the invoking process. Multiple instances of a subprogram may be active22
concurrently. A process’s instance of a subprogram is independent of all other processes’23
instances of the subprogram.24

Each instance has an independent sequence of execution and an independent set of dummy25
arguments and local nonsaved data objects. If an internal procedure or statement function26
contained in the subprogram is invoked directly from an instance of the subprogram or from an27
internal procedure or statement function that has access to the entities of that instance, the created28

6Section 2.4, Data Concepts, page 13, line 2.29

7Section 2.2, page 9, lines 44-49 and Section 14, page 241,30
lines 3,4.31

26

instance of the internal procedure or statement function also has access to the entities of that1
instance of the host subprogram.2

All other data entities are shared by all instances of the subprogram within a process. For3
example, the value of a saved data object appearing in one instance may have been defined in4
a previous instance within the process or by initialization in a DATA statement or type5
declaration statement.86

The definition of the save attribute is restricted to a single process as defined in section ??? of7
model document. The application of this statement modifies the Fortran 90 definition in the8
following way: (NOTE - ??? was to be added to model document as of 3/93 meeting, but haven’t9
seen latest copy to get correct reference.)10

Objects declared with the SAVE attribute in the scoping unit of a subprogram are shared by all11
instances in a process of the subprogram.912

Items that receive the SAVE attribute implicitly shall be shared by all instances in a process of13
the subprogram.1014

5.1.3 New terminology for the binding15

5.1.3.1 Iterative Control Variables16

Iterative control variables are defined to include do-variables, used in loop control11, implied17
do control12, and parallel loop control.1318

5.1.3.3 Hidden19

Hidden in this binding is used to clarify that a private access attribute is being referenced rather20
than a private P/S attribute.21

8Section 12.5.2.4, Instances of a 5.1.2.3 Save Attribute.22

9Section 5.1.2.5, SAVE attribute, page 47, lines 37-38.23

10Section 5.1, page 41, lines 9-12. Section 5.2.9, page 52,24
lines 1-3.25

11Section 8.1.4.1.1, page 100, line 37.26

12Section 9.4.2 (Data transfer input/output list), page 123,27
line 27.28

13Section 4.5 (Construction of array values), page 37, line 40.29

27

5.2 Allowable Parallel Access Attribute1

All Fortran objects, except common and objects in common, have an APA attribute of default2
private, explicitly shared. Objects that are declared default private may be explicitly shared for3
a parallel construct if they are host associated14 with a scoping unit15 containing the parallel4
construct.5

Common blocks and the objects contained in the common block have the same APA attribute.6

Modules and the objects defined by the module have the same APA attribute.7

The APA attribute of a common block or module is defined by the instance attribute specified8
in a Fortran program. If the instance attribute is single then the common block or module has9
an APA attribute of always shared. Neither common blocks nor the objects contained in the10
common blocks shall be made private. Similarly, neither modules nor the objects contained in the11
module shall be made private.12

If the instance attribute is parallel then the common block or module has an APA attribute of13
default private, explicitly shared. Objects that are declared default private may be explicitly14
shared for a parallel construct if they are host associated16 with a scoping unit17 containing15
the parallel construct.16

Objects declared within program units declared in modules follow the same rules as other17
program units.18

5.2.1 Definition of Instance Attribute19

An instance attribute for global data objects is defined. The instance attribute specifies whether20
there shall be a single instance of the global object for the entire parallel program or if there may21
be multiple parallel instances of the global object.22

An instance attribute may only be specified for the following global entities: - common blocks23
- module program units.24

The instance attribute shall be the same for all references to the global object throughout the25
program.26

14Section 12.1.2.2.1, page 163, 164, lines 33-39, 1-33.27

15Section 2.2, page 9, line 45-49.28

16Section 12.1.2.2.1, page 163, 164, lines 33-39, 1-33.29

17Section 2.2, page 9, lines 45-49.30

28

All objects specified in a module program unit shall have the same instance attribute.1

The default instance attribute for COMMON blocks shall be single.2

Blank common shall only have an instance attribute of single.3

The default instance attribute for modules shall be single.4

A global object with an instance attribute of single shall have an APA attriute of "always shared".5

A global object with an instance attribute of parallel shall have an APA attribue of "default6
private, explicitly shared".7

A common block with a parallel instance attribute may have the save attribute. If it has the save8
attribut, it shall have the same lifetime as its data environment.9

A common block with the parallel instance attribute may be initialized by a block data program.10
This shall occur once per process.11

5.2.1.1 Instance Statement Syntax12

INSTANCE (single or parallel)13
or14

INSTANCE (single or parallel) list_of_common_block_names15
or16

INSTANCE (single or parallel) module_name17

An instance statement shall appear in the specification statements of a program unit.18

If an INSTANCE statement occurs in a program unit without any names specified, then it shall19
define the instance attribute for all global objects in that program unit.20

If an INSTANCE statement occurs in a module program unit, it shall specify only the name of21
the containing module program unit.22

If an INSTANCE statement occurs in a main, subroutine or function, or block data program unit,23
it shall specify only names of common blocks defined within the program unit.24
5.3 Private/Shared Attribute25

When a parallel construct is encountered all objects that are read or modified within it shall have26
their P/S attribute determined as follows:27

29

- All iterative control variables contained within the parallel construct shall have a P/S1
attribute of private with respect to the parallel construct.2

- All objects that are host associated with a containing scoping unit shall have a P/S attribute3
of shared with respect to the parallel construct.4

- All common blocks and objects contained in common blocks shall have a P/S attribute of5
shared with respect to the parallel construct.6

- All objects that are declared within the scope of the parallel construct shall have a P/S7
attribute of private with respect to the parallel construct.8

- All other objects shall have a P/S attribute of private with respect to the parallel construct.9

All Fortran 90 subobjects of an object shall have the same P/S attribute as their containing10
object.11
5.3.1 References through Pointers12

The P/S attribute of a pointer object will be used to determine synchronization requirements when13
the value of the pointer is referenced or modified. (Examples of modification include - allocate,14
deallocate, and pointer assignment.)15

The P/S attribute of the target of a pointer shall be used to determine synchronization requirments16
when the value of the target is referenced or modified thru the pointer in addition to the pointer’s17
sycnhronization requirements in determining the validity of the address.18

A program shall not assign the value of a private pointer to a shared pointer if the target of the19
pointer is private and if the target of the pointer may be inaccessible when referenced with the20
shared pointer.21

These rules are given as interpretations of the statement in the model document, Section 5.422
Basic Mechanics - paragraph discussion early departure of team members: "A team member shall23
not read or modify an object which is private to another member of the team."24

5.4 Basic Mechanics25

All objects in a parallel Fortran program shall be part of a data environment.26

5.4.1 Types of Data Environments27

5.4.1.1 Initial Data Environment28

The initial data environment for a parallel Fortran program shall begin with a new data29
environment. In addition, the initial data environment contains all common blocks and modules30

30

for the Fortran program. During program execution, the initial data environment may contain1
additional objects that come into scope during program execution. Objects that come into scope2
during execution of parallel constructs shall not be part of the initial data environment unless3
the initial process is participating in the execution of the parallel construct as a base process and4
it encounters the scoping unit.5

5.4.1.2 New Data Environment6

A new data environment shall consist of objects with the save attribute (also referred to in7
Fortran 90 as saved objects).18 The objects that are initially defined19 as described in Fortran8
90 shall have their initial values defined.9

5.4.1.3 Looking for Work Data Environment10

A looking for work data environment shall consist of objects with the saved attribute with the11
appropriate association status, allocation status, definition status and value20 maintained from12
earlier participation in the execution of a parallel construct.13

5.4.2 Data Environments upon encountering a parallel construct14

When a parallel construct is encountered, the objects that are read or modified within it shall15
have their P/S attributes determined as specified in section 5.3 Private/Shared Attribute.16

If the object is private or not available it shall not be part of the data environment of any17
member of the new team formed to execute the parallel construct.18

If an object is classified as shared but another instance of the object is declared lexically within19
the parallel construct, then new private instances of the object shall be used by all team members.20
The base process shall not use the shared instance of the object if it participates in the execution21
of the parallel construct. (A shared object shall not be made private.)22

Only objects that are in scope at the time the parallel construct is encountered shall be shared23
for the parallel construct.24

All other objects shall only be shared for a parallel construct if they are accessible and visible25
at the parallel construct.26

18Section 5.1.2.5, SAVE attribute, page 47, lines 31-33.27

19Section 14.7.3, Variables that are initially defined, page28
249, lines 35-39.29

20Section 5.1.2.5, SAVE Attribute, page 47, lines 31-33.30

31

5.4.3 Object creation1

Objects may be created when program units or scoping units are entered or when the objects2
are explicitly allocated.3

When an object is created it is added to the data environment of the creating process. (Note that4
Fortran 90 initialized data objects have the save attribute implied.21 Since all saved objects are5
part of a new data environment, all initialization of data objects has occurred.)6

All objects shall have a P/S attribute determined when a parallel construct is encountered.7

Objects with the allocatable attribute may be allocated prior to encountering a parallel construct8
for which their P/S attribute will be shared. If an allocatable object is shared for a parallel9
construct and is to be allocated during the execution of a parallel construct, the program shall10
ensure the allocation is done with appropriate synchronization.11

5.4.4 Destroying Objects12

Objects are destroyed as follows:13

- Data objects without the saved attribute are destroyed when they exit the scoping unit for14
which they were created.15

- Data objects with the saved attribute are destroyed when the data environment which they16
belong to is destroyed.17

- Allocatable objects are destroyed when they are deallocated.2218
- Some allocated objects are destroyed when their scope is exited.2319

5.4.5 Exiting parallel constructs20

All objects without the saved attribute that were created for a scoping unit are destroyed upon21
exiting the scoping unit. If the scoping unit is contained within the parallel construct, then these22
objects shall not exist in the data environments of the processes exiting the parallel construct.23

All objects without the saved attribute that were created for the scoping unit that is the parallel24
constructs are destroyed.25

21Section 5.2.9, page 52, lines 1-3.26

22Section 6.3.3.1, Deallocation of allocatable arrays, page 69,27
lines 2-15.28

23Section 6.3.3.1, Deallocation of allocatable arrays, page 69,29
lines 2-15.30

32

An implementation may destroy objects with the saved attribute in a data environment only if1
all objects:ehp3 with the saved attribute for that data environment are destroyed. (If an object2
with a P/S attribute of private whose lifetime is longer than that of this parallel construct is3
destroyed, then all such objects shall be destroyed.)4

5.4.6 Early Departures of Team Members5

5.5 Binding Considerations6

5.5.1 APA and P/S Attributes with Fortran Scoping Rules7

Fortran 90 defines the following scopes for names: global entities, local entities, statement8
entities.24 The binding provides the following APA attributes for these scopes of named9
entities:10

- global entities11
- always shared12
- default private, explicitly shared13
- local entities14
- default private, explicitly shared15
- statement entities16
- default private, explicitly shared17

The binding does not provide an option for the APA attributes of always private.2518

The binding does not provide an option for the APA attributes of default shared, explicitly19
private.2620

5.5.2 Data Environments and Lifetime of Fortran Objects21

24Section 14, Scope, association and definition., page 241.22

25 Rationale - In order to facilitate the use of nested23
parallel constructs at any point in the parallel program. An24
implementation may map some objects to process private storage when25
those objects cannot be read or modified by other processes in a26
standard-conforming program. (Note: Statement entities will appear27
to be always private because in current binding there are no28
parallel constructs within a statement for which they could be29
explicitly shared.)30

26Rationale - In order to restrict the "accidental sharing" of31
objects among parallel constructs. Programs shall explicitly32
identify objects to be shared at parallel constructs or shall33
explicitly identify objects to be always shared.34

33

All entities that are associated shall have the same P/S attributes for a given parallel construct.1
Association may be by name, argument, use, pointer or storage.272

Lifetime of an object is tied to the lifetime of the data environment it belongs to. An object shall3
not exist before or after the data environment it belongs to.4

Saved objects shall exist for the lifetime of a data environment. Saved objects shall only be5
accessible by a process if the saved object is in scope.6

Objects without the saved attribute may exist only when they are in scope. Objects without the7
saved attribute shall only be accessed when they are in scope.8

An allocatable object shall only be accessed when its status is allocated.9

An object with the private (hidden) access attribute within a given scope shall not be accessible.10

5.5.3 New Instances of Objects for Parallel Constructs11

Objects declared within the scope of a parallel construct shall have a P/S attribute of private for12
that parallel construct.13

The binding allows the following specifications within a parallel constructs:14

5.5.3.1 Syntax15

data-sharing-spec is new-stmt |16
use-stmt |17
type-declaration-stmt |18
specification-stmt |19
parameter-stmt |20
format-stmt |21
pointer-stmt22
[data-sharing-spec]23

new-stmt is NEW variable-list24

Constraint: specification-stmt shall not contain an access-stmt, common-stmt,25
data-stmt, optional-stmt, equivalence-stmt, derived-type-stmt, or save-stmt.26

5.5.3.2 Interpretation27

The binding allows objects with the following attributes to be declared lexically within the28
scope of a parallel construct:29

- type30

27Section 14.6, Association, page 245-247.31

34

- dimension1
- allocatable2
- pointer3
- target4

The following objects shall not be allowed to be specified lexically within the scope of a parallel5
construct:6

- the declaration of an assumed size array, dummy argument common block, function or7
function entry point8

- character type with an assumed length9
- equivalence associated with any object that is shared for this parallel construct10
- have the saved attribute11
- be data initialized12

The dimensionality of adjustable arrays inherited is that defined at the procedure entry for the13
corresponding adjustable array declarator.14

5.5.3.3 New Statement15
The NEW statement is defined to allow new instances of common blocks and modules with the16
parallel instance attribute to be created within a parallel construct.17

5.5.3.3.1 NEW Statement Syntax18

NEW external_name_list19

where external_name_list - /<common_name >/ or <module_name>20

Constraint: only common block names and module names that have the parallel instance attribute21
shall be specified on the NEW statement. A common block or module with an instance attribute22
of single shall not be specified on the NEW statement.23

5.5.3.4 Iterative Control Variables24

All iterative control variables defined by and within the parallel construct shall have a P/S25
attribute of private for the parallel construct and shall be exist only for the scope of the parallel26
construct. This shall occur even if the iterative control variables are not declared within the27
scope of the parallel construct. The values of the iterative control variables shall be undefined28
upon exit from the parallel construct. Only the type attributes of the iterative control variables29
shall apply within the scope of a parallel construct.30

5.5.4 Alternative APA Attributes for Always Shared31

35

Common blocks and the objects in common blocks that have an instance attribute of single shall1
have a P/S attribute of shared for all parallel constructs. Modules and the objects in modules that2
have an instance attribute of single shall have a P/S attribute of shared for all parallel constructs.3

5.5.4 External Data Objects and Multiple Processes4

Fortran 90 global named entities allow objects to be shared across scoping units. The binding5
provides the instance attribute as a mechanism of providing global; default private, explicitly6
shared objects.7

Additional rules with respect to new language features:8

5.5.5.1 Common and Modules9

A common block or module shall have a storage sequence whenever such a storage sequence10
would be required by Fortran 90 for a common block regardless of its instance attribute.11

Within a process, all program units access the same named common block and modules. The12
instance attribute of parallel provides a means of associating entities in different program units13
among a team of processes. It allows different teams of processes to have different storage14
associations for common blocks and modules There may be multiple common blocks or modules15
of the same name if they have the parallel instance attribute specified in a parallel program.)16

When a parallel construct is encountered, three possibilities exist for common blocks and17
modules:18

- shared - the common or module is lexically visible in the scoping unit containing the parallel19
construct and has an instance attribute of single or parallel.20

All team members that participate in the execution of the parallel construct share access to the21
same common block/module that is lexically visible. Any modifications to that common block22
or module by any team member are retained and accessible after the parallel construct is exited.23

- explicitly private - the common or module is specified on the NEW statement within the24
parallel construct and has an instance attribute of parallel25

All team members that participate in the execution of the parallel construct access their own26
distinct storage sequence for the common block or module. The storage sequences for the27
common block or modules are not accessible outside of the scoping unit of the parallel construct.28

- implicitly private - the common or module is not lexically visible in the scoping unit29
containing the parallel construct and is not specified within the parallel construct and has an30
instance attribute of parallel.31

36

If the common block or module is referenced by a process executing the parallel construct, then1
the process references its private copy of the common block or module.2

5.6 Objects and Synchronization3

Between synchronization points, objects shall be read and modified as follows:4

- read5

An object is read if it is referenced as described by Fortran 90286

- modified7

An object is modified if it an action occurs that causes it to become defined29 or become8
undefined as described by Fortran 90309

Fortran 90 subobjects (array-element, array-section, structure-component, or substring)31 are10
objects in the model and may be read and modified independently of other subobjects by11
different processes. :efn.12

In parallel programs, it is the users responsibility to protect shared objects in common with the13
proper synchronization if they are read and modified by multiple processes.14

5.7 Examples15

Subroutine EXD01(A,B,C,N)16
Real A(n),B(n),C(n)17
parallel do i=1,n18

Real t19
t=a(i)*b(i)20
c(i+1)=t* (t-1.0)21

end parallel do22
end23

24
In EXD01, the variable I has a P/S attribute of private for25
the parallel construct because it is the iterative control variable for the parallel do. The variable26
T has a P/S attribute of private27

28Section 6, Use of Data Objects, page 61, lines 3-7.28

29Section 14.7.5, Events that cause variables to become29
defined, page 250, 251, lines 3-42, 1-10.30

30Section 14.7.6, Events that cause variables to become31
undefined, page 251, 252, lines 11-45, 1-33.32

31Section 6, Use of Data objects, page 61, lines 16-19.33

37

for the parallel do because it is declared within the parallel construct. The arrays A,B,C, and D1
are shared objects for the parallel construct. The variables I and T are undefined upon exit from2
the parallel do.3

Subroutine EXD02(B)4
Real, Dimension(100) :: B,C5
parallel do i=1,1006

call subx1(b(i))7
call subx2(c(i))8

end parallel do9
print*, (c(i),i=1,100)10
end11

subroutine subx1(x)12
real, save:: a13
a=x14
return15
entry subx2(x)16
x=a17
end18

In EXD02, the SAVE attribute ensures that the value of A defined by SUBX1 will be available19
for entry SUBX2 to use within any iteration of the parallel do construct. Thus, the effect of this20
example is to copy B to C and print the result. If the SAVE attribute was not specified, the21
results are undefined; (Note that if the parallel do was a serial do and the save attribute was not22
specified the results are also undefined.)23

Subroutine EXD03()24
Real, Dimension(100) :: B25
common /abc/ b26
call subx1(100)27
print*, (b(i),i=1,100)28
end29

subroutine subx1(icnt)30
parallel do i=1,icnt31

call work(i)32
end parallel do33
return34
end35

subroutine work(i)36
Real, Dimension(100) :: B37
common /abc/ b38
b(i)=i39
return40
end41

In EXD03, there is only one copy of the common block /abc/, that all processes share access to.42
The modifications made to the array elements, or subobjects, of b are data independent. No43
explicit synchronization is required.44

subroutine EXD04(in,A)45
real, dimension(in,in):: A46
real, dimension(:,:), allocatable:: B,E47
allocate B(in,in)48

38

parallel do i=1,in1
real, dimension(:), allocatable:: C2
Allocate C(in)3
C(:)=04
parallel do j=1,in5
c(j)=c(j)+A(i,j)6
if (fn(c(j)).neq.0) then7

Critical section8
if (.not.allocated(E)) then9

allocate E(in,in)10
endif11

end critical section12
E(i,j)=C(j)13

endif14
end parallel do15
B(i,:)=C(i)16
deallocate C17
end do18
A(:,:)=B(icnt:1:-1,:)19
return20
end21

In EXD04, the allocateable array B is shared for both parallel constructs and the allocateable22
array C is private for the parallel do i loop but shared for the parallel do j loop. The allocateable23
array E is shared, but is only allocated based on a function of C(j). The user is responsible for24
providing the proper synchronization to ensure that only one team member allocates the shared25
array.26

subroutine EXD06(in)27
integer pi(in),i(in)28
pointer pi29
target i30
allocate I31
PI=>I32
icnt=033
parallel34
integer pj(in),j(in) ,id35
pointer pj36
target j37
critical section38
icnt=icnt+139
id=icnt40
end critical section41
if(id .eq.1) then42
PJ=>I43
else44
allocate J45
PJ=>J46
endif47
pdo i=1,10048
...49

end pdo50
if(id .gt.1) then51
deallocate j52
endif53
end parallel54

39

In EXD06, references with pointer PI in the parallel do loop will be appropriately synchronized1
among all processes executing the parallel construct. In this example, the user wants to use the2
allocated array I for the first process, and only allocate additional private arrays if additional3
processes execute part of the parallel construct. References with pointer PJ will be to objects with4
P/S attributes of shared or proivate; an implementation must ensure that the proper5
synchronization is done for the shared target.6

subroutine exd1()7
common/abc/a(100),b(100)8
common/def/d(100),e(100)9
common/ghi/g(100),h(100)10
instance parallel /def/,/ghi/11
parallel do i=1,10012
new/def/13
...14
end parallel do15

subroutine exd2()16
common/abc/a(100),b(100)17
common/def/d(100),e(100)18
common/ghi/g(100),h(100)19
instance parallel /def/,/ghi/20
instance single /abc/21
parallel do i=1,10022
new/def/d(100),e(100)23
...24
end parallel do25

In both examples exd1 and exd2, common /abc/ is always shared. There is only one copy for26
the entire program. All processes share the same copy. Common /def/ and /ghi/ are default27
private, explicitly shared. Since /def/ is specified within the parallel do construct, each team28
member participating in the execution of an iteration of the parallel do will have its own copy.29
The variables in common /def/ may be referenced without synchronization. Since /ghi/is visible30
at the parallel point it will be shared among all team members participating in the execution of31
the parallel construct.32

module data33
dimension a(100),b(100)34
real a,b35
private b36
public a37
end data38

Module data will be an always shared global object. All team members of all teams will39
reference same A and B. Both A and B have an instance attribute of single and therefore have40
APA attributes of always shared. The Fortran access attribute of private (or hidden) does not41
affect the APA attribute.42

module exd743

40

instance parallel1
dimension a(100),b(100)2
real a,b3
end exd74

Module exd7 will be default private, explicitly shared. If the program unit containing a parallel5
construct has a use of exd7 then a and b will be shared for team members of that parallel6
construct. If not, then each team member will have private copies of the module exd7 created.7

module data8
instance parallel9
dimension a(100),b(100)10
real a,b11
common/abc/a,b12
subroutine x()13
instance parallel14
common/abc/a,b15
dimension y(10)16
...17
end18
end data19

The common block /abc/ has a parallel instance attribute.20

The reference to /abc/ within subroutine x must specify the same instance attribute for /abc/ as21
the containing module. The rules stated that objects defined within program units within modules22
would have their instance attribute determined based on the program unit rules. The object y is23
a local object to subroutine x - it does not have an instance attribute.24

Example 33 LOGICAL FUNCTION EX33 (A,IZERO,N)25
REAL A(N)26
PARALLEL PDO I=1,N27

IF (A(N) .EQ. 0.0) THEN28
CRITICAL SECTION29

IZERO = I30
END CRITICAL SECTION31
EX33 = .TRUE.32
PDONE33

ENDIF34
END PARALLEL PDO35
EX33 = .FALSE.36

END37

Example 33 demonstrates how to carry the value of a new object out of a parallel construct. The38
loop index of the Parallel Do is new by default, so the loop index value is undefined outside of39
the scope of the Parallel Do. The Critical Section ensures that updating the global variable40
IZERO is performed by one process at a time. Note that this code does not ensure that the41
smallest index of a zero element of A is returned. Also, multiple processes may set IZERO.42

41

Example 41 SUBROUTINE EX41 (B)1
REAL B(100)2
PARALLEL PDO I=1,1003
CALL SUB(B(I))4

END PARALLEL PDO5
END6

SUBROUTINE SUB (X)7
INSTANCE PARALLEL8
COMMON /BLOCKA/ A9
A = X10
CALL SQUARE11
X = A12
END13

SUBROUTINE SQUARE14
INSTANCE PARALLEL15
COMMON /BLOCKA/ A16
A = A*A17
END18

Example 42 SUBROUTINE EX42 (B)19
INSTANCE PARALLEL20
COMMON /BLOCKA/ A21
REAL B(100)22
PARALLEL PDO I=1,10023
NEW /BLOCKA/24
CALL SUB(B(I))25

END PARALLEL PDO26
END27

SUBROUTINE SUB (X)28
INSTANCE PARALLEL29
COMMON /BLOCKA/ A30
A = X31
CALL SQUARE32
END33

SUBROUTINE SQUARE34
INSTANCE PARALLEL35
COMMON /BLOCKA/ A36
A = A*A37
END38

Example 42 and Example 41 provide the same results. Both ensure that within the parallel39
construct, team members have their own copies of common blocka for communication among40
program units within a process. Example 41 uses an implict private copy of blocka for the41
parallel construct.42

Example 42 specifes an explicit private copy of blocka for the parallel construct.43

Example 43: C This example is NON-STANDARD CONFORMING C44
INSTANCE PARALLEL /NC/45
COMMON /NC/ A(100)46
...47

42

y_calls: PARALLEL PDO I=1,1001
...2
CALL Y3

10 END DO y_calls4
...5
RETURN6
END7

SUBROUTINE Y8
...9
PARALLEL PDO J=1,10010
...11
CALL Z12

END DO13
...14
RETURN15
END16

SUBROUTINE Z17
INSTANCE PARALLEL /NC/18
COMMON /NC/ A(100)19
...20
RETURN21
END22

In this example, the scommon block, NC, is shared for the parallel y_calls loop in the main23
program. However, NC, is implicitly private at the parallel do loop subroutine Y and is24
referenced within that parallel construct in subroutine Z.25

Possible modifications to make it standard conforming include:26

1. Specify /NC/ on a NEW statement in the parallel y_calls loop27
in the main program.28

2. Include the COMMON statement defining /NC/ in subroutine Y.29
Then /NC/ will be shared for all parallel constructs.30

3. Include the COMMON statement defining /NC/ in subroutine Y and31
specify /NC/ on a NEW statement for the parallel do loop.32

Example 45 SUBROUTINE EX45 (B)33
REAL B(100), C(100)34
PARALLEL PDO I=1,10035
CALL SUB1(B(I))36
CALL SUB2(C(I))37

END PARALLEL PDO38
PRINT *, (C(I), I = 1, 100)39
END40

SUBROUTINE SUB1 (X)41
INSTANCE PARALLEL42
COMMON /BLOCKA/ A43

43

SAVE /BLOCKA/1
A= X2
END3

SUBROUTINE SUB2 (X)4
INSTANCE PARALLEL5
COMMON /BLOCKA/ A6
SAVE /BLOCKA/7
X = A8
END9

In Example 45, the SAVE statement ensures that the value of A defined SUB1 will be available10
for SUB2 to use within any iteration of the Parallel Do contruct. Thus, the effect of SC6 is to11
copy B to C and print the result. If the SAVE statement is not coded, the results are undefined.12
Note that without the SAVE statement, the serial form of this program would not conform to13
Fortran section 15.9.4.14

Example 46 SUBROUTINE EX46 (B)15
REAL B(100), C(100)16
INSTANCE PARALLEL /BLOCKA/17
COMMON /BLOCKA/ A18
PARALLEL PDO I=1,10019
NEW /BLOCKA/20
CALL SUB1(B(I))21
CALL SUB2(C(I))22

END PARALLEL PDO23
PRINT *, (C(I), I = 1, 100)24
END25

SUBROUTINE SUB1 (X)26
INSTANCE PARALLEL /BLOCKA/27
COMMON /BLOCKA/ A28
A = X29
END30

SUBROUTINE SUB2 (X)31
INSTANCE PARALLEL /BLOCKA/32
COMMON /BLOCKA/ A33
X = A34
END35

Example 46 demonstrates an alternative to coding the SAVE statement. It is sufficient to declare36
/blocka/ in the calling program and code a NEW statement for /BLOCKA/ inside the parallel37
construct. Examples 45 and 46 both compute the same result.38

Example 39 SUBROUTINE EX39 (B,C,N)39
REAL B(N),C(N)40
PARALLEL PDO I=1,N41
REAL A42
A=B(I)+C(I)43
CALL EX39A(A,B,I)44

END PARALLEL PDO45
END46

SUBROUTINE EX39A (AA,BB,N)47

44

REAL BB(N),BX1
DATA BX/1.0/2
BX= AA * (AA-4.0)/BX3
PARALLEL PDO J=1,N4
BB(J) = BB(J)*BX5

END PARALLEL PDO6
END7

In Example 39, the variable BX has a data sharing attribute of newfor the parallel do insubroutine8
EX39, but a shared data sharing attribute for the Parallel Doin subroutine EX39A.The DATA9
statement initializing BX applies on aper process basis. Thefirst time a process calls subroutine10
EX39A, the value of BX for thatprocess is guaranteed tobe that specified by the DATA11
statement. Subsequent calls of subroutineEX39A by the sameprocess use the value of BX from12
the end of the previous call to BX bythe same process.13

Example ?? PROGRAM MAIN14
COMMON/COM1/CA(100)15
INTEGER LA,MS,ND16
DATA /ND,1/17
...18
SAVE /COM1/,MS19
...20
PARALLEL PDO I=1,10021
NEW LA,MS,ND22
...23
CALL Y24
...25

END Parallel DO26
...27
END28

BLOCK DATA X29
COMMON/COM1/CA(100)30
INSTANCE PARALLEL /SCOM1/31
COMMON/SCOM1/ SC(100)32
DATA /CA,100*0.0/,/SC,100*0.0/33
END34

SUBROUTINE Y35
COMMON/COM1/CA(100)36
COMMON/COM2/CB(100)37
INSTANCE PARALLEL /SCOM1/,/SCOM2/38
COMMON/SCOM1/ SC(100)39
COMMON/SCOM2/ SD(100)40
INTEGER IS(100),JA(100),KD41
DATA KD/0/42
SAVE /COM1/,/SCOM1/,IS43
...44
END45

EXPLANATION46
COMMONs:47

COM1 is single_copy_external, static storage48
COM2 is single_copy_external, dynamic storage49

SCOM1 is parallel_external, static storage50
SCOM2 is parallel_external, automatic storage51

45

Local variables:1
IS,MS is construct_local, static storage2
JA,LA is construct_local, automatic storage3
KD,ND is construct_local, data initialized static storage4

NEW variables:5
LA’ is construct_local, automatic storage6
MS’ is construct_local, ?? (auto or static)7
ND’ is construct_local, ??8

46

6.0 Input/Output1

Each Fortran unit number is shared among all processes of a parallel program. An2
implementation shall provide synchronization among all processes accessing a specified unit.3

When a unit number is connected to a file (for example through the use of an open statement),4
then all processes are able to access that file by using the same unit number. The unit shall5
not be explicitly connected to a file by an OPEN statement if it is currently connected to a file6
by a previous OPEN statement.7

The effect of executing a data transfer input/output statement shall be as if the operations were8
performed in the order specified on page 125, lines 17-26 in the Fortran 90 standard. If multiple9
processes are executing the program, then the order of operations shall be augmented as follows:10

Insert the following step between steps 2 and 3:11
(2.5) Obtain an implementation lock associated with the unit12

Insert the following step between steps 7 and 8:13
(7.5) Free the implementation lock obtained for the unit14

The result shall be that once a process obtains the lock for a given unit, the data transfer of the15
input/output list specified for the I/O statement will be completed prior to another process16
transferring data to or from the same unit.17

The implementation lock obtained for the unit shall control the synchronization of the file pointer18
to the unit among all processes. The I/O statements shall not be synchronization points for19
program data objects. A program shall use the explicit or implicit synchronization points defined20
by the model for program data objects.21

If the user wishes to cause I/O statements executed by distinct, simultaneously-executing22
processes to be applied to a unit number in a particular order, explicit, user-coded23
synchronization shall be used.24

A program shall control synchronization of concurrent I/O to multiple units if required.25

When a READ statement detects an end-of-file for a unit, all subsequent reads issued by other26
processes to that unit number - prior to a file repositioning statement (REWIND, BACKSPACE,27
CLOSE followed by OPEN, direct-access READ, direct access WRITE) will also detect28
end-of-file.29

6.1 Multiple End-of-File Records30

47

For cases where multiple end-of-file records can be detected on a unit after executing a single1
open (example, unlableled tapes with multiple files in many implementations) it is necessary to2
provide an additional I/O statement to skip past the current end-of-file record. Implementatins3
that allow only a single end-of-file per file may implement this statement as a CONTINUE4
statement.5

6.1.1 Explicit Syntax6

SKIP PAST EOF just-like-backspace-both forms7

6.2 Examples8

6.2.19
subroutine exio1()10
dimension a(100)11
parallel sections 10 i=1,n12

section /a/13
read (*,7) n14
...15

section /b/16
...17

section /c/ wait(a)18
if (n.gt.100) print*,’error’, n19
read (*,7) a(1:n)20
...21

end parallel sections22

In example EXIO1, section c waits for section a to complete so that it knows the number of23
elements of A to read. The user must program the required synchronization to ensure that the24
read of the n value occurs before trying to read n elements of A.25

6.2.226
subroutine exio2()27
dimension a(100)28
parallel sections 10 i=1,n29

section /a/30
i=631
write(*,6) f1(i)32
...33

section /b/34
i=835
write(*,8) f1(i)36
...37

end parallel sections38
return39
end40
function f1(i)41
...42
read (*,i+1) ...43
...44
return45
end46

48

In example EXIO2, the user is responsible for ensuring that there is no synchronization required1
between I/O to units; or for providing the necessary synchronization. The example as written is2
correct since the process executing section A will write to units 6 and 7; while the process3
executing section B will write to units 8 and 9. However, if function f1 tried to read from unit4
8 when i=6 and to read from unit 6 when i=8 there would be a chance of deadlock. To prevent5
the deadlock, the user would have to use explicit synchronization to ensure that only one process6
was executing the write statements in sections a and b.7

49

7.0 Synchronization1

Implicit synchronization occurs at the following statements:2

PARALLEL3
END PARALLEL4
END PARALLEL PDO5
END PDO (WAIT)6
PARALLEL SECTIONS7
END PARALLEL SECTIONS8
END PSECTIONS (WAIT)9
END PGROUP10

and after the execution of the statement that terminates a "labeled" PDO or PARALLEL PDO.11

7.1 Explicit Synchronization12

(The following is material suggested by Bruce Leasure on March 7,1993)13

The X3H5 module defines new types to support explicit synchronization. As a group, these types14
are referred to as control types. These types have no public fields. Use of objects of these types15
is restricted by the Fortran 90 typing mechanism. The control types defined are16

TYPE (LATCH) for latch17
TYPE (LOCK) for lock18
TYPE (EVENT) for event19
TYPE (ORDINAL) for sequence20

***** Aside to X3J3 *****21

In the next revision of Fortran, consider extending R502 to make these types base types. Two22
possibilites seem plausible: make each of these types a base type (such as INTEGER is now),23
or make them all different KINDs of the same base type.24

7.1.1 Extensions Shared by Many Synchronization Methods25

7.1.1.1 Representing States26

The X3H5 module defines defines 7 symbolic INTEGER constants to represent the states of27
objects of TYPE (LATCH), TYPE (LOCK), and TYPE (EVENT). An implementation shall28
assign unique values to each of the symbolic constants representing a state of a single type. An29
implementation should assign unique values to each of these constants. The symbolic constants30
representing states are31

for TYPE (LATCH):32
STATE_UNINITIALIZED for state uninitialized33
STATE_UNLATCHED for state unlatched34

50

STATE_LATCHED for state latched1

for TYPE (LOCK):2
STATE_UNINITIALIZED for state uninitialized3
STATE_UNLOCKED for state unlocked4
STATE_LOCKED for state locked5

for TYPE (EVENT):6
STATE_UNINITIALIZED for state uninitialized7
STATE_CLEAR for state clear8
STATE_SET for state set9

7.1.1.2 Testing for Uninitialized State10

The X3H5 module defines the unary operator .UNINITIALIZED. where the single argument is11
an object of a control type and the result type is LOGICAL. The operator returns ".TRUE." if12
the corresponding object is uninitialized, otherwise the operator returns ".FALSE.". When13
applied to an array argument, the operator is elemental.14

An implementation may always return ".FALSE." as the result of this operator, if the15
implementation does not detect an error when any operation except initialize is performed on an16
object of a control type that has state "uninitialized".17

7.1.1.3 SYNCHRONIZE Statement18

7.1.1.3.1 Proposed X3H5 Extended Syntax Rule19

X701 sync-stmt is SYNCHRONIZE(sync-param-list) [guards-spec]20

X702 sync-param is [CONTROL=] sync-object21
or [OPERATION=] sync-operation22
or [POSITION=] ordinal-position23
or [STATUS=] sync-status24

X703 sync-operation is scalar-character-expression25

X704 sync-object is scalar-latch-variable26
or scalar-lock-variable27
or scalar-event-variable28
or scalar-ordinal-variable29

X705 ordinal-position is scalar-integer-expression30

X706 sync-status is scalar-integer-variable31

51

CONSTRAINT: Exactly one sync-object shall be specified in each1
sync-param-list.2

CONSTRAINT: Exactly one sync-operation shall be specified in each3
sync-param-list.4

CONSTRAINT: More than one ordinal-position shall not be specified in5
any sync-param-list.6

CONSTRAINT: An ordinal-position shall be specified only if sync-object7
is of TYPE (ORDINAL).8

CONSTRAINT: More than one sync-status shall not be specified in any9
sync-param-list.10

If the sync-status variable is coded, the variable is assigned the integer corresponding to the final11
state of the sync-object after the execution of the sync-operation. The sync-status variable may12
be undefined when execution of the SYNCHRONIZE statement begins.13

A SYNCHRONIZE statement shall not be executed if sync-object has a state of "uninitialized".14

7.1.1.3.2 Consistency Rules for the SYNCHRONIZE Statement15

If the sync-stmt specifies a guards-spec, the implementation shall make the objects in the16
guarded-obj-list consistent as a part of the execution of the sync-stmt.17

If the sync-stmt specifies a sync-obj with a GUARDS attribute then the implementation shall18
make the objects in the guarded-obj-list from that attribute consistent as a part of the execution19
of the sync-stmt.20

If the sync-stmt has no guards-spec and has a sync-obj with no GUARDS attribute, the21
implementation shall make all shared objects, used or defined as a result of the execution of22
"block", consistent as a part of the execution of the sync-stmt.23

7.1.1.4 Representing Synchronization Operations24

The X3H5 module defines defines symbolic CHARACTER constants to represent the operations25
on objects of TYPE (LOCK), TYPE (EVENT) and TYPE (ORDINAL) that act as explicit26
synchronization points. An implementation shall assign unique values to each of the symbolic27
constants representing a operations on a single type. An implementation should assign unique28
values to each of the operations.29

TYPE (LOCK)30

52

OP_CONDITIONAL_SET for operation conditional set1
OP_SET_WITH_WAIT for operation set with wait2
OP_CLEAR for operation clear3

TYPE (EVENT)4
OP_SET for operation set5
OP_CLEAR for operation clear6
OP_WAIT for operation wait7

TYPE (ORDINAL)8
OP_WAIT_THEN_POST_VALUE for operation post a value with wait9
OP_WAIT_VALUE for operation wait for a value10

7.1.1.5 Use of Control Types and Assignment11

The X3H5 module defines the assignment operator to represent the initialize operation, the12
destroy operation, and the query operation.13

7.1.2 Limiting Synchronization Overhead14

A new attribute is defined that only has meaning for the synchronization types defined in the15
X3H5 module. R503 is extended to accomplish this.16

7.1.2.1 Proposed X3H5 Extended Syntax Rule17

R503 attr-spec is PARAMETER18
or access-spec19
or ALLOCATABLE20
or DIMENSION (array-spec)21
or EXTERNAL22

NEW or guards-spec23
or INTENT (intent-spec)24
or INTRINSIC25
or OPTIONAL26
or POINTER27
or SAVE28
or TARGET29

X707 guards-spec is GUARDS (guarded-obj-list)30

X708 guarded-obj is variable-name31
or array-element32
or array-section33
or substring34

CONSTRAINT: each subscript, substring, or section-subscript in a35
guards-spec must be an integer initialization expression36
(see Fortran 7.1.6.1)37

7.1.2.2 GUARDS Attribute38

53

The GUARDS attribute specifies that the entities whose names are declared on this statement1
control the consistency of the objects in the guarded-obj-list.2

The GUARDS attribute may only be used with an object of a control3
type.4

The GUARDS attribute reduces the default list of objects that the implementation must make5
consistent at a SYNCHRONIZE statement with an associated object of a control type from all6
shared object to only those shared objects listed in the GUARDS attribute of the associated7
object.8

7.1.3 Critical Sections9

7.1.3.1 Proposed X3H5 Extended Syntax Rule10

X709 critical-block is critical-stmt11
block12

end-critical-stmt13

X710 critical-stmt is CRITICAL SECTION [(scalar-latch-variable)]14
[guards-spec]15

X711 end-critical-stmt is END CRITICAL SECTION [(scalar-latch-variable16
)]17

CONSTRAINT: If the end-critical-section-stmt specifies a18
scalar-latch-variable, the corresponding19
critical-section-stmt shall specify the same20
scalar-latch-variable.21

7.1.3.2 Consistency Rules for CRITICAL SECTION22

If the critical-stmt specifies a guards-spec, the implementation shall make the objects in the23
guarded-obj-list consistent at entry and exit to the critical-block.24

If the critical-stmt specifies a scalar-latch-variable with a GUARDS attribute then the25
implementation shall make the objects in the guarded-obj-list from that attribute consistent at26
entry and exit to the critical-block.27

If the critical-stmt has no guards-spec and no scalar-latch-variable, the implementation shall28
make all shared objects, used or defined as a result of the execution of "block", consistent at29
entry and exit to the critical-block.30

If the critical-stmt has no guards-spec and has a scalar-latch-variable with no GUARDS31
attribute, the implementation shall make all shared objects, used or defined as a result of the32
execution of block, consistent at entry and exit to the critical-block.33

7.1.3.3 Operations on Objects of TYPE (LATCH)34

54

The initialize operation is performed on an object of TYPE (LATCH) by assignment of the1
value STATE_UNLATCHED to the object.2

The enter_critical_section operation is performed on an object of TYPE (LATCH) by executing3
a CRITICAL SECTION statement referencing the latch.4

The exit_critical_section operation is performed on an object of TYPE (LATCH) by executing5
an END CRITICAL SECTION statement that corresponds to a CRITICAL SECTION statement6
referencing the latch.7

The destroy operation is performed on an object of TYPE (LATCH) by assignment of the value8
STATE_UNINITIALIZED.9

The query operation is performed on an object of TYPE (LATCH) by assignment of the object10
to a variable of type INTEGER.11

7.1.3.4 Default Latch12

If a critical-stmt does not specify a scalar-latch-variable, the critical-stmt behaves as if the13
critical-stmt referenced a unique, initialized, scalar-latch-variable that is shared with every14
process. This scalar-latch-variable does not have a GUARDS attribute.15

7.1.4 Locks16

The initialize operation is performed on an object of TYPE (LOCK) by assignment of the value17
STATE_UNLOCKED to the object.18

The conditional set operation is performed on an object of TYPE (LOCK) by executing a19
SYNCHRONIZE statement specifying the object as sync-object and a sync-operation of20
OP_CONDITIONAL_SET. The program should use either the query operation or a sync-status21
variable to determine if the lock was obtained.22

The set with wait operation is performed on an object of TYPE (LOCK) by executing a23
SYNCHRONIZE statement specifying the object as sync-object and a sync-operation of24
OP_SET_WITH_WAIT.25

26
The clear operation is performed on an object of TYPE (LOCK) by executing a27
SYNCHRONIZE statement specifying the object as sync-object and a sync-operation of28
OP_CLEAR.29

The destroy operation is performed on an object of TYPE (LOCK) by assignment of the value30
STATE_UNINITIALIZED.31

55

The query operation is performed on an object of TYPE (LOCK) by assignment of the object1
to a variable of type INTEGER.2

7.1.5 Events3

The initialize operation is performed on an object of TYPE (EVENT) by assignment of the4
value STATE_CLEAR to the object.5

6
The set operation is performed on an object of TYPE (EVENT) by executing a7
SYNCHRONIZE statement specifying the object as sync-object and a sync-operation of OP_SET.8

The clear operation is performed on an object of TYPE (EVENT) by executing a9
SYNCHRONIZE statement specifying the object as sync-object and a sync-operation of10
OP_CLEAR.11

The wait operation is performed on an object of TYPE (EVENT) by executing a12
SYNCHRONIZE statement specifying the object as sync-object and a sync-operation of13
OP_WAIT.14

The destroy operation is performed on an object of TYPE (EVENT) by assignment of the value15
STATE_UNINITIALIZED. No more processes.16

7.1.6 Sequences17

The initialize operation is performed on an object of TYPE (ORDINAL) by assignment of18
either an scalar-integer-exp or a one-dimensional INTEGER array with 2 elements to the object.19
When a scalar-integer-exp is used, the arithmetic sequence begins at the value of20
scalar-integer-exp and has a stride of 1. When a one-dimensional INTEGER array with 221
elements is used, the arithmetic sequence begins at the value of the first element of the array, and22
has a stride of the second element of the array. A program shall not use a stride of zero. The23
implementation shall detect a zero stride as an error. The post a value with wait operation is24
performed on an object of TYPE (ORDINAL) by executing a SYNCHRONIZE statement25
specifying the object as sync-object, a sync-operation of OP_WAIT_THEN_POST_VALUE, and26
an ordinal-position of the value of the arithmetic sequence to post.27

The clear operation is performed on an object of TYPE (ORDINAL) by executing a28
SYNCHRONIZE statement specifying the object as sync-object, a sync-operation of29
OP_WAIT_VALUE, and an ordinal-position of the value of the arithmetic sequence to wait for.30

The destroy operation is performed on an object of TYPE (ORDINAL) by assignment of the31
value STATE_UNINITIALIZED.32

(The following is material put in during the march 1-3, 1993 meeting.)33

56

7.2 Explicit Synchronization1

Derived Types are defined in the X3H5 module for each of the synchronization objects specified2
by the model.3

Relationship between model synchronizer types and Fortran synchronizer types:4

model synchronizer type5 derived type name

lock6 Type (lock)

latch7 Type (latch)

event8 Type (event)

sequence9 Type (ordinal)

A new attribute, the "guards" attribute for synchronizers is defined only for use with these10
derived types. This attribute associates one or more objects with the synchronizer:11

GUARDS (guarded-list) sync-object12
or13
GUARDS :: sync-guards-list14
where guarded is variable-name,15

array-name,16
array-element,17
array-section,18
module-name, or19
/common-block-name/ and20

sync-guards-list is sync-object (guarded-list) [, sync-guards-list]21

7.2.1 Critical Sections22

Critical sections provide an easy to use method of allowing only one process at a time to execute23
the enclosed portion of code. Only one process is allowed within all critical sections that share24
a Lock. Critical sections are a structured use of lock synchronization. The structured approach25
is much more reliable than using the equivalent unstructured synchronization. Critical section26
synchronization can be used anywhere in the program. Most uses of critical sections preserve27
execution order independence so use within a worksharing construct without the ORDERED28
qualifier is standard conforming.29

7.2.1.1 Explicit Syntax30
31

Statement Forms32
[label:] CRITICAL SECTION [(lock)] [GUARDS(object-name-list)]33

END CRITICAL SECTION [(lock)] [label]34
35

Structured As36
[label:] CRITICAL SECTION ...37

statements38
END CRITICAL SECTION ...[label]39

57

1
Where2

lock is a variable name or array element of type lock3

object-name is a data object4

7.2.1.2 Coding Rules5
6

The Critical Section construct is a block structured construct. The Critical Section construct7
follows all of the rules of Fortran block structured constructs. <* so we mean EXIT and Cycle8
WORK?*>9

10
If the lock is coded on the END CRITICAL SECTION statement, it must match the11
corresponding lock on the CRITICAL SECTION statement.12

13
7.2.1.3 Interpretation14

15
A program that executes a CRITICAL SECTION statement with a lock that has a value of16
undefined is not standard conforming.17

18
Entering a Critical Section construct, is equivalent to executing a GET_LOCK statement on the19
specified lock with an identical GUARDS clause. Leaving the critical section, by executing the20
END CRITICAL SECTION statement or executing a PDONE statement, is equivalent to21
executing an UNLOCK statement on the lock controlling the section with an identical GUARDS22
clause, and then resuming execution at the appropriate statement outside the block.23

An unnamed Critical Section (one without a lock specified) is functionally equivalent to a Critical24
Section that specifies a lock that is25

26
a) shared among all teams27

28
b) initialized at program start-up to "unlocked"29

30
c) is only referenced by that Critical Section construct31

These rules cause lexically distinct unnamed Critical Sections to function independently. Any32
single unnamed Critical Section controls all processes, allowing at most one process within the33
Critical Section at any point in time.34

7.2.1.4 Examples35

Example 12 SUBROUTINE EX12 (A,B,SUM)36
REAL B(0:100)37
Lock A38

58

PARALLEL PDO I=1,101
NEW T2
CRITICAL SECTION (A)3

T = B(I) * B(I-1)4
SUM = SUM + T5

END CRITICAL SECTION (A)6
END PARALLEL PDO7
END8

In Example 12, the lock A is used to control access to all shared objects and limit access to the9
enclosed block of code. The implementation must ensure that the shared object SUM is10
consistent upon entry and exit to the Critical Section construct, and that the shared array B is11
consistent upon entry to the Critical Section construct. (Note that B may be changed by a12
process that is not visible and that A and SUM must be initialized outside of the EX1213
subroutine.)14

15
Example 13 SUBROUTINE EX13 (A,B,SUM)16

REAL B(0:100)17
Lock A18
GUARDS A(SUM)19
PARALLEL PDO I=1,1020
NEW T21
CRITICAL SECTION (A)22

T = B(I) * B(I-1)23
SUM = SUM + T24

END CRITICAL SECTION25
END PARALLEL PDO26
END27

In Example 13, the lock A is used to control access to the variable SUM. Because of the28
GUARDS statement, the implementation need only ensure that the shared variable SUM is29
consistent upon entry and exit to the Critical Section construct. This differs from the previous30
example in that shared array, B, is not required to be consistent during the critical section.31

32
Example 14 SUBROUTINE EX14 (A,B,SUM)33

REAL B(0:100)34
Lock A35
PARALLEL PDO I=1,1036
NEW T37
CRITICAL SECTION (A) GUARDS(SUM)38

T = B(I) * B(I-1)39
SUM = SUM + T40

END CRITICAL SECTION (A)41
END PARALLEL PDO42
END43

44
In Example 14, the lock A is used to control access to the variable SUM. Because of the45
GUARDS clause on the CRITICAL SECTION statement, the implementation shall ensure that46
the shared variable SUM is consistent upon entry and exit to the Critical Section construct.47
Example 14 is identical in functionality to Example 13.48

49
Example 15 SUBROUTINE EX15 (A,B,MAXA,GMAXA,N)50

REAL A(N), B(N), MAXA51
Lock GMAXA52
GUARDS GMAXA(MAXA)53

59

PARALLEL SECTIONS1
NEW AM2
SECTION3
AM = A(1)4
DO 10 I=2,N5

IF(AM.LT.A(I))AM=A(I)6
10 CONTINUE7

CRITICAL SECTION (GMAXA)8
IF(MAXA.LT.AM) MAXA=AM9

END CRITICAL SECTION10
SECTION11
CRITICAL SECTION (GMAXA)12

AM=MAXA13
END CRITICAL SECTION14
DO 20 I=1,N15

B(I)=B(I)/AM16
20 CONTINUE17

END PARALLEL SECTIONS18
END19

20
In Example 15, the lock GMAXA is used to control access to the variable MAXA. The scaling21
of array B by the maximum element of the array A is performed in a nondeterministic fashion,22
depending upon the number of processes available, the assignment of the sections to processes,23
and the relative execution speed of the processes. In particular, the scaling may be done with24
the value of MAXA that was available upon invocation of this routine, or it may be done with25
the value of MAXA that will be returned to the calling program. This is an example of a26
program that is non-deterministic but standard conforming.27

28
Example 16 SUBROUTINE EX16 (A,B,MAXA,GMAXA,N)29

REAL A(N), B(N), MAXA30
Lock GMAXA31
GUARDS GMAXA(MAXA)32
PARALLEL SECTIONS33
NEW AM34
SECTION35
CRITICAL SECTION (GMAXA)36

AM=MAXA37
END CRITICAL SECTION (GMAXA)38
DO 10 I=2,N39

IF(AM.LT.A(I)) THEN40
CRITICAL SECTION (GMAXA)41
IF(MAXA.LT.A(I)) MAXA=A(I)42
AM=MAXA43

END CRITICAL SECTION44
ENDIF45

10 CONTINUE46
SECTION47
DO 20 I=1,N48

CRITICAL SECTION (GMAXA)49
B(I)=B(I)/MAXA50

END CRITICAL SECTION51
20 CONTINUE52

END PARALLEL SECTIONS53
END54

In Example 16, the lock GMAXA is used to control access to the variable MAXA. The scaling55
of array B by MAXA is performed in a non-deterministic fashion because the scaling does not56

60

wait for the computation of MAXA to be complete. The value of MAXA used at any point in1
the scaling process depends upon the number of processes available, the assignment of the2
sections to processes, and the relative execution speed of the processes. In particular, the scaling3
of an individual element of B may be done with the value of MAXA that was available upon4
invocation of this routine, or it may be done with the value of MAXA that will be returned to5
the calling program, or with some intermediate value. All elements of B need not be scaled with6
the same value. While non-deterministic, this program is standard conforming.7

Example 17 SUBROUTINE EX17 (B,SUM)8
REAL B(0:100)9
SUM = 0.010
PARALLEL PDO I=1,1011
NEW T12
CRITICAL SECTION GUARDS(SUM)13

T = B(I) * B(I-1)14
SUM = SUM + T15

END CRITICAL SECTION16
END PARALLEL PDO17
END18

In Example 17, an unnamed Critical Section construct is used to control access to the shared19
variable SUM. Behavior is as if all processes used the same lock variable to control the access,20
even if the processes that called this routine happened to be on distinct teams, and SUM was a21
new object at those higher levels of parallelism (think of nested parallelism).22

23
Example 18 SUBROUTINE EX18 (B,SUM,PROD)24

REAL B(100)25
PARALLEL SECTIONS26
NEW T27
SECTION28
T = 0.029
DO 10 I=1,1030

10 T = T + B(I)31
CRITICAL SECTION GUARDS(SUM)32

SUM = T33
END CRITICAL SECTION34

SECTION35
T = 1.036
DO 20 I=1,1037

20 T = T * B(I)38
CRITICAL SECTION GUARDS(PROD)39

PROD = T40
END CRITICAL SECTION41

END PARALLEL SECTIONS42
END43

44
In Example 18, unnamed Critical Sections are used to control access to distinct shared variables45
SUM and PROD. Each lexical occurrence of an unnamed Critical Section construct operates46
independently, so one process can be executing inside the first Critical Section and another47
process can be executing inside the second Critical Section.48

49
Example 19 SUBROUTINE EX19 (A,B,MAXA,N)50

C51
C >>> NOT STANDARD CONFORMING <<<52
C53

61

REAL A(N), B(N), MAXA1
PARALLEL SECTIONS2
NEW AM3
SECTION4
AM = A(1)5
DO 10 I=2,N6

IF(AM.LT.A(I))AM=A(I)7
10 CONTINUE8

CRITICAL SECTION GUARDS(MAXA)9
IF(MAXA.LT.AM) MAXA=AM10

END CRITICAL SECTION11
SECTION12
CRITICAL SECTION GUARDS(MAXA)13

AM=MAXA14
END CRITICAL SECTION15
DO 20 I=1,N16

B(I)=B(I)/AM17
20 CONTINUE18

END PARALLEL SECTIONS19
END20

In Example 19, two unnamed Critical Section constructs are used in an attempt to control access21
to the variable MAXA. But, because each unnamed Critical Section construct has its own unique22
lock variable, this program is not standard conforming because it allows one process to be23
reading the value of a shared variable while another process is updating it.24

25
Example 20 SUBROUTINE EX20 (B,SUM)26

REAL B(0:100)27
Lock A28
UNLOCK(A)29
PARALLEL PDO I=1,1030
NEW T31
T = B(I) * B(I-1)32
CRITICAL SECTION (A)33

SUM = SUM + T34
END CRITICAL SECTION (A)35

END PARALLEL PDO36
END37

38
In Example 20, the lock A is used to control access to all shared objects and limit access to the39
enclosed block of code, but a good implementation can remove the shared array B from the list40
of controlled objects because the lock A is new to the team created by the Parallel Do construct.41
(Note that B may be not changed by a process that is not visible because the visibility of the lock42
A does not extend outside of this program unit.) It is important for an implementation to reduce43
the amount of code within a Critical Section to a minimum. This can easily be done if only44
updated objects or read objects are listed in the GUARDS clause or applicable GUARDS45
statement. The programmer should also make an effort to code small Critical Sections, but the46
easy optimizations should be done by an implementation.47

48
Example 21 SUBROUTINE EX21 (A,B,SUM)49

REAL B(0:100)50
Lock A51
PARALLEL PDO I=1,1052
CRITICAL SECTION (A) GUARDS(SUM)53

SUM = SUM + B(I) * B(I-1)54
END CRITICAL SECTION55

62

END PARALLEL PDO1
END2

3
In Example 21, the a good implementation would move the multiplication of elements of B out4
of the Critical Section.5

7.2.2 Event Synchronization6

Event synchronization is most often used to signify when something has occurred, especially in7
those cases where more than one process is interested in the occurrence.8

Event synchronization provides operations to indicate that an event has not occurred (CLEAR),9
to indicate that an event has occurred (POST), and to ensure that an event has occurred (WAIT).10

11
Event synchronization may be used anywhere in the program. Care shall be taken to12

1. preserve execution order independence if used within a worksharing construct without the13
ORDERED qualifier.14

2. ensure that the synchronization pattern described does not require more than one process15
for correct execution.16

17
7.2.2.1 Explicit Syntax18

19
Statement Forms20

POST (event) [GUARDS(object-name-list)]21
22

WAIT (event) [GUARDS(object-name-list)]23

CLEAR (event) [GUARDS(object-name-list)]24

Where25
event is a variable or array element of type event26

object-name is a variable name, an array name, an array element, or a common block27
name enclosed in /’s28

7.2.2.2 Coding Rules29
30

POST, WAIT and CLEAR are executable statements.31
32

7.2.2.3 Interpretation33

An event may assume one of two values: "cleared" or "posted".34

63

When a CLEAR statement is executed,1

a) the appropriate shared variables are made consistent2

b) event is set to "cleared", no matter what its value was previously.3
4

When a POST statement is executed,5
6

a) the appropriate shared variables are made consistent7

b) the value of event is set to "posted", no matter what its value was previously.8
9

When a WAIT statement is executed,10
11

a) the appropriate shared variables are made consistent12

b) the value of event is tested to see if it is "posted" if it is not, the process retry’s this step13
at a later time,14

15
The initial value of an event is undefined. It becomes defined only upon the execution of a16
CLEAR or POST statement. A program that executes a WAIT statement on an event with an17
undefined value is not standard conforming.18

7.2.2.4 Examples19

Example 22 SUBROUTINE EX22 (B,E)20
REAL B(100),C21
EVENT E(100)22
PARALLEL PDO I=1,9723
IF (I .LT. 4) THEN24

POST E(I)25
ELSE26

CLEAR E(I)27
ENDIF28

END PARALLEL PDO29
PARALLEL PDO (ORDERED) I=4,10030
NEW C31
C = SIN(B(I))32
WAIT E(I-3)33
B(I) = B(I) + B(I-3)*C34
POST E(I)35

END PARALLEL PDO36
END37

38
Example 22 computes a recurrence to solve for B. Each computed value of B is used in the39
computation of the value of B three iterations later of the loop. The code above permits the SIN40
calculations to be done completely in parallel, while the computation of B is synchronized.41

7.2.2.5 Intrinsic Functions for Events42

64

LOGICAL FUNCTION POSTED(event)1

This intrinsic function returns a logical value that is .TRUE. if the event is "posted" and2
otherwise it returns .FALSE..3

4
Example 23 SUBROUTINE EX23 (C,D)5

C6
C >>> NOT STANDARD CONFORMING <<<7
C8

REAL C,D9
EVENT A, B10
CLEAR A11
CLEAR B12
PARALLEL SECTIONS (ORDERED)13
SECTION14
WAIT A15
C = C + 116
POST B17

SECTION18
POST A19
WAIT B20
D = C + 221

END PARALLEL SECTIONS22
END23

24
If Example 23 is executed by a single process, it will deadlock because that process will be25
assigned to the first section and immediately go into a permanent wait. Example 23 is not26
standard conforming.27

28
Deadlock avoidance is the responsibility of the programmer. Here are some hints that can help29
in avoiding deadlock. (A standard conforming program need not follow these hints.)30

31
(1) Do not use event synchronization in unordered parallel loops or unordered parallel32

sections.33
34

(2) In Parallel Do and Pdo constructs with the ORDERED qualifier, make sure that POST35
statement is executed for an iteration earlier in the serial order than the iteration36
containing the corresponding WAIT statement.37

In Parallel Sections and Psections constructs with the ORDERED qualifier, make sure that the38
section containing the POST statement occurs lexically before the section containing the39
corresponding WAIT statement.40

7.2.3 Sequences: Ordinal Synchronization41

Ordinal synchronization is used to communicate between iterations of a loop, or to communicate42
between distinct loops. Any series of events that can be numbered can be synchronized with43
ordinal synchronization.44
Ordinal synchronization describes an arithmetic sequence. It provides operations to define an45
arithmetic sequence (SET), indicate that computation for a particular element of the sequence is46

65

complete (POST), and to ensure that the computation for a particular element of the sequence1
completes (WAIT).2

3
Ordinal synchronization may be used anywhere in the program. If a Parallel Do or Pdo construct4
is used to create the arithmetic sequence being synchronized, then the ORDERED qualifier is5
required. Care shall be taken to6

1. preserve execution order independence if used within a worksharing construct without the7
ORDERED qualifier.8

2. ensure that the synchronization pattern described does not require more than one process9
for correct execution.10

Most uses of a single ordinal synchronizer do not describe a synchronization pattern that requires11
more than one process for correct execution.12

7.2.3.1 Explicit Syntax13

Statement Forms14
POST (seq, iexp1) [GUARDS(object-name-list)]15

WAIT (seq, iexp2) [GUARDS(object-name-list)]16

SET (seq [, iexp3[, iexp4]]) [GUARDS(object-name-list)]17

Where18
seq is a variable or array element of type ordinal19

20
iexp1, iexp2 and iexp3 are integer expressions21

iexp4 is an integer expression not equal to zero22

object-name is a variable name, an array name, an array element, or a common block23
name enclosed in /’s24

7.2.3.2 Coding Rules25

POST, WAIT and SET are executable statements.26

7.2.3.3 Interpretation27
28

All integer expressions are evaluated just once, before any of the statement specific actions are29
performed.30

31
When a SET statement is executed,32

66

1. the appropriate shared objects are made consistent as specified by the Language1
Independent Model, X3H5 Language Independent Model.2

2. iexp3 is the initial value of seq. If iexp3 is not coded, an initial value of 0 is assumed.3
iexp4 is the increment between elements of the sequence. If iexp4 is not coded, an4
increment of 1 is assumed.5

When a POST statement is executed,6

1. the appropriate shared objects shall be made consistent as specified by the Language7
Independent Model, X3H5 Language Independent Model.8

2. the value of seq is compared with iexp1 - increment. If seq is less than, and increment9
>0, or if seq is greater than, and increment <0 then the process repeats step 1) at a later10
time11

3. if the value of seq is equal to iexp1 - increment then set the value of seq to be iexp1.12

When a WAIT statement is executed13

1. the appropriate shared objects shall be made consistent as specified by the Language14
Independent Model, X3H5 Language Independent Model.15

2. the value of seq is compared with iexp2 If seq is less than, and increment >0, or if seq16
is greater than, and increment <0 then the process repeats step 1) at a later time17

The initial value of an object of type ordinal is undefined. It becomes defined only by execution18
of a SET statement.19

20
A program that executes a POST or WAIT with a seq that has an undefined value is not standard21
conforming.22

23
Anything that can be done with ordinal synchronization, can also be done with an array of type24
event, but the reverse is not true. In the cases where ordinal synchronization can be used, it25
permits a significant storage savings.26

7.2.3.4 Examples27

Example 24 SUBROUTINE EX24 (B,SUM)28
REAL B(100),SUM(100)29
ORDINAL A30
GUARDS A(SUM)31
SUM(1) = 0.032
SET A33
PARALLEL PDO (ORDERED) I=2,1034
NEW T35
T = B(I) * B(I-1)36

67

WAIT (A,I-1)1
SUM(I) = SUM(I-1) + T2
POST (A,I)3

END PARALLEL PDO4
END5

6
7

Example 25 SUBROUTINE EX25 (B,SUM)8
REAL B(100),SUM(100)9
EVENT AA(100)10
GUARDS AA(SUM)11
POST(AA(1))12
PARALLEL PDO I=2,10013
CLEAR AA(I)14

END DO15
SUM(1) = 0.016
PARALLEL PDO (ORDERED) I=2,1017
NEW T18
T = B(I) * B(I-1)19
WAIT AA(I-1)20
SUM(I) = SUM(I-1) + T21
POST AA(I)22

END PARALLEL PDO23
END24

25
To illustrate, consider Examples 24 and 25 which perform exactly the same computation using26
ordinal and event synchronization. However, Ordinal synchronization is not general enough to27
code every program that can be built with events with equivalent efficiency.28

29
Example 26 SUBROUTINE EX26 (B,C,N)30

REAL B(N),C(N)31
PARAMETER (MAXN=1000)32
EVENT E(MAXN)33
PARALLEL PDO 10 I=1,N34
IF (I .lt. 4) THEN35

POST E(I)36
ELSE37

CLEAR E(I)38
ENDIF39

10 CONTINUE40
PARALLEL PDO (ORDERED) 20 I=4,N41
C(I) = FUNC(B(I))42
WAIT E(I-3) GUARDS(B(I-3))43
B(I) = B(I) + B(I-3)*C(I)44
POST E(I) GUARDS (B(I))45

20 CONTINUE46
END47

48
Consider Example 26 where the user function FUNC may have widely varying execution times49

50
Example 27 SUBROUTINE EX27 (B,C,N)51

REAL B(N),C(N)52
ORDINAL E53
GUARDS E(B)54
SET (E,3)55
PARALLEL PDO (ORDERED) 20 I=4,N56
C(I) = FUNC(B(I))57
WAIT (E, I-3))58
B(I) = B(I) + B(I-3)*C(I)59

68

POST (E,I)1
20 CONTINUE2

END3
4

and the obvious transcription to ordinal synchronization provided by Example 27. Examples 265
and 27 both compute the same result as long as the value of N is less than MAXN. Both6
examples are standard conforming. Example 26 allows 3 processes to execute totally7
independently, but uses more storage, and must know the maximum value of N. Example 278
requires that all of the POST statements be completed in serial iteration order (recall that posting9
a ordinal synchronizer has an implied wait for the previous value in the sequence to be posted),10
thus providing more synchronization than is absolutely necessary to compute the result. Example11
27 does not require as much storage for synchronizers.12

13
Example 28 SUBROUTINE EX28 (A,B,C,N1,N2,N3)14

REAL A(*),B(*),C(*)15
ORDINAL D16
GUARDS D(C)17
SET (D,N1,N3)18
PARALLEL SECTIONS19
SECTION20
DO 10 I=N1,N2,N321

C(I) = MAX(A(I),A(I-N3))22
POST(D,I)23

10 CONTINUE24
SECTION25
DO 20 I=N1,N2,N326

WAIT(D,I)27
B(I) = B(I)/C(I)28

20 CONTINUE29
END PARALLEL SECTIONS30
END31

Example 28 demonstrates use of Ordinal synchronization to perform pipeline style32
synchronization. In this case, the result of one DO loop is piped into another DO loop operating33
on the same index set. In Example 28, the first loop computes the maximum element of A34
encountered so far, and stores this local maximum in C. The second loop scales the array B35
based upon the local maximum.36

37
Example 29 SUBROUTINE EX29 (B)38

REAL B(100)39
ORDINAL A40
SET (A,2)41
PARALLEL PDO (ORDERED) I=1,9942
NEW T43
T = B(I+1)44
POST (A,I+1)45
B(I) = T46
END PARALLEL PDO47
B(100) = 0.048

END49

Example 29 demonstrates the use of ordinal synchronization utilizing the implied wait function50
that is built-in to the POST statement. This subroutine shifts the array B to the left, throwing51

69

away B(1). There is no need to wait, because when the POST statement is executed, the implied1
wait insures that the previous iteration has already been posted.2

7.2.3.5 Intrinsic Functions for Ordinals3

INTEGER FUNCTION INT(seq)4

This intrinsic function, which is already defined for other Fortran data types, is extended to return5
the integer value of the current position in the arithmetic sequence described by seq, which is of6
type ordinal.7

8
Avoiding Deadlock9

10
As with event synchronization, deadlock is a possibility with ordinals.11

12
Example 30 SUBROUTINE EX30 (B,C)13

C14
C >>> NOT STANDARD CONFORMING <<<15
C16

REAL B(100), C17
ORDINAL A18
SET (A, -99)19
PARALLEL PDO (ORDERED) 10 I = 1,9920
WAIT (A,-(I+1))21
B(I) = B(I+1) + C22
POST (A,-I)23

10 CONTINUE24
END25

26
In Example 30, the program will deadlock with any number of processors less than 99, because27
the iterations are handed in order from first to last. If there are only 98 processors, they will all28
wait for the last iteration to execute its POST statement. This program unit is not standard29
conforming because it requires at least 99 processes to avoid deadlock. To be standard30
conforming, a program unit must be capable of completing execution with any number of31
processes.32

7.2.4 Unstructured synchronization - Locks33

Unstructured control of LOCKs should not be used if some other LOCK synchronization34
mechanism is more appropriate (try critical sections or ordinal synchronization). Unstructured35
control of LOCKs is prone to many, hard to find, programming errors.36

37
Unstructured control of LOCKs can be used anywhere within the program. Care should be taken38
to preserve execution order independence if used within a worksharing construct without the39
ORDERED qualifier. Care should be taken to ensure that the synchronization pattern described40
does not require more than one process for correct execution.41

7.2.4.1 Explicit Syntax42

70

Statement Forms1
GET_LOCK (lock) [GUARDS(object-name-list)]2
UNLOCK (lock) [GUARDS(object-name-list)]3

Where4
lock is a variable or array element of type lock5

object-name is a data object>6

7.2.4.2 Coding Rules7

The GET_LOCK and UNLOCK statements are executable statements.8
<GET_LOCK and UNLOCK are subroutines defined in the X3H5 module. >9

7.2.4.3 Interpretation10

A lock may assume one of two values: "locked" and "unlocked". Execution of UNLOCK causes11
the value of the specified LOCK to become "unlocked", no matter what the value was previously.12
When UNLOCK is executed, these actions take place:13

14
U1) the appropriate shared objects are made consistent15

U2) if the current value of the lock is "locked", the value is changed to "unlocked".16
GET_LOCK has the following effect:17

18
L1) appropriate shared objects are made consistent19

L2) if the current value of the specified LOCK is "unlocked" then20

L2a) the value is changed to "locked"21

L2b) execution continues with the next statement22

L3) if the value of the specified LOCK is "locked", the process retries step L2) at a later time.23
24

Step L2) and L2a) above are executed as a single atomic operation.25
26

The initial value of a LOCK is undefined. It becomes defined only at the execution of27
UNLOCK.28

29
A program that executes GET_LOCK on lock with an undefined value is not standard30
conforming.31

32
If a GUARDS clause is specified then for the duration of the synchronization statement, the33
names listed shall be used to augment the set of objects guarded by that synchronizer if the34

71

synchronizer was specified in a <sync-list> of the GUARDS statement. The merged set of1
guarded objects shall be made consistent when the synchronization statement is encountered. By2
explicitly identifying names of objects that shall be made consistent, the GUARDS clause and3
GUARDS statement remove a requirement for the implementation to make any other objects4
consistent when the synchronization statement is encountered.5

7.2.4.4 Examples6

Example 7 REAL FUNCTION SUM(A,B)7
REAL B(0:100)8
LOCK A9

sumproduct: PARALLEL PDO I=1,1010
NEW T11
GET_LOCK (A)12
T = B(I) * B(I-1)13
SUM = SUM + T14
UNLOCK (A)15

END PARALLEL PDO sumproduct16
END17

In Example 7, the Lock A is used to control access to the variable SUM. The implementation18
must ensure that all necessary shared objects, SUM and B are consistent at the GET_LOCK19
statement and the UNLOCK statement. Because of the possibility that another process executing20
some other parallel construct might change elements of the array B, both elements of B would21
have to be read from shared memory on every iteration of the loop unless the implementation22
could determine that those elements of B would not change while this parallel construct was23
executing.24

Example 8 SUBROUTINE EX8 (A,B,SUM)25
REAL B(0:100)26
LOCK A27
GUARDS A(SUM)28
PARALLEL PDO I=2,1029
NEW T30
GET_LOCK (A)31
T = B(I) * B(I-1)32
SUM = SUM + T33
UNLOCK (A)34

END PARALLEL PDO35
END36

37
In Example 8, the variable A is used as a lock to control access to the variable SUM. Because38
of the GUARDS statement, the implementation need only ensure that the shared variable SUM39
is consistent at the GET_LOCK statement and at the UNLOCK statement. No action is required40
with respect to array B because B is not changed during this operation.41

7.2.4.5 Intrinsic Functions for Locks42

LOGICAL FUNCTION TRY_LOCK(lock)43
44

72

The value of an object of type lock may be determined using the intrinsic function TRY_LOCK.1
TRY_LOCK accepts a single argument of type lock, returning a result of type logical. If the2
value of the lock is locked, the result is .TRUE., otherwise it is .FALSE..3

4
Example 9 SUBROUTINE EX9 (NAME,A)5

CHARACTER*(*) NAME6
CHARACTER*10 PG7
LOCK A8
IF (TRY_LOCK (A)) THEN9
PG = "LOCKED"10

ELSE11
PG = "UNLOCKED"12

ENDIF13
PRINT *,"Lock ",NAME," was ",PG14
END15

16
In Example 9, the subprogram prints the current value of the lock A. The intrinsic TRY_LOCK17
is used to obtain the current value of the lock without modifying it.18

19
LOGICAL FUNCTION GET_LOCK(lock)20

This intrinsic function locks the lock if possible, but does not wait if it is already locked.21
GET_LOCK accepts a single argument of type lock, returning a result of type logical. The22
GET_LOCK intrinsic attempts to lock the lock. If the GET_LOCK intrinsic is successful in23
locking the lock, then the GET_LOCK intrinsic returns .TRUE.. If the lock is already locked,24
then the GET_LOCK intrinsic returns .FALSE.. The GET_LOCK intrinsic works exactly like25
the GET_LOCK statement, except that the GET_LOCK intrinsic does not wait if the lock is26
already locked.27

28
Example 10 SUBROUTINE EX10 (A)29

Lock A30
5 IF (.NOT. GET_LOCK(A)) THEN31

CALL USEFUL32
GO TO 533

ENDIF34
CALL UPDATE35
UNLOCK (A)36
END37

In Example 10, the subprogram does some useful work rather than waiting for the lock to change38
values.39

40
Example 11 SUBROUTINE EX11 (A)41

Lock A42
5 IF (TRY_LOCK (A)) THEN43

CALL USEFUL44
GO TO 545

ELSE46
GET_LOCK(A)47
CALL UPDATE48
UNLOCK (A)49

ENDIF50

73

END1
2

Notice the subtle difference between Examples 10 and 11. The TRY_LOCK intrinsic does not3
actually lock the lock, so it is possible for another process to lock the lock A in between the test4
performed with the TRY_LOCK intrinsic and the lock performed by the GET_LOCK statement.5

74

8.0 Nondeterministic Programs1

In parallel programming, there are situations in which the same program when run twice may not2
produce the same results. Such a program is nondeterministic. The X3H5 Fortran standard3
allows some standard conforming programs to be nondeterministic. In such cases, it is the4
programmer’s responsibility to ensure that nondeterministic behavior is acceptable to the5
functioning of the program.6

If a program is nondeterministic, an implementation is free to choose between the possible7
nondeterministic results. An implementation may always produce the same value for a8
nondeterministic result, or an implementation may be nondeterministic, and produce different9
results from one run to the next.10

75

A.0 X3H5 Directive Binding1

A.1 Directives - Introduction2

The use of directives to provide information to a compiler is an established practice. The ability3
to parallelize programs with directives has been demonstrated to be useful on a number of4
parallel systems. Given an appropriate set of directives, an advantage of this approach has been5
that the directives may be treated as comments and the program will still run correctly. This has6
allowed programs that are parallelized with such directives to be run serially on a computer that7
may not understand those directives by treating them as comments.8

This is understood to be particularly important to some code developers who must support both9
parallel and serial targets with a single source code. This is viewed by the committee to be an10
interim problem, given that there may be some time before compilers on serial systems handle11
the parallel statements defined herein in an appropriate serial manner.12

The system of directives described in this appendix is imperative -- they are not advisory. The13
directives assert specific behavior for the parallel program or for the implementation.14

15
Directive syntax and structure are specified in this appendix. Because of a basic one to one16
association between the directives and corresponding language statements, the specification for17
the directives will not replicate specifications given in this document for those associated18
language statements. Interpretations and coding rules are provided only when they are in addition19
to those provided for the corresponding language statement.20

Examples in this appendix have been derived from those in the body of this document when21
useful for illustrating some aspect of the directive binding. Corresponding example numbers22
have been used to facilitate comparison between language and directive bindings, although this23
does not result in a sequential numbering of the examples in this appendix.24

A.1.1 Role of the Directive Binding25

This directive binding is specified for the Fortran-77 language only and is provided as a26
conversion aid. It will not be specified or extended to use additional features of the Fortran-9027
language. To aid as an interim conversion aid, this set of directives has been designed to be28
easily replaced, either manually or mechanically, by their corresponding language statements.29

The directive binding has a direct correspondence to statements in the language binding and these30
directives instruct the implementation just as if the corresponding language statement were31
present. When they are coded, they result in exactly the same interpretation being taken by the32
implementation as if it encountered the corresponding language statements.33

A.1.2 Single Process Execution Requirement for Compliant Programs34

76

The X3H5 LIM requires that a compliant parallel program be written so that it may be executed1
with an arbitrary number or processes. Notably, the program must be executable by a single2
process. A key implication of this rule is that when a compliant program is being executed by3
a single process, the process shall never encounter a barrier that would cause it to be blocked.4

Equivalent Serial Execution:5

A compliant parallel program using this binding can be written so that it has an "equivalent serial6
execution". A program has an "equivalent serial execution", if that program is written so that7
the semantic features introduced by the parallel directives are rendered superfluous by the8
construction of the code. Serial execution of such a program, achieved by ignoring directives, will9
produce a result that is one of the possible results from the parallel execution of that parallel10
program.11

There are two features of a X3H5 parallel directives to be discussed when considering the serial12
interpretation of a X3H5 compliant program:13

A) Implicit and explicit synchronization points, and14
B) The introduction of scoping at parallel constructs.15

Following this discussion, the X3H5 intrinsic functions will be examined in the context of serial16
execution.17

Coding to provide an equivalent serial execution is not a requirement when using the X3H518
directive binding, but ignores the primary advantage for use of directives. Unless otherwise19
noted the examples in this appendix are coded so that they have an equivalent serial execution.20

A.1.3 Synchronization and Serial Execution21

A parallel program is similar to a traffic grid - synchronization is the system of traffic lights that22
keep multiple processes from "running into each other". When those streets are used by a single23
vehicle, it is free to ignore all of the lights without worry of a collision at an intersection.24

The single process execution requirement guarantees that a "serial process" may ignore the25
synchronization points (implicit or explicit) in a compliant parallel program without hazard.26
Those synchronization points can never block that single process. Because there is a single27
process executing the program, there is not need to communicate values of shared objects at28
synchronization points.29

A.1.3.2 Scoping at Parallel Constructs and Serial Execution30

The addition of a scope at the level of the parallel construct allows the mapping associated with31
a construct private object to change at the construct boundary. The definition/reference pattern32
for that object will determine whether change in storage association is significant to the semantics33
of the program when the construct is ignored.34

77

Naming private objects for a parallel construct uniquely from any objects used outside the scope1
of that construct is sufficient to ensure an equivalent serial execution. Uniquely naming the2
objects used within a parallel construct nullifies the effect of the new scope -- allowing the3
directives to be safely ignored.4

Alternate Intrinsic Functions5

Because the synchronization points in a serial execution will be ignored, the values of6
synchronizers between synchronization points are meaningless. The intrinsic inquiry functions that7
relate to binary states are specified to return fixed values that allow the serial process to proceed8
undeterred.9

Although the directive binding supports the INT function for ORDINALs, this function is not10
supported under serial execution. This is because ORDINAL synchronizers do not have a binary11
state and a suitable version of the INT function for serial use cannot be constructed. A program12
using the X3H5 directive binding that is to be interpreted serially can not use the INT function.13

A.1.4 Terminology14

A program using this directive binding has an "equivalent serial execution" if coded in a fashion15
that ensures the result of its serial interpretation will be one of the results of the parallel16
execution of the program.17

A "directive sentinel" is the special pattern of characters that appears beginning in column 1, and18
indicates that the line is to be interpreted as an X3H5 parallel directive. The X3H5 directive19
sentinel is ’C$PAR’.20

A.1.5 Directives - General Usage Requirements in Parallel Programs21

This set of directives is intended to be easily replaced, either manually or mechanically, by their22
corresponding language statements. Because of this, they may only be coded at statement23
boundaries.24

A.1.5.1 Continued Directives25

Unlike X3H5 parallel statements which may be continued by the conventional Fortran26
continuation mechanism, there is no mechanism in Fortran for comments of which directives are27
a special case. In the case of a long directive in a construct, the optional clauses may be28
combined with a "directive sentinel", to form an additional directive. Such a directive must29
immediately follow the base directive. The specifications of individual directives that may30
require continuation in this manner contain specific instructions.31

A.1.6 Parallel Intrinsic Functions32

78

A program utilizing the X3H5 directive binding uses the same set of intrinsic functions as in the1
case of the language binding. These functions are specified in the main portion of this document.2

A.1.6.1 Parallel Intrinsic Behavior for Equivalent Serial Execution3

When a program with these parallel directives is to be executed serially, it is linked with an4
alternate library. In this library, fixed values are returned by intrinsic to reflect the values that5
are appropriate for a serial execution on a single processor computing system. The behavior of6
these functions is defined in the appropriate sections of this appendix, paralleling the7
corresponding sections in the body of this standard.8

A.1.6.2 Functionality Not Supported Under Serial Interpretation9

When the SET and POST directives for ORDINALs are ignored, a value to be returned by the10
INT function cannot be reconciled in a way that reflects the state of the sequence. Therefore,11
the INT function for ORDINAL data types can not be coded in a program that is to be12
interpreted serially.13

A.2 Syntax Rules14

A.2.1 Parallel Do Construct15

A.2.1.1 Syntax16

Directive Forms for Component Directives:17

C$PAR PARALLEL PDO [(option_list)]18

C$PAR END [PARALLEL] DO19

Structured As:20

C$PAR PARALLEL PDO [(option_list)]21
[C$PAR NEW obj_list]22

>> Fortran do-loop <<23
[C$PAR END PARALLEL PDO]24

A.2.1.2 Coding Rules25

No executable statements may appear between the PARALLEL PDO directive and the beginning26
of the do-loop.27

The coding of the END PARALLEL PDO directive is optional. If the END PARALLEL PDO28
directive is coded, no executable statements may appear between the last statement of the do-loop29
and the END PARALLEL PDO directive.30

31
A.2.1.3 Examples32

79

Example 11
SUBROUTINE EX1 (A,B,C,E,T,N)2
REAL A(N),B(N),C(N+1),E(N),T3

C$PAR PARALLEL PDO4
DO 10 I=1,N5
E(I) = A(I)*B(I)6
C(I+1) = E(I) * (T-1.0)7

10 CONTINUE8
END9

Example 210
SUBROUTINE EX2 (A,B,C,E,T,N)11
REAL A(N),B(N),C(N+1),E(N),T12

C$PAR PARALLEL PDO13
DO I=1,N14
E(I) = A(I)*B(I)15
C(I+1) = E(I) * (T-1.0)16

END DO17
C$PAR END PARALLEL PDO18

END19

A.2.2 Parallel Sections Construct20

A.2.2.1 Syntax21

Directive Forms for Component Directives:22

C$PAR PARALLEL SECTIONS [(qual_list)]23

C$PAR SECTION [/sec_nm/] [WAIT (sec_nm_list)] [GUARDS (obj_nm_list)]24

C$PAR END [PARALLEL] SECTIONS25

Structured As:26

C$PAR PARALLEL SECTIONS [(option_list)]]27
[C$PAR NEW obj_list]28
C$PAR SECTION ...29

>> statements <<30
[... zero or more additional section blocks]31

C$PAR END PARALLEL SECTIONS32

A.2.2.2 Interpretation33

A "section block" is composed of a SECTION directive followed by some number of executable34
Fortran statements. The end of a section block is signalled by the next SECTION or END35
PARALLEL SECTIONS directive.36

The WAIT and GUARDS clauses may appear as separate directives immediately following the37
corresponding SECTION directive. This is achieved by coding a line with the directive sentinel38
and the particular clause. Multiple instances of the WAIT and GUARDS clauses associated with39
a particular SECTION directive are additive, having the same effect as if they had appeared in40
a single clause for that section block.41

80

A.2.2.3 Examples1

Example 32
SUBROUTINE EX3 (A,B,C,D,E,F,N)3
REAL A(N),B(N),C(N),D(N),E(N),F(N)4

C$PAR PARALLEL SECTIONS5
C$PAR SECTION6

DO 10 I=1,N7
A(I) = B(I) * C(I)8

10 CONTINUE9
C$PAR SECTION10

DO 20 J=1,M11
D(I) = F(J) / E(I)12

20 CONTINUE13
C$PAR END PARALLEL SECTIONS14

END15

Example 416
SUBROUTINE EX4 (A,B,C,D,E,F,N)17
REAL A(N),B(N),C(N),D(N),E(N),F(N)18

C$PAR PARALLEL SECTIONS19
C$PAR SECTION20
C$PAR PARALLEL PDO21

DO I=1,N22
A(I) = B(I) * C(I)23

END DO24
C$PAR SECTION25
C$PAR PARALLEL PDO26

DO J=1,M27
D(I) = F(J) / E(I)28

END DO29
C$PAR END PARALLEL SECTIONS30

END31

Example 532
SUBROUTINE EX5 (Z,ZA,ZB,ZC,ZD,ZE)33
REAL Z(5)34

C$PAR PARALLEL SECTIONS (ORDERED)35
C$PAR SECTION /A/36

ZA = ZFUNC(Z(1))37
C$PAR SECTION /B/38

ZB = 2*ZFUNC(Z(2))39
C$PAR SECTION /C/ WAIT (A)40

ZC = ZA * ZA + ZFUNC(Z(3))41
C$PAR SECTION /D/ WAIT (A,B)42

ZD = ZB - ZA + ZFUNC(Z(4))43
C$PAR SECTION /E/ WAIT (C,B)44

ZE = ZC - ZB + ZFUNC(Z(5))45
C$PAR END PARALLEL SECTIONS46

END47

Example 648
SUBROUTINE EX649
REAL Z(10)50

C$PAR SCOMMON /Z/51
COMMON /Z/ ZB,ZD,ZE,ZTOT52

C$PAR PARALLEL SECTIONS53
C$PAR SECTION /A/54

ZA = ZFUNC(Z(1))55

81

C$PAR SECTION /BC/1
ZB = ZFUNC(Z(2))2
ZC = ZFUNC(Z(3))3

C$PAR SECTION /D/ WAIT (A)4
ZD = ZFUNC(ZA)5

C$PAR SECTION /E/ WAIT (A,BC) GUARDS (ZA,ZC)6
ZE = ZJOIN(ZA,ZC))7

C$PAR END PARALLEL SECTIONS8
ZTOT = ZJOINs(ZE,ZD,ZB)9

END10

Example 6A11
SUBROUTINE EX6A12
REAL Z(10)13

C$PAR SCOMMON /Z/14
COMMON /Z/ ZB,ZD,ZE,ZTOT15

C$PAR PARALLEL SECTIONS16
C$PAR SECTION /A/17

ZA = ZFUNC(Z(1))18
C$PAR SECTION /BC/19

ZB = ZFUNC(Z(2))20
ZC = ZFUNC(Z(3))21

C$PAR SECTION /D/ WAIT (A)22
ZD = ZFUNC(ZA)23

C$PAR SECTION /E/24
C$PAR WAIT (A,BC)25
C$PAR GUARDS (ZA,ZC)26

ZE = ZJOIN(ZA,ZC))27
C$PAR END PARALLEL SECTIONS28

ZTOT = ZJOINs(ZE,ZD,ZB)29
END30

This example derived from example 6 illustrates how a long SECTION directive may be31
"continued" by decomposing it into components.32

A.2.3 Synchronization Declarations33

A.2.3.1 Syntax34

Directive Forms35

C$PAR GATE declarator_list36
C$PAR EVENT declarator_list37
C$PAR ORDINAL declarator_list38

C$PAR GUARDS guards_list39

Directive Forms40

C$PAR IMPLICIT sync_type41

Structured As42

C$PAR IMPLICIT sync_type43
IMPLICIT fort_type >"just-list-an-implicit-range"_list<44

82

where1
sync_type is one of GATE, EVENT or ORDINAL2

A.2.3.2 Coding Rules3

Variables identified in a GATE or EVENT declaration directive shall be Fortran variables that4
occupy exactly one numeric storage location. Variables identified in an ORDINAL declaration5
shall be Fortran variables that occupy exactly two numeric storage locations. An X3H56
compliant compiler shall verify the storage requirements and flag noncompliance as an error.7

The GATE, EVENT and ORDINAL directives are specifications, and may be coded anywhere8
a Fortran specification statement may be coded.9

The IMPLICIT directive must appear immediately preceding the Fortran IMPLICIT statement10
to which it applies. The "IMPLICIT directive/IMPLICIT statement" pairs may be coded anywhere11
a Fortran IMPLICIT statement may be coded.12

A.2.4 Unstructured Locking Synchronization13

A.2.4.1 Syntax14

Directive Forms15

C$PAR GETLOCK (gate) [GUARDS (obj_nm_list)]16

C$PAR UNLOCK (gate) [GUARDS (obj_nm_list)]17

The GUARDS clause may appear as separate directive immediately following the corresponding18
GETLOCK or UNLOCK directive. This is achieved by coding a line with the directive sentinel19
and the particular GUARDS clause. Multiple instances of the GUARDS clauses associated with20
a particular GETLOCK or UNLOCK directive are additive, having the same effect as if they had21
appeared in a single clause.22

A.2.4.2 Examples23

Example 724
SUBROUTINE EX7 (A,B)25
REAL B(0:100)26

C$PAR GATE A27
INTEGER AA28

C$PAR PARALLEL PDO29
C$PAR NEW T30
C$PAR DO I=1,1031

T = B(I) * B(I-1)32
C$PAR LOCK (A)33

SUM = SUM + T34
C$PAR UNLOCK (A)35

END DO36
C$PAR END PARALLEL PDO37

83

END1

Example 82
SUBROUTINE EX8 (A,B,SUM)3
REAL B(0:100)4

C$PAR GATE A5

C$PAR GUARDS A(SUM)6
C$PAR UNLOCK (A)7

SUM = 0.08

C$PAR PARALLEL PDO9
C$PAR NEW T10

DO I=1,1011
T = B(I) * B(I-1)12

C$PAR GETLOCK (A)13
SUM = SUM + T14

C$PAR UNLOCK (A)15
END DO16

C$PAR END PARALLEL PDO17
END18

Note that variable A defaults to type REAL, having one numeric storage unit as required.19

Example 920
SUBROUTINE EX9 (NAME,A)21
CHARACTER*(*) NAME22
CHARACTER*10 PG23

C$PAR GATE A24

IF (LOCKED (A)) THEN25
PG = "LOCKED"26

ELSE27
PG = "UNLOCKED"28

ENDIF29
PRINT *,"GATE ",name," is ",PG30
END31

Example 1032
SUBROUTINE EX10 (A)33

C$PAR GATE A34

5 IF (.NOT. LOCK(A)) THEN35
CALL USEFUL36
GO TO 537

ENDIF38
CALL UPDATE39

C$PAR UNLOCK (A)40
END41

Example 1142
SUBROUTINE EX11 (A)43

C$PAR GATE A44

5 IF (LOCKED (A)) THEN45
CALL USEFUL46
GO TO 547

ELSE48
C$PAR GETLOCK(A)49

CALL UPDATE50
C$PAR UNLOCK (A)51

ENDIF52
END53

84

A.2.4.2.1 Function Values for GATEs in Serial Execution1

The X3H5 directive binding uses the same intrinsic functions as specified for the X3H5 Fortran2
language. These functions are specified in the body of this standard.3

A program containing these functions that is to be executed serially should be bound to a set of4
corresponding intrinsic that always return a value that indicates that the synchronizer is "open".5

function name value returned6
LOCKED(gate_name) .FALSE.7
LOCK(gate_name) .TRUE.8

A.2.5 Critical Sections9

A.2.5.1 Syntax10

Directive Forms11

C$PAR CRITICAL SECTION [(gate)] [GUARDS (obj_nm_list)]12

C$PAR END CRITICAL SECTION [(gate)]13

Structured As14

C$PAR CRITICAL SECTION ...15
>statements<16

C$PAR END CRITICAL SECTION ...17

The GUARDS clause may appear as separate directive immediately following the corresponding18
CRITICAL SECTION directive. This is achieved by coding a line with the directive sentinel and19
the particular GUARDS clause. Multiple instances of the GUARDS clauses associated with a20
particular CRITICAL SECTION directive are additive, having the same effect as if they had21
appeared in a single clause.22

A.2.5.1 Examples23

Example 1224
SUBROUTINE EX12 (A,B,SUM)25
REAL B(0:100)26

C$PAR GATE A27

C$PAR UNLOCK(A)28
C$PAR PARALLEL PDO29
C$PAR NEW T30

DO I=1,1031
T = B(I) * B(I-1)32

C$PAR CRITICAL SECTION (A)33
SUM = SUM + T34

C$PAR END CRITICAL SECTION (A)35
END DO36

C$PAR END PARALLEL PDO37
END38

85

Example 131
SUBROUTINE EX13 (A,B,SUM)2
REAL B(0:100)3

C$PAR GATE A4

C$PAR GUARDS A(SUM)5
C$PAR UNLOCK(A)6

SUM = 0.07
C$PAR PARALLEL PDO8
C$PAR NEW T9

DO I=1,1010
C$PAR CRITICAL SECTION (A)11

T = B(I) * B(I-1)12
SUM = SUM + T13

C$PAR END CRITICAL SECTION14
END DO15

C$PAR END PARALLEL PDO16
END17

Example 1418
SUBROUTINE EX14 (A,B,SUM)19
REAL B(0:100)20

C$PAR GATE A21

C$PAR UNLOCK(A)22
SUM = 0.023

C$PAR PARALLEL PDO24
C$PAR NEW T25

DO I=1,1026
T = B(I) * B(I-1)27

C$PAR CRITICAL SECTION (A) GUARDS(SUM)28
SUM = SUM + T29

C$PAR END CRITICAL SECTION30
END DO31

C$PAR END PARALLEL PDO32
END33

Example 1534
SUBROUTINE EX15 (A,B,MAXA,GMAXA,N)35
REAL A(N), B(N), MAXA36

C$PAR GATE GMAXA37
C$PAR GUARDS GMAXA(MAXA)38

C$PAR PARALLEL SECTIONS39
C$PAR NEW AM40
C$PAR SECTION41

AM = A(1)42
DO 10 I=2,N43

IF(AM.LT.A(I))AM=A(I)44
10 CONTINUE45

C$PAR CRITICAL SECTION (GMAXA)46
IF(MAXA.LT.AM) MAXA=AM47

C$PAR END CRITICAL SECTION (GMAXA)48
C$PAR SECTION49
C$PAR CRITICAL SECTION (GMAXA)50

AM=MAXA51
C$PAR END CRITICAL SECTION (GMAXA)52

DO 20 I=1,N53
B(I)=B(I)/AM54

20 CONTINUE55
C$PAR END PARALLEL SECTIONS56

86

END1

Example 162
SUBROUTINE EX16 (A,B,MAXA,GMAXA,N)3
REAL A(N), B(N), MAXA4

C$PAR GATE GMAXA5
C$PAR GUARDS GMAXA(MAXA)6

C$PAR PARALLEL SECTIONS7
C$PAR NEW AM8
C$PAR SECTION9
C$PAR CRITICAL SECTION (GMAXA)10

AM=MAXA11
C$PAR END CRITICAL SECTION (GMAXA)12

DO 10 I=2,N13
IF(AM.LT.A(I)) THEN14

C$PAR CRITICAL SECTION (GMAXA)15
IF(MAXA.LT.A(I)) MAXA=A(I)16
AM=MAXA17

C$PAR END CRITICAL SECTION (GMAXA)18
ENDIF19

10 CONTINUE20
C$PAR SECTION21

DO 20 I=1,N22
C$PAR CRITICAL SECTION (GMAXA)23

B(I)=B(I)/MAXA24
C$PAR END CRITICAL SECTION (GMAXA)25

20 CONTINUE26
C$PAR END PARALLEL SECTIONS27

END28

Example 1729
SUBROUTINE EX17 (B,SUM)30
REAL B(0:100)31

SUM = 0.032
C$PAR PARALLEL PDO33
C$PAR NEW T34

DO I=1,1035
T = B(I) * B(I-1)36

C$PAR CRITICAL SECTION GUARDS(SUM)37
SUM = SUM + T38

C$PAR END CRITICAL SECTION39
END DO40
END41

Example 1842
SUBROUTINE EX18 (B,SUM,PROD)43
REAL B(100)44

C$PAR PARALLEL SECTIONS45
C$PAR NEW T46
C$PAR SECTION47

T = 0.048
DO 10 I=1,1049

10 T = T + B(I)50
C$PAR CRITICAL SECTION GUARDS(SUM)51

SUM = T52
C$PAR END CRITICAL SECTION53
C$PAR SECTION54

T = 1.055
DO 20 I=1,1056

20 T = T * B(I)57

87

C$PAR CRITICAL SECTION GUARDS(PROD)1
PROD = T2

C$PAR END CRITICAL SECTION3
C$PAR END PARALLEL SECTIONS4

END5

Example 206
SUBROUTINE EX20 (B,SUM)7
REAL B(0:100)8

C$PAR GATE A9

C$PAR UNLOCK(A)10
C$PAR PARALLEL PDO11
C$PAR NEW T12

DO I=1,1013
T = B(I) * B(I-1)14

C$PAR CRITICAL SECTION (A)15
SUM = SUM + T16

C$PAR END CRITICAL SECTION (A)17
END DO18
END19

Example 2120
SUBROUTINE EX21 (A,B,SUM)21
REAL B(0:100)22

C$PAR GATE A23

C$PAR UNLOCK(A)24
C$PAR PARALLEL PDO25

DO I=1,1026
C$PAR CRITICAL SECTION (A) GUARDS(SUM)27

SUM = SUM + B(I) * B(I-1)28
C$PAR END CRITICAL SECTION (A)29

END DO30
END31

A.2.6 Event Synchronization32

A.2.6.1 Syntax33

Directive Forms34

C$PAR POST (event) [GUARDS (obj_nm_list)]35

C$PAR WAIT (event) [GUARDS (obj_nm_list)]36

C$PAR CLEAR (event) [GUARDS (obj_nm_list)]37

The GUARDS clause may appear as separate directive immediately following the corresponding38
POST, WAIT, CLEAR directive. This is achieved by coding a line with the directive sentinel39
and the particular GUARDS clause. Multiple instances of the GUARDS clauses associated with40
a particular POST, WAIT, CLEAR directive are additive, having the same effect as if they had41
appeared in a single clause.42

Example 2243
SUBROUTINE EX22 (B,E)44
REAL B(100),C45

C$PAR EVENT E(100)46

88

C$PAR PARALLEL PDO1
DO I=1,972
IF (I .lt. 4) THEN3

C$PAR POST (E(I))4
ELSE5

C$PAR CLEAR (E(I))6
ENDIF7

END DO8

C$PAR PARALLEL PDO (ORDERED)9
C$PAR NEW C10

DO I=4,10011
C = SIN(B(I))12

C$PAR WAIT (E(I-3))13
B(I) = B(I) + B(I-3)*C14

C$PAR POST (E(I))15
END DO16

END17

A.2.6.1.1 Function Values for Events in Serial Execution18

A program containing these functions that is to be executed serially should be bound to a set of19
corresponding intrinsic that always return a value that indicates that the synchronizer is "open".20

function name value returned21
POSTED(event_name) .TRUE.22

A.2.7 Ordinal (Sequence) Synchronization23

A.2.7.1 Syntax24

Directive Forms25

C$PAR POST (seq, iexp1) [GUARDS (obj_nm_list)]26
27

C$PAR WAIT (seq, iexp2) [GUARDS (obj_nm_list)]28
29

C$PAR CLEAR (seq[, iexp3[, iexp4]]) [GUARDS (obj_nm_list)]30

The GUARDS clause may appear as separate directive immediately following the corresponding31
POST, WAIT, CLEAR directive. This is achieved by coding a line with the directive sentinel32
and the particular GUARDS clause. Multiple instances of the GUARDS clauses associated with33
a particular POST, WAIT, CLEAR directive are additive, having the same effect as if they had34
appeared in a single clause.35

Example 2436
SUBROUTINE EX24 (B,SUM)37
REAL B(100),SUM(100)38

C$PAR ORDINAL A39
C$PAR GUARDS A(SUM)40

SUM(1) = 0.041
C$PAR SET (A)42
C$PAR PARALLEL PDO (ORDERED)43

89

C$PAR NEW T1
DO I=2,102
T = B(I) * B(I-1)3

C$PAR WAIT (A,I-1)4
SUM(I) = SUM(I-1) + T5

C$PAR POST (A,I)6
END DO7
END8

Example 259
SUBROUTINE EX25 (B,SUM)10
REAL B(100),SUM(100)11

C$PAR EVENT AA(100)12
C$PAR GUARDS AA(SUM)13

C$PAR POST(AA(1))14
C$PAR PARALLEL PDO15

DO I=2,10016
C$PAR CLEAR (AA(I))17

END DO18
SUM(1) = 0.019

C$PAR PARALLEL PDO (ORDERED)20
C$PAR NEW T21

DO I=2,1022
T = B(I) * B(I-1)23

C$PAR WAIT (AA(I-1))24
SUM(I) = SUM(I-1) + T25

C$PAR POST (AA(I))26
END DO27
END28

Example 2629
SUBROUTINE EX26 (B,C,N)30
REAL B(N),C(N)31
PARAMETER (MAXN=1000)32

C$PAR EVENT E(MAXN)33

C$PAR PARALLEL PDO34
DO 10 I=1,N35
IF (I .lt. 4) THEN36

C$PAR POST (E(I))37
ELSE38

C$PAR CLEAR (E(I))39
ENDIF40

10 CONTINUE41
C$PAR PARALLEL PDO (ORDERED)42

DO 20 I=4,N43
C(I) = FUNC(B(I))44

C$PAR WAIT (E(I-3)) GUARDS(B(I-3))45
B(I) = B(I) + B(I-3)*C(I)46

C$PAR POST (E(I)) GUARDS (B(I))47
20 CONTINUE48

END49

Example 2750
SUBROUTINE EX27 (B,C,N)51
REAL B(N),C(N)52

C$PAR ORDINAL E53
C$PAR GUARDS E(B)54

C$PAR SET (E,3)55
C$PAR PARALLEL PDO (ORDERED)56

DO 20 I=4,N57

90

C(I) = FUNC(B(I))1
C$PAR WAIT (E, I-3))2

B(I) = B(I) + B(I-3)*C(I)3
C$PAR POST (E,I)4

20 CONTINUE5
END6

Example 287
SUBROUTINE EX28 (A,B,C,N1,N2,N3)8
REAL A(*),B(*),C(*)9

C$PAR ORDINAL D10
C$PAR GUARDS D(C)11

C$PAR SET (D,N1,N3)12
C$PAR PARALLEL SECTIONS13
C$PAR SECTION14

DO 10 I=N1,N2,N315
C(I) = MAX(A(I),A(I-N3))16

C$PAR POST(D,I)17
10 CONTINUE18

C$PAR SECTION19
DO 20 I=N1,N2,N320

C$PAR WAIT(D,I)21
B(I) = B(I)/C(I)22

20 CONTINUE23
C$PAR END PARALLEL SECTIONS24

END25

Example 2926
SUBROUTINE EX29 (B)27
REAL B(100)28

C$PAR ORDINAL A29

C$PAR SET (A,2)30
C$PAR PARALLEL PDO (ORDERED)31
C$PAR NEW T32

DO I=1,9933
T = B(I+1)34

C$PAR POST (A,I+1)35
B(I) = T36

END DO37
B(100) = 0.038
END39

A.2.7.1.1 Function Values for Counters in Serial Execution40

The X3H5 intrinsic function INT(ordnl_var) will not produce a correct result under serial41
interpretation. If one expects to run a directive based parallel program serially, this function42
should not be used.43

A.3 Data Sharing44

A.3.1 Data Sharing Directives45

A.3.1.1 Syntax46

Directive Forms47

91

C$PAR NEW obj_nm_list1

A.3.1.2 Rules2

The NEW directive may only appear within a PARALLEL, PARALLEL PDO or PARALLEL3
SECTIONS construct. It appear with other NEW directives after the PARALLEL directive and4
the first executable statement.5

A.3.2 Partially Shared Common Blocks6

A.3.2.1 Syntax7

Directive Forms8

C$PAR SCOMMON sname_list9

Structured As10

C$PAR SCOMMON /COMM1/11
COMMON /COMM1/ A(99), B(99,73), X, Y, ZZ12

A.3.2.2 Rules13

The SCOMMON directive shall be located immediately before common block that is to be14
interpreted as an SCOMMON block.15

COMMONs and SCOMMONs occupy the same name space, therefore if a COMMON block is16
associated with an SCOMMON directive anywhere in a parallel program, it shall have an17
associated SCOMMON directive everywhere that it occurs.18

Example 4019
SUBROUTINE EX40 (B)20

C$PAR SCOMMON /BLOCKA/21
COMMON /BLOCKA/ A(100)22
REAL B(100)23

C$PAR PARALLEL PDO24
DO I=1,10025
A(I) = I * I26
B(I) = A(I) + B(I)27

END DO28
END29

Example 4130
SUBROUTINE EX41 (B)31

REAL B(100)32

C$PAR PARALLEL PDO33
DO I=1,10034
CALL SUB(B(I))35

END DO36
END37

92

SUBROUTINE SUB(X)1
C$PAR SCOMMON /BLOCKA/2

COMMON /BLOCKA/ A3
A=X4
CALL SQUARE5
X=A6
END7

SUBROUTINE SQUARE8
C$PAR SCOMMON /BLOCKA/9

COMMON /BLOCKA/ A10
A=A*A11
END12

Example 41A13
SUBROUTINE EX41A (B)14

C$PAR SCOMMON /BLOCKA/15
COMMON /BLOCKA/ A16
REAL B(100)17

C$PAR PARALLEL PDO18
C$PAR NEW /BLOCKA/19

DO I=1,10020
CALL SUB(B(I))21

END DO22
END23

SUBROUTINE SUB (X)24
C$PAR SCOMMON /BLOCKA/25

COMMON /BLOCKA/ A26
A = X27
CALL SQUARE28
END29

SUBROUTINE SQUARE30
C$PAR SCOMMON /BLOCKA/31

COMMON /BLOCKA/ A32
A = A*A33
END34

Example 4535
SUBROUTINE EX45 (B)36
REAL B(100), C(100)37

C$PAR PARALLEL PDO38
DO I=1,10039
CALL SUB1(B(I))40

CALL SUB2(C(I))41
END DO42
PRINT *, (C(I), I = 1, 100)43
END44

45
SUBROUTINE SUB1 (X)46

C$PAR SCOMMON /BLOCKA/47
COMMON /BLOCKA/ A48
SAVE /BLOCKA/49
A = X50
END51

52
SUBROUTINE SUB2 (X)53

C$PAR SCOMMON /BLOCKA/54
COMMON /BLOCKA/ A55
SAVE /BLOCKA/56

93

X = A1
END2

Example 463
SUBROUTINE EX46 (B)4
REAL B(100), C(100)5

C$PAR SCOMMON /BLOCKA/6
COMMON /BLOCKA/ A7

C$PAR PARALLEL PDO8
C$PAR NEW /BLOCKA/9

DO I=1,10010
CALL SUB1(B(I))11
CALL SUB2(C(I))12

END DO13
PRINT *, (C(I), I = 1, 100)14
END15

16
SUBROUTINE SUB1 (X)17

C$PAR SCOMMON /BLOCKA/18
COMMON /BLOCKA/ A19
A = X20
END21

22
SUBROUTINE SUB2 (X)23

C$PAR SCOMMON /BLOCKA/24
COMMON /BLOCKA/ A25
X = A26
END27

Example 3928
SUBROUTINE EX39(B,C,N)29

REAL B(N),C(N)30

C$PAR PARALLEL PDO31
C$PAR NEW A32

PARALLEL PDO I=1,N33
A=B(I)+C(I)34
CALL EX39A(A,B,I)35

END DO36
END37

SUBROUTINE EX39A(AA,BB,N)38
REAL BB(N),BX39
DATA BX/1.0/40

BX=AA*(AA-4.0)/BX41
C$PAR PARALLEL PDO42

DO J=1,N43
BB(J)=BB(J)*BX44

END DO45
END46

A.4 Parallel Region Construct47

A.4.1 Syntax48

Directive Forms - Parallel Region parallel construct component directives49

C$PAR PARALLEL [(roption_list)]50

C$PAR END PARALLEL51

94

Structured As1

C$PAR PARALLEL [(roption_list)]2
[C$PAR NEW obj_list]3
>> Statements <<4

C$PAR END PARALLEL5

Directive Forms - Pdo worksharing construct component directives6

C$PAR PDO [(poption_list]7

C$PAR END PDO8

Structured As:9

C$PAR PDO ...10
>> legal do loop <<11
[C$PAR END PDO]12

Directive Forms - Psections worksharing construct component directives13

C$PAR PSECTIONS [(poption_list)]14

C$PAR SECTION [/sec_nm/] [wait (sec_nm_list)] [GUARDS(obj_nm_list)]15

C$PAR END PSECTIONS16

Structured As:17

C$PAR PSECTIONS ...18
C$PAR SECTION19

>> statements <<20
[... zero or more section blocks]21

C$PAR END PSECTIONS22

Directive Forms - Grouping construct component directives23

C$PAR GROUP [(poption_list)]24

C$PAR END GROUP25

Structured As:26

C$PAR GROUP [(goption_list)]27
>> statements << ! replicated code for wsc 128
>> worksharing construct 1 <<29
>> statements << ! replicated code for wsc 130
[... zero or more redundant-code/worksharing blocks]31

C$PAR END GROUP32

The WAIT and GUARDS clauses may appear as separate directives immediately following the33
corresponding SECTION directive. This is achieved by coding a line with the directive sentinel34
and the particular clause. Multiple instances of the WAIT and GUARDS clauses associated with35
a particular SECTION directive are additive, having the same effect as if they had appeared in36
a single clause for that section block.37

95

Example 481
SUBROUTINE EX48 (A,B,C,N)2
REAL A(N),B(N),C(N)3

C$PAR PARALLEL PDO4
C$PAR NEW T5

DO I=1,N6
T = A(I)*B(I)7
C(I+1) = T * (T-1.0)8

END DO9
END10

Example 4911
SUBROUTINE EX49 (A,B,C,N)12
REAL A(N),B(N),C(N)13

C$PAR PARALLEL14
C$PAR NEW T15
C$PAR PDO16

DO I=1,N17
T = A(I)*B(I)18
C(I+1) = T * (T-1.0)19

END DO20
C$PAR END PARALLEL21

END22

Example 5023
SUBROUTINE EX50 (ZA,ZB,ZC,ZD,N)24

REAL ZA(N),ZB(N),ZC(N),ZD(N)25

C$PAR PARALLEL SECTIONS26
C$PAR NEW T27
C$PAR SECTION /DS5A/28

DO 10 I=1,N29
T = ZFUNC(ZA(I))30
ZC(I) = T * T31

10 CONTINUE32
C$PAR SECTION /DS5B/33

DO 20 I=1,N34
T = ZFUNC(ZB(I)-ZA(I))35
ZD(I) = T * T36

20 CONTINUE37
C$PAR END PARALLEL SECTIONS38

END39
40

Example 5141
SUBROUTINE EX51 (ZA,ZB,ZC,ZD,N)42

REAL ZA(N),ZB(N),ZC(N),ZD(N)43

C$PAR PARALLEL44
C$PAR NEW T45
C$PAR PSECTIONS46
C$PAR SECTION /DS5A/47

DO 10 I=1,N48
T = ZFUNC(ZA(I))49
ZC(I) = T * T50

10 CONTINUE51
C$PAR SECTION /DS5B/52

DO 20 I=1,N53
T = ZFUNC(ZB(I)-ZA(I))54
ZD(I) = T * T55

20 CONTINUE56
C$PAR END PSECTIONS57

96

C$PAR END PARALLEL1
END2

Example 523
SUBROUTINE EX52 (A)4

REAL A(*)5
GATE B6
GUARDS B(SUM)7

UNLOCK(B)8
SUM=0.09

C$PAR PARALLEL10
C$PAR NEW SUML11

SUML = 0.012
C$PAR PDO13

DO I=1,N14
SUML = SUML + A(I)15

END DO16
C$PAR CRITICAL SECTION (B)17

SUM = SUM + SUML18
C$PAR END CRITICAL SECTION (B)19
C$PAR END PARALLEL20

END21

All team members initialize SUML and execute the Critical Section construct regardless of22
whether they participated in the execution of the Pdo construct.23

24
Example 52A25

SUBROUTINE EX52A (A)26
REAL A(*)27
GATE B28
GUARDS B(SUM)29

UNLOCK(B)30
SUM=0.031

C$PAR PARALLEL32
C$PAR NEW SUML33

C$PAR GROUP34
SUML = 0.035

C$PAR PDO36
DO I=1,N (NOWAIT)37

SUML = SUML + A(I)38
END DO39

C$PAR CRITICAL SECTION (B)40
SUM = SUM + SUML41

C$PAR END CRITICAL SECTION (B)42
C$PAR END GROUP43

C$PAR END PARALLEL44
END45

In this example, derived from EX52, team members to not enter the Group construct once all46
work in the Pdo construct has been assigned. Use of the Group construct helps prevent47
unnecessary executions of the Critical Section construct. Typical of Group construct usage,48
this example shows a pattern of private object initialization, worksharing construct execution,49
and reduction into a shared variable.50

Example 5351
SUBROUTINE EX53 (A,B,C,D,N,M)52

97

REAL A(N),B(N),C(N),D(N)1

C$PAR PARALLEL2
C$PAR PDO3

DO I=1,N4
A(I) = B(I) * C(I)5

END DO6
C$PAR PDO7

DO I=1,M8
D(I) = A(I) - C(I)9

END DO10
C$PAR END PARALLEL11

END12

Example 5413
SUBROUTINE EX54 (A,C,N,M)14

REAL A(N,0:M),C(N,M)15

C$PAR PARALLEL16
DO 10 J=1,M17

C$PAR PDO18
DO I=1,N19
A(I,J) = C(I,J)/A(I,J-1)20

END DO21
10 CONTINUE22

C$PAR END PARALLEL23
END24

A.4.2 Single Process Sections25

A.4.2.1 Syntax26

Directive Forms27

C$PAR SINGLE PROCESS28

C$PAR END SINGLE PROCESS29

Structured as30

C$PAR SINGLE PROCESS31
>> Statements <<32
C$PAR END SINGLE PROCESS33

Example 5534
SUBROUTINE EX55 (A,B,N)35

REAL A(N),B(N)36

C$PAR PARALLEL37
C$PAR PDO38

DO I=1,N39
A(I) = 1.0 / A(I)40

END DO41
C$PAR SINGLE PROCESS42

IF (A(1) .GT. 1.0) A(1) = 1.043
C$PAR END SINGLE PROCESS44
C$PAR PDO45

DO I=1,N46
B(I) = B(I) / A(1)47

END DO48

98

C$PAR END PARALLEL1
END2

Example 563
SUBROUTINE EX56 (A,B,N)4

REAL A(N),B(N)5

C$PAR PARALLEL6
C$PAR PDO7

DO I=1,N8
A(I) = 1.0 / A(I)9

END DO10
C$PAR PSECTIONS11
C$PAR SECTION12

IF (A(1) .GT. 1.0) A(1) = 1.013
C$PAR END PSECTIONS14
C$PAR PDO15

DO I=1,N16
B(I) = B(I) / A(1)17

END DO18
C$PAR END PARALLEL19

END20
21

Example 5722
SUBROUTINE EX57 (A,AMAX,N)23

REAL A(0:N)24

AMAX = 0.025
C$PAR PARALLEL26
C$PAR NEW ALMAX27

C$PAR GROUP28
C$PAR PDO (NOWAIT))29

DO I=1,N30
IF (ABS(A(I)) .GT. ABS(ALMAX)) ALMAX = A(I)31

END DO32
C$PAR CRITICAL SECTION33

IF (ABS(ALMAX) .GT. ABS(AMAX)) AMAX = ALMAX34
C$PAR END CRITICAL SECTION35
C$PAR END GROUP36

C$PAR SINGLE PROCESS37
ALMAX = A(1)+A(N)38
IF (AMAX .LT. ALMAX) AMAX = 1.0 + AMAX39

C$PAR END SINGLE PROCESS40

C$PAR PDO41
DO I=1,N42
A(I) = ABS(A(I) / AMAX)43

END DO44

C$PAR END PARALLEL45
END46

A.5 Exits from Parallel Constructs47

A.5.1 Syntax48

Directive Forms49

99

C$PAR PDONE1
2

Example 33
SUBROUTINE EX3 (A,N,*)4
REAL A(N)5
LOGICAL FOUND6

FOUND=.FALSE.7
C$PAR PARALLEL PDO8

DO I=1,N9
IF (A(I) .EQ. 0.0) THEN10

C$PAR PDONE11
FOUND=.TRUE.12

ENDIF13
END DO14

IF (.NOT. FOUND) THEN15
PRINT*,’ALL ELEMENTS ARE NON-ZERO’16
RETURN 017

ELSE18
PRINT*,’ERROR: THERE IS A ZERO ELEMENT IN A’19

ENDIF20
END21

Note that because the PDONE directive/statement is not preemptive, it may be coded22
anywhere in the conditional above with the same effect.23

A.6 Extended Intrinsic24

A.6.1 Parallel Intrinsic Functions25

The X3H5 directive binding uses the same intrinsic functions as specified26
for the X3H5 Fortran language. These functions are specified in the27
body of this standard.28

A.6.2 Definition of Serial Execution Library29

Intrinsic Value Returned30
INTEGER FUNCTION NPRCFG() 131
INTEGER FUNCTION MPRTOT() 132
INTEGER FUNCTION NPRAVL() 033
INTEGER FUNCTION NPRUSE() 134
INTEGER FUNCTION NPSCFG() 135
INTEGER FUNCTION MPSTOT() 136
INTEGER FUNCTION NPSAVL() 037
INTEGER FUNCTION NPSUSE() 138
INTEGER FUNCTION NPSTM() 139
SUBROUTINE SPRTOT(integer-expr) none, routine has no effect40
SUBROUTINE SPSTOT(integer-expr) none, routine has no effect41

100

A parallel-region-construct is:1

[name:] PARALLEL [(parallel-option)]2
data-sharing-spec3
parallel-body4

END PARALLEL [name]5

where6
parallel-option is MAX PARALLEL = int-expr |7

ORDERED |8
MAX PARALLEL = int-expr, ORDERED |9
ORDERED, MAX PARALLEL = int-expr10

parallel-body is statements |11
parallel-construct12

parallel-construct is parallel-region-construct |13
pdo-construct |14
psections-construct |15
group-construct |16
parallel-pdo-construct |17
parallel-psections-construct |18
single-process-construct19

Contstraint: If the parallel-construct has a name prefix, then the it must have20
the same name as a suffix.21

data-sharing-spec is new-stmt |22
use-stmt |23
type-declaration-stmt |24
specification-stmt |25
parameter-stmt |26
format-stmt |27
pointer-stmt28
[data-sharing-spec]29

new-stmt is NEW variable-list30

Constraint: specification-stmt shall not contain an access-stmt, common-stmt,31
data-stmt, optional-stmt, equivalence-stmt, derived-type-stmt, or save-stmt.32

[name:] PDO [(parallel-options)]33
parallel-body34

END PDO [name]35

[name:] PSECTION36
sections37

END PSECTIONS [name]38

where39
sections is [sections section]40

section is SECTION [name] [WAIT (name-list)]41
parallel-region42

[name:] PARALLEL PDO iter-specification parallel-option-list43
data-sharing-spec44
parallel-body45

END PARALLEL PDO [name]46

101

[name:] PARALLEL PSECTIONS [parallel-options]1
data-sharing-spec2
sections3

END PARALLEL PSECTIONS [name]4

[name:] GROUP [(group-option)]5
parallel-body6

END GROUP [name]7

where8
group-option is NOWAIT9

R503 attr-spec is PARAMETER10
or access-spec11
or ALLOCATABLE12
or DIMENSION (array-spec)13
or EXTERNAL14

NEW or guards-spec15
or INTENT (intent-spec)16
or INTRINSIC17
or OPTIONAL18
or POINTER19
or SAVE20
or TARGET21

X707 guards-spec is GUARDS (guarded-obj-list)22

X708 guarded-obj is variable-name23
or array-element24
or array-section25
or substring26

CONSTRAINT: each subscript, substring, or section-subscript in a27
guards-spec must be an integer initialization expression28
(see Fortran 7.1.6.1)29

X709 critical-block is critical-stmt30
block31

end-critical-stmt32

X710 critical-stmt is CRITICAL SECTION [(scalar-latch-variable)]33
[guards-spec]34

X711 end-critical-stmt is END CRITICAL SECTION [(scalar-latch-variable35
)]36

CONSTRAINT: If the end-critical-section-stmt specifies a37
scalar-latch-variable, the corresponding38
critical-section-stmt shall specify the same39
scalar-latch-variable.40

GUARDS (guarded-list) sync-object41
or42
GUARDS :: sync-guards-list43
where guarded is variable-name,44

array-name,45
array-element,46
array-section,47

102

module-name, or1
/common-block-name/ and2

sync-guards-list is sync-object (guarded-list) [, sync-guards-list]3

103

C.0 Lex/Yacc Syntax Rules (Informative)1
The following is a simple Yacc grammar for recognizing X3H5 extensions for Fortran. This is2
an informative exercise to help keep the X3H5 grammar consistent and parsable by a simple3
parser.4
It also might be a useful starting point for building real grammar rules for X3H5 Fortran5
extensions.6

%{7
#include <stdio.h>8

%}9

%union {10
char string[33];11

}12

%token PARALLEL MAX_PARALLEL WAIT GUARDS ORDERED NAME VARIABLE13
%token SECTION BLOCK PARALLEL_PSECTIONS PSECTIONS PARALLEL_PDO14
INTEGER15
%token PDO INT_EXPR TYPE_STMTS END_PARALLEL END END_PDO END_PSECTIONS16
%token CODE_BLOCK DO_VARIABLE PARALLEL_PDO END_PARALLEL_PDO17
%token PARALLEL_SECTIONS END_PARALLEL_SECTIONS GROUP NOWAIT18
%token PARALLEL_SPECIFICATION_PART CONTINUE19

%type <string> NAME20
%type <string> name21
%type <string> INTEGER22
%%23
pgm : blocks24

;25

blocks : /* empty */26
| blocks block27
;28

block : unnamed_p_block29
| named_p_block30
| code_block31
;32

unnamed_p_block : parallel_block33
| parallel_pdo34
| parallel_sections35
| pdo_block36

104

| psection_block1
| group_construct2
;3

/* --- */4
/* */5
/* Constraint: An unnamed_p_block shall not contain an exit, return, */6
/* stop, or entry-statement. */7
/* */8
/* --- */9

named_p_block : name ’:’ unnamed_p_block name10
{11
if(strcmp($1,$4))12

{13
printf("The starting and ending names of a block are different\n");14
printf("They are %s, %s\n",$1,$4);15

}16
}17

;18
/* --- */19
/* */20
/* Constraint: The name coded at the beginning of a named_p_block shall be */21
/* the same as the name coded at the end of the named_p_block. */22
/* */23
/* --- */24

parallel_block : PARALLEL ptoption blocks END_PARALLEL25
;26

ptoption : /* empty */27
| poption28
| parallel_specification_part29
| poption parallel_specification_part30
;31

parallel_specification_part : PARALLEL_SPECIFICATION_PART ;32
33

/* --- */34
/* */35
/* See ISO/IEC 1539:1991 (E) page 304 for Fortran 90 specifications. */36
/* */37
/* parallel_specification_part : use_part decl_part */38
/* ; */39

105

/* use_part : */ /* empty */1
/* | use-stmt use_part */2
/* ;3
/* decl_part : */ /* empty */4
/* | declaration_construct decl_part */5
/* ; */6
/* */7
/* */8
/* Constraint: specification-stmt must not contain an access-stmt, */9
/* allocatable-stmt(check with data section), common-stmt(check */10
/* with data section), data-stmt, intent-stmt, optional-stmt, */11
/* pointer-stmt (check with data section) or save-stmt. */12
/* The decl_part shall not contain the entry_stmt, or */13
/* stmt_function_stmt. */14
/* --- */15

poptions : /* empty */16
| poption17
;18

poption : ’(’ popt ’)’19
;20

popt : MAX_PARALLEL ’=’ INT_EXPR21
| ORDERED22
| ORDERED MAX_PARALLEL ’=’ INT_EXPR23
;24

psection_block : PSECTIONS poptions25
sections26

END_PSECTIONS27
;28

29
sections : section30

| sections section31
;32

section : SECTION section_name wait_list guards_list33
block34

;35
section_name : /* empty */36

| ’/’ name ’/’37
;38

wait_list : /* empty */39
| WAIT ’(’ wlist ’)’40
;41

wlist : /* empty */42

106

| wlist name1
;2

guards_list : /* empty */3
| GUARDS ’(’ glist ’)’4
;5

glist : /* empty */6
| glist name7
;8

9
pdo_block : PDO iter_spec poptions blocks END_PDO10

| PDO INTEGER iter_spec poptions blocks11
INTEGER CONTINUE12
{13
if(strcmp($2,$6))14

{15
printf("The starting and ending labels of a pdo block are different\n");16
printf("They are %s, %s\n",$2,$6);17

}18
}19

;20

iter_spec : do_variable ’=’ INT_EXPR ’,’ INT_EXPR ’,’ INT_EXPR21
| do_variable ’=’ INT_EXPR ’,’ INT_EXPR22
;23

/* --- */24
/* */25
/* Constraint: The pdo-variable must be a named scalar variable of type */26
/* integer and cannot be an element of a common block. */27
/* */28
/* --- */29

group_construct : GROUP goption30
blocks31

END GROUP32
;33

goption : /* empty */34
| NOWAIT35
;36

/* ----------------------now provide for combined constructs------------ */37

parallel_pdo : PARALLEL_PDO iter_spec ptoption blocks END_PARALLEL_PDO38
;39

parallel_sections : PARALLEL_SECTIONS ptoption40

107

sections1
END_PARALLEL_SECTIONS2

;3
4

/* ------------------here we provide stubs for various productions from the */5
/* native language (Fortran 90) -----------------*/6
code_block : CODE_BLOCK ;7
do_variable : DO_VARIABLE ;8
name : NAME9

{ strcpy($$,$1); }10
;11
%%12
#include "lex.yy.c"13
main()14
{15
if (yyparse())16

{ printf("error in line number: %d\n", line);17
printf("Errors in this code\n");}18

else19
printf("YIPPEE no errors\n");20

}21

108

Dummy Lexical Analizer for X3H5 Fortran1

%{2
int line;3
%}4
name [a-zA-Z]+[a-zA-Z0-9_]*5
integer [1-9][0-9]*6
endline [\n]7
blank [\t]+8
%p 100009
%o 1000010
%a 1900011
%%12
{endline} line ++ ;13
{blank} ;14
PARALLEL {return (PARALLEL);}15
CONTINUE {return (CONTINUE);}16
END" "PARALLEL {return (END_PARALLEL);}17
PARALLEL_PDO {return (PARALLEL_PDO);}18
END_PARALLEL_PDO {return (END_PARALLEL_PDO);}19
PARALLEL_SECTIONS {return (PARALLEL_SECTIONS);}20
END_PARALLEL_SECTIONS {return (END_PARALLEL_SECTIONS);}21
PDO {return (PDO);}22
WAIT {return (WAIT);}23
GUARDS {return (GUARDS);}24
ORDERED {return (ORDERED);}25
MAX_PARALLEL {return (MAX_PARALLEL);}26
SECTION {return (SECTION);}27
PSECTIONS {return (PSECTIONS);}28
BLOCK {return (BLOCK);}29
END {return (END); }30
GROUP {return (GROUP);}31
NOWAIT {return (NOWAIT);}32
CODE{blank}BLOCK {return (CODE_BLOCK);}33
END{blank}PDO { /* printf("Found pdo\n"); */34

return (END_PDO);}35
END{blank}PSECTIONS {return (END_PSECTIONS);}36
INT_EXPR {return (INT_EXPR);}37
VARIABLE {return (VARIABLE);}38
DO_VARIABLE {return (DO_VARIABLE);}39
{integer} {strcpy(yylval.string,yytext);40

printf("Found integer %s\n",yytext);41
return (INTEGER);}42

INTEGER {return (INTEGER);}43
PSPEC_PART {return (PARALLEL_SPECIFICATION_PART);}44

109

{name} {strcpy(yylval.string,yytext);1
return (NAME);}2

. { /* printf("Lex got %c\n",yytext[0]); */3
return (yytext[0]);}4

%%5

110

Index1
A2
atomic operation 713
C4

CLEAR 635
Critical Section 596
Critical sections 577

CLEAR 648
Critical Sections 579
D10

deadlock 65, 7011
E12

Event synchronization 6313
G14

GATE synchronization 7015
GUARDS 5916

I17
intrinsic 7018

M19
metalanguage conventions 1120

N21
nondeterministic 60, 7522

O23
ORDERED 63, 6624
Ordinal 6525

P26
Parallel Sections 1727
POST 64, 6728
POST, 6629
Ordinal 6530

S31
Sequence 6932
Sequence synchronization 6533
SET 6634
standard conforming 1035
Synchronization36
Explicit synchronization 5037
Implicit synchronization 5038
Ordinal 6539
structured 5740
synchronization objects 5741
unstructured 7042

SET43
Define ordinal 6544

Unstructured45

111

synchronization 701
W2

WAIT 64-67B.0 Syntax Rules (Informative)3

112

