
ISO�IEC JTC��SC���WG� N����

X�J� � ������

International Standards Organization

Interoperability of Fortran and C

Technical Report de�ning extensions to
ISO�IEC ����	�
 ����

fDraft PDTR produced ���Apr���g

THIS PAGE TO BE REPLACED BY ISO CS

The most recent version of this working document may be obtained from
http���www�uni�karlsruhe�de��SC��WG��TR�C�

Comments may be sent to the Project Editor� hennecke	rz�uni�karlsruhe�de�
or to the email list sc��wg��interop	ncsa�uiuc�edu�

���Apr��� Interoperability of Fortran and C i

Contents

Foreword iii

Introduction iv

� General �

	�	 Scope � 	
	�� Organization of this Technical Report � � � � � � � � � � � � � � � � 	
	�
 Inclusions � 	
	�� Exclusions �
	�� Conformance �
	�� Notation used in this Technical Report � � � � � � � � � � � � � � � � �
	�� Normative References �

� Rationale �

��	 Justi
cation of the Technical Report � � � � � � � � � � � � � � � � � �

� Technical Speci�cation �

�	 The BIND attribute �

�� Datatype mapping �

���	 Matching C basic types with Fortran intrinsic types � � � � �

���� Numerical limits of the C environment � � � � � � � � � � � � 		

���
 Mapping C array types to Fortran � � � � � � � � � � � � � � 	�

���� Mapping C structure types to Fortran � � � � � � � � � � � � 	

���� Mapping C union types to Fortran � � � � � � � � � � � � � � 	�

���� Handling of C pointer declarators � � � � � � � � � � � � � � � 	�

���� Mapping C character strings to Fortran � � � � � � � � � � � 	�

���� Mapping of C typedef names � � � � � � � � � � � � � � � � � 	�

���� No support of
wchar�h� and
wctype�h� � � � � � � � � � 	�

�
 Procedure calling conventions � 	�

�
�	 Procedure interface for BIND�C� binding � � � � � � � � � � 	�

�
�� Procedure interface for BIND�C STDARG� binding � � � � 	�

�� Access to global C data objects ��

� Editorial changes to ISO	IEC ���
�� � �

 ��

ii Draft PDTR ���Apr���

���Apr��� Interoperability of Fortran and C iii

Foreword

�This page to be provided by ISO CS�

iv Draft PDTR ���Apr���

Introduction

This Technical Report de
nes extensions to the programming language Fortran
to permit Fortran programs to call C procedures and access C data objects with
external linkage� The current Fortran language is de
ned by the International
Standard ISO�IEC 	�
��	�	���� and the current C language is de
ned by the
International Standard ISO�IEC �����	����

This Technical Report has been prepared by ISO�IEC JTC	�SC���WG�� the
technical Working Group for the Fortran language� It is the intention of ISO�IEC
JTC	�SC���WG� that the semantics and syntax described in this Technical Re�
port shall be incorporated in the next revision of IS 	�
��	 �Fortran� exactly as
they are speci
ed here� unless experience in the implementation and use of this fea�
ture has identi
ed any errors which need to be corrected� or changes are required
in order to achieve proper integration� in which case every reasonable e�ort will be
made to minimise the impact of such integration changes on existing commercial
implementations�

These extensions are being de
ned by means of a Type � Technical Report in
the
rst instance to allow early publication of the proposed speci
cation� This
is to encourage early implementations of important extended functionalities in a
consistent manner� and will allow extensive testing of the design of the extended
functionality prior to its incorporation into the Fortran language by way of the
revision of IS 	�
��	 �Fortran��

���Apr��� Interoperability of Fortran and C 	

Information Technology �
Programming Languages � Fortran

Technical Report�
Interoperability of Fortran and C

� General

��� Scope

This Technical Report de
nes extensions to the programming language Fortran
to permit Fortran programs to call C procedures and access C data objects with
external linkage� The current Fortran language is de
ned by the International
Standard ISO�IEC 	�
��	�	���� and the current C language is de
ned by the
International Standard ISO�IEC �����	���� The enhancements de
ned in this
Technical Report cover three main areas� The
rst area provides general mecha�
nisms to map data types of C to Fortran� The second area addresses the calling
conventions for a C procedure referenced in a Fortran program� and the third area
provides access to global C data objects from within Fortran�

��� Organization of this Technical Report

This document is organized in four sections� covering general issues and the main
areas mentioned above� Section � provides a rationale� which explains the need
to de
ne the features contained in this Technical Report in advance of the next
revision of IS 	�
��	 �Fortran� and motivates the speci
c implementation of these
features� Section
 contains a full description of the syntax and semantics of the
features de
ned in this Technical Report� and section � contains a complete set
of edits to ISO�IEC 	�
��	�	��� that would be necessary to incorporate these
features in the Fortran standard�

��� Inclusions

This Technical Report speci
es�

	� The form that a Fortran interface to an external procedure de
ned by means
of C may take

�� The form that a Fortran speci
cation for a data object de
ned by means of
C may take

� The rules for interpreting the meaning of a reference to an external procedure
or data object de
ned by means of C

� Draft PDTR ���Apr���

��� Exclusions

This Technical Report does not specify�

	� Mixed�Language Input and Output

�� Methods to automatically convert C headers to Fortran

� Methods to access Fortran program units from C

��� Conformance

The language extensions de
ned in this Technical Report are implemented by
de
ning a number of
rst�class language constructs� and some intrinsic modules
which make various entities accessible to the Fortran program�

A program is conforming to this Technical Report if it uses only those forms and
relationships described in IS 	�
��	 or in this Technical Report� and if the program
has an interpretation according to these two documents�

Note ���

Because this Technical Report de
nes extensions to the base Fortran lan�
guage� a program conforming to this Technical Report is� in general� not a
standard�conforming Fortran �� program�
However� since it is the intention of WG� to incorporate the semantics
and syntax described in this document into the next revision of IS 	�
��	�
it is likely that a program conforming to this Technical Report will be a
standard�conforming Fortran ���� program�

A processor is conforming to this Technical Report if it is a standard�conforming
processor as de
ned in section 	�� of IS 	�
��	� and makes all
rst�class language
constructs and all intrinsic modules de
ned in this Technical Report intrinsically
available� Additionally� a USE statement for an intrinsic module ISO C shall be
supported� that module shall be interpreted as containing one USE statement
�without rename or only clauses� for each of the intrinsic modules de
ned in this
Technical Report�

Note ���

See the edit for subclause ����� for accessibility of entities de
ned in intrinsic
modules�

��� Notation used in this Technical Report

The notation used in this Technical Report is the notation de
ned in section 	��
of IS 	�
��	 �Fortran�� However� deviations from these conventions are possible
in descriptions of C language elements� In such cases� the syntactic conventions
of IS ���� �C� �actually� of ANSI X
�	���	���� are followed�

���Apr��� Interoperability of Fortran and C

Editor�s Note �

During the drafting process� this Technical Report also contains non�
normative �Editor�s Notes� to spot out places in the document that need
further processing�

��� Normative References

The following standards contain provisions which� through reference in this text�
constitute provisions of this Technical Report� At the time of publication� the
editions indicated were valid� All standards are subject to revision� and parties
to agreements based on this Technical Report are encouraged to investigate the
possibility of applying the most recent editions of the standards indicated be�
low� Members of ISO and IEC maintain registers of currently valid International
Standards�

ISO�IEC ��� � 	��	 Information Technology � ISO ��bit coded

character set for information interchange

ISO�IEC 	�
��	 � 	��� Information Technology �

Programming Languages � Fortran

ISO�IEC ���� � 	��� Information Technology �

Programming Languages � C

Editor�s Note �

Currently� ISO�IEC 	�
��	�	��� means the proposed Fortran �� DIS �WG�
document N		���� and references to ISO�IEC �����	��� are actually refer�
ences to ANSI X
�	���	����
Non�normative reference is made to the draft C�� standard �WG�	 doc�
ument N������ the HPF Language Speci
cation v	�	� and the HPF calling
C Interoperability Proposal v	�
�

� Draft PDTR ���Apr���

���Apr��� Interoperability of Fortran and C �

� Rationale

��� Justi	cation of the Technical Report

From WG� document N		
	 �Request for subdivision��

�A signi
cant fraction of the standard �de�facto or de�jure� computing
environment comes with a C API� Examples include X�windows li�
braries� Motif� TCP�IP socket calls and interfaces to system routines�
The Fortran programmer is currently unable to exploit this wealth of
software in a portable manner� This causes many problems for those
who� for example� wish to front�end a powerful scienti
c visualisation
package� written in Fortran� with a sophisticated graphical user inter�
face �GUI�� Due to the di�culties of providing such an interface in a
standard fashion� many users are turning to alternative languages for
such applications� even if Fortran is ideally suited to the �computa�
tional� component of the task�

It is therefore very important that a standard mechanism by which
C procedures can be called from Fortran procedures is de
ned as soon
as possible��

Editor�s Note �

Rational material will be added when the technical speci
cation is com�
plete� Background material of features from Fortran and C can be
found in the �Notes� and �Rationale� sections of WG� document N		���
available from ftp���ftp�nag�co�uk�sc��wg��� Email sc��wg����� con�
tains comments on N		
	 �the request for subdivision�� it is archived at
ftp���dkuug�dk�JTC��SC���WG��
���

� Draft PDTR ���Apr���

���Apr��� Interoperability of Fortran and C �

� Technical Speci�cation

This section describes the extensions to the base Fortran language that this Tech�
nical Report de
nes to facilitate interoperability with the ISO C language� more
precisely to allow a Fortran program to reference C procedures and data objects
that have external linkage�

��� The BIND attribute

The Fortran standard does not specify the mechanisms by which programs are
transformed for use on computing systems �	���� Additionally� a reference in a
Fortran program to a procedure de
ned by means other than Fortran is normally
made as though it were de
ned by an external subprogram �	����
��
This Technical Report de
nes a BIND attribute� which may be employed to
adapt the behavior of the Fortran processor to the behavior of another processor�
possibly for another language� in a portable way� The corresponding bind�spec

speci
cation may be used in all places where it is necessary to inform the Fortran
processor that a change of processor dependent and language dependent conven�
tions is required for the interoperability of Fortran and C� This section speci
es
the general form of a bind�spec speci
cation�

Riop� bind�spec is BIND � � LANG� � lang�keyword �
� � � � NAME� � name�string � �

Riop� lang�keyword is FORTRAN
or C
or C STDARG

Riop� name�string is scalar�default�char�init�expr

Constraint� If name�string is present and lang�keyword is FORTRAN� the value
of name�string shall be a valid Fortran name�

Constraint� If name�string is present and lang�keyword is C or C STDARG�
the value of name�string shall be a valid C external name�

The processor shall support at least those lang�keywords listed in Riop�� support
of other lang�keywords is processor dependent� The processor shall report the use
of unsupported lang�keywords�
BIND�FORTRAN� speci
es the default behavior of the Fortran processor� The
behavior for lang�keywords C and C STDARG is de
ned in this Technical Report�
The behavior for lang�keywords other than those listed in Riop� is processor
dependent�

� Draft PDTR ���Apr���

Note ���

Selecting the programming language C with the lang�keyword alone does
not specify the implementation�de
ned and implementation�dependent be�
havior of the C processor� and specifying such information would in fact
make the program unportable� The Fortran processor should be accompa�
nied with documentation that states which C processor�s conventions are
followed�
If multiple C processors are supported� selection of a speci
c C processor
should occur outside the Fortran program �e�g� by command�line arguments�
rather than by introducing new lang�keywords for nondefault C processors�

Note ���

Note that although names of C entities are normally case�sensitive� a C
processor may ignore the distinction of alphabetic case of external names�
This limitation is implementation�de
ned�
A strictly conforming C program shall not rely on implementation�de
ned
behavior� and a Fortran processor that does not support lowercase letters
still conforms to this Technical Report because it will be able to generate
bindings to all external names that are allowed in a strictly conforming C
program�

Editor�s Note �

C�� has a linkage�speci�cation ����� which is very similar to the bind�

spec� and requires the processor to support �C� and �C���� However� C��
does not need a NAME� clause because C and C�� have the same �case�
sensitive� rules for names�

The bind�spec may appear in a derived�type�def� as a pre�x�spec or attr�spec within
an interface block for an external procedure� or as an attr�spec in the speci
cation
of a data object in the speci�cation�part of a module Since Fortran also provides
speci
cation statements for attributes� the bind�attr for external procedures and
data entities may alternatively be speci
ed by a BIND statement�

Riop� bind�stmt is bind�spec � �� � extern�name

Constraint� A bind�stmt may only be speci
ed in an interface�body or in the
speci�cation�part of a module�

The following sections describe the speci
c applications of the BIND attribute�

��� Datatype mapping

When a Fortran program accesses C code there are three interoperability issues
caused by the fact that the two languages have di�erent datatypes�

	� the argument association of data objects de
ned in Fortran with a C proce�
dure�s dummy arguments�

���Apr��� Interoperability of Fortran and C �

�� the use of a result value of a C function in a Fortran expression� and

� the access of global C data objects from within the Fortran program�

This section de
nes facilities to map C datatypes to Fortran datatypes� which is
a necessary prerequisite to address these issues in sections
�
 and
���

Note ���

To specify an inter�language procedure call� the last item is irrelevant �ex�
cept for the possibility of side�e�ects of the C procedure�� but a complete
interoperability facility should include it�

Both languages de
ne types that are intrinsically available� these are called intrin�

sic types in Fortran and basic types in C� Di�erent sorts of derived types can be
constructed from them� Section
���	 speci
es a complete mapping of C basic types

to Fortran types� access to the corresponding environmental limits is speci
ed in
section
�����

The remaining sections deal with some of C�s derived types� The mechanisms de�

ned in this Technical Report do not specify mappings for all possible C datatypes�
Derived type generation in C can be recursively applied� the resulting types do
not necessarily have a general approximation in Fortran types�

����� Matching C basic types with Fortran intrinsic types

The basic types of C are the character types� integer types and �oating types�

Note ���

The C enum type is not speci
ed to be a basic type in the C standard �it is
an integral type� but not an integer type�� but neither is it speci
ed to be a
derived type� This Technical Report treats enum as a basic type�

This Technical Report utilizes the kind type parameters of Fortran�s intrinsic
types to establish a one�to�one matching of C�s basic types to Fortran character�
integer and real types� An intrinsic module ISO C KINDS de
nes Fortran kind
type parameters for all C basic types� The processor shall provide access to the
named constants used in the model implementation below for all scoping units
that contain a module reference to ISO C KINDS� subject to the rules of use
association�

	� Draft PDTR ���Apr���

MODULE iso�c�kinds � F�� module for C�� �basic types�

IMPLICIT NONE

� KIND values for CHARACTER datatype 	C �character types�
�

�

INTEGER� PARAMETER �� c�char�kc
 �c�kind�param�

INTEGER� PARAMETER �� c�schar�kc
 �c�kind�param�

INTEGER� PARAMETER �� c�uchar�kc
 �c�kind�param�

� KIND values for INTEGER datatype 	C �integer types�� enum
�

�

INTEGER� PARAMETER �� c�schar�ki
 �c�kind�param�

INTEGER� PARAMETER �� c�uchar�ki
 �c�kind�param�

INTEGER� PARAMETER �� c�shrt�ki
 �c�kind�param�

INTEGER� PARAMETER �� c�ushrt�ki
 �c�kind�param�

INTEGER� PARAMETER �� c�int�ki
 �c�kind�param�

INTEGER� PARAMETER �� c�uint�ki
 �c�kind�param�

INTEGER� PARAMETER �� c�long�ki
 �c�kind�param�

INTEGER� PARAMETER �� c�ulong�ki
 �c�kind�param�

�

INTEGER� PARAMETER �� c�enum�ki
 �c�kind�param�

� KIND values for REAL datatype 	C �floating types�
�

�

INTEGER� PARAMETER �� c�flt�kr
 �c�kind�param�

INTEGER� PARAMETER �� c�dbl�kr
 �c�kind�param�

INTEGER� PARAMETER �� c�ldbl�kr
 �c�kind�param�

END MODULE iso�c�kinds

If the processor supports a C datatype� the corresponding c�kind�param shall be
a kind�param supported by the processor� otherwise it shall be a negative default
integer constant� The value of C CHAR KC shall be the value of C SCHAR KC
or the value of C UCHAR KC� this is processor�dependent�

Note ���

In C� the question if char is implemented as signed char or
unsigned char is implementation�de
ned� Only the so�quali
ed types are
also integer types� the type char is not�

Editor�s Note �

If enums are not implemented as integers� return a negative c�kind�param� If
unsigned integers are too complicated� return a negative c�kind�param� If
they are allowed to be passed through procedure interfaces but not allowed
to be de
ned by Fortran� return the c�kind�param of the corresponding
signed type and impose that restriction� If Fortran operations on unsigned

can be well�de
ned� do not impose that restriction�

���Apr��� Interoperability of Fortran and C 		

����� Numerical limits of the C environment

The ISO C standard requires that a conforming C implementation shall document
all its numerical limits in the headers
limits�h� and
float�h�� This Technical
Report speci
es two intrinsic modules that make these limits available in Fortran
through constants having the same names as those de
ned in these headers� Ex�
cept for the unsigned integer types� the values returned by a Fortran processor
shall conform to the requirements of the C standard if that C type is supported
by the Fortran processor�

Note ��

Fortran probably cannot represent the unsigned integer values�

MODULE iso�c�float�h � F�� module for C�� �float�h�

USE iso�c�kinds

IMPLICIT NONE

INTEGER� PARAMETER �� FLT�ROUNDS
 �� � indeterminable

INTEGER� PARAMETER �� FLT�RADIX
 RADIX 	����c�flt�kr

INTEGER� PARAMETER �� FLT�MANT�DIG
 DIGITS 	����c�flt�kr

INTEGER� PARAMETER �� DBL�MANT�DIG
 DIGITS 	����c�dbl�kr

INTEGER� PARAMETER �� LDBL�MANT�DIG
 DIGITS 	����c�ldbl�kr

INTEGER� PARAMETER �� FLT�DIG
 PRECISION 	����c�flt�kr

INTEGER� PARAMETER �� DBL�DIG
 PRECISION 	����c�dbl�kr

INTEGER� PARAMETER �� LDBL�DIG
 PRECISION 	����c�ldbl�kr

INTEGER� PARAMETER �� FLT�MIN�EXP
 MINEXPONENT	����c�flt�kr

INTEGER� PARAMETER �� DBL�MIN�EXP
 MINEXPONENT	����c�dbl�kr

INTEGER� PARAMETER �� LDBL�MIN�EXP
 MINEXPONENT	����c�ldbl�kr

INTEGER� PARAMETER �� FLT�MIN����EXP
 ���

INTEGER� PARAMETER �� DBL�MIN����EXP
 ���

INTEGER� PARAMETER �� LDBL�MIN����EXP
 ���

INTEGER� PARAMETER �� FLT�MAX�EXP
 MAXEXPONENT	����c�flt�kr

INTEGER� PARAMETER �� DBL�MAX�EXP
 MAXEXPONENT	����c�dbl�kr

INTEGER� PARAMETER �� LDBL�MAX�EXP
 MAXEXPONENT	����c�ldbl�kr

INTEGER� PARAMETER �� FLT�MAX����EXP
 ��

INTEGER� PARAMETER �� DBL�MAX����EXP
 ��

INTEGER� PARAMETER �� LDBL�MAX����EXP
 ��

REAL	c�flt�kr
� PARAMETER �� FLT�MAX
 HUGE 	����c�flt�kr

REAL	c�dbl�kr
� PARAMETER �� DBL�MAX
 HUGE 	����c�dbl�kr

REAL	c�ldbl�kr
� PARAMETER �� LDBL�MAX
 HUGE 	����c�ldbl�kr

REAL	c�flt�kr
� PARAMETER �� FLT�EPSILON
 EPSILON	����c�flt�kr

REAL	c�dbl�kr
� PARAMETER �� DBL�EPSILON
 EPSILON	����c�dbl�kr

REAL	c�ldbl�kr
� PARAMETER �� LDBL�EPSILON
 EPSILON	����c�ldbl�kr

REAL	c�flt�kr
� PARAMETER �� FLT�MIN
 TINY 	����c�flt�kr

REAL	c�dbl�kr
� PARAMETER �� DBL�MIN
 TINY 	����c�dbl�kr

REAL	c�ldbl�kr
� PARAMETER �� LDBL�MIN
 TINY 	����c�ldbl�kr

END MODULE iso�c�float�h

	� Draft PDTR ���Apr���

Editor�s Note

C�s and Fortran�s �oating point number models are identical� I have not yet
tracked down the relation of RANGE and ��MIN����EXP � ��MAX����EXP�

MODULE iso�c�limits�h � F�� module for C�� �limits�h�

USE iso�c�kinds

IMPLICIT NONE

INTEGER� PARAMETER �� CHAR�BIT
 �

INTEGER	c�schar�ki
� PARAMETER �� SCHAR�MIN
 �����c�schar�ki

INTEGER	c�schar�ki
� PARAMETER �� SCHAR�MAX
 ����c�schar�ki

INTEGER	c�uchar�ki
� PARAMETER �� UCHAR�MAX
 �

INTEGER� PARAMETER �� CHAR�MIN
 �scalar�int�init�expr�

INTEGER� PARAMETER �� CHAR�MAX
 �scalar�int�init�expr�

INTEGER� PARAMETER �� MB�LEN�MAX
 �

INTEGER	c�shrt�ki
� PARAMETER �� SHRT�MIN
 �������c�shrt�ki

INTEGER	c�shrt�ki
� PARAMETER �� SHRT�MAX
 ������c�shrt�ki

INTEGER	c�ushrt�ki
� PARAMETER � USHRT�MAX
 �

INTEGER	c�int�ki
� PARAMETER �� INT�MIN
 �������c�int�ki

INTEGER	c�int�ki
� PARAMETER �� INT�MAX
 ������c�int�ki

INTEGER	c�uint�ki
� PARAMETER �� UINT�MAX
 �

INTEGER	c�long�ki
� PARAMETER �� LONG�MIN
 ������������c�long�ki

INTEGER	c�long�ki
� PARAMETER �� LONG�MAX
 �����������c�long�ki

INTEGER	c�ulong�ki
� PARAMETER �� ULONG�MAX
 �

END MODULE iso�c�limits�h

If a c�kind�param de
ned in ISO C KINDS has a negative value� the processor need
not provide constants de
ned in ISO C LIMITS H and ISO C FLOAT H which
use that c�kind�param as a kind�param� In this case� it is processor�dependent
whether the names of such constants are accessible �with another kind type pa�
rameter supported by the processor� or not�

����� Mapping C array types to Fortran

An array type in C with an element type for which this Technical Report estab�
lishes a corresponding Fortran type can be mapped to Fortran by specifying the
DIMENSION attribute for that type� If the entity concerned is a dummy argu�
ment� the array�spec shall be an explicit�shape�spec�list or an assumed�size�spec�
Otherwise� it shall be an explicit�shape�spec�list�

���Apr��� Interoperability of Fortran and C 	

Note ���

This rule includes the common case of a C array of unknown size which is
initialized� the declaration

int x�� � f �� �� � g�

de
nes x as a one�dimensional array of initially incomplete type� but
at the end of the initializer�list it has no longer incomplete type but a size
of three elements�

Note ���

C guarantees a minimum of 	� array �or pointer or function� declarators�
whereas Fortran only supports � array dimensions� However� this limit will
be seldom reached for actual C code� For dummy arguments it can be
circumvented by the use of an assumed�size�spec�

Because the array element ordering ��������� of Fortran arrays is reverse to the
array subscripting of C arrays� the extents entering the Fortran array�spec shall
be speci
ed in the reverse order of the corresponding C array declarators�

Note ��

For one�dimensional arrays there is no di�erence between Fortran and C� If
required� conversion of two�dimensional arrays can be performed by the in�
trinsic procedure TRANSPOSE �	
�	��			�� For higher�dimensional arrays
this transposition must be done by the user�

C and Fortran have di�erent concepts of character strings� so C character strings
shall not be mapped to a CHARACTER array using the DIMENSION attribute�
Section
���� de
nes the mapping of C character strings to Fortran�

����� Mapping C structure types to Fortran

A structure type in C with member objects which all have a type for which this
Technical Report establishes a corresponding Fortran type can be mapped to
Fortran by using a derived type de
nition� To ensure that the memory layout
of the Fortran derived type matches the layout of the C struct� the BIND�C�
attribute shall be speci
ed in the derived�type�def�

Note ����

The type�name need not correspond to the tag of the C struct because
both are local to their respective scoping units� Consequently� a NAME�
clause in a BIND�C� speci
cation within a derived type de
nition is not
allowed�

The order of the component�def�stmts shall be identical to the order of the corre�
sponding struct�declaration�list� A component�initialization shall not be speci
ed
for derived types that have the BIND�C� attribute�

	� Draft PDTR ���Apr���

Note ����

The POINTER component�attr�spec is not allowed because there is no C
type whose corresponding Fortran type has the POINTER attribute�
Similarly� C structs that include bit��elds cannot be mapped to Fortran
because this Technical Report does not specify mappings for bit�
elds� The
behavior for a Fortran derived type in which bit�
eld member objects are
mapped to objects of integer type is processor dependent� because the mem�
ory layout �alignment� padding� of such derived types may di�er from the
layout of the original C struct�

����� Mapping C union types to Fortran

This Technical Report does not provide features to map C union types to Fortran�

Editor�s Note �

The user may specify such mappings �manually� by specifying separate de�
rived types for each member object �as if that member object were the only
member of a struct�� declaring the data object with the largest of these
types� and using TRANSFER to convert between the member object types�
Another �hack� would be to declare di�erent data objects with these sepa�
rate types� but bind them all to the same C data object by using identical
NAME� clauses of their BIND�C� specs� This does not work for dummy
arguments�

����
 Handling of C pointer declarators

This Technical Report does not provide features to map general C pointers to
Fortran� However� several special cases are supported� Within an explicit interface
that has the BIND�C� or BIND�C STDARG� attribute�

� a dummy argument with C type �array of T� is equivalent to type �pointer
to T�� This case is supported by specifying the DIMENSION attribute for
the dummy argument�

� a dummy argument which has C type �pointer to T� because the proce�
dure modi
es the scalar argument of type T is supported by specifying the
BYREFERENCE attribute for the dummy argument�

� a dummy argument may be a dummy procedure that has an explicit inter�
face and the BIND�C� or BIND�C STDARG� attribute� This case shall be
mapped by the Fortran processor to a C type �pointer to function�� with a C
return type and C arguments derived from the dummy procedure�s interface
body speci
cations�

���Apr��� Interoperability of Fortran and C 	�

Editor�s Note �

A BYREFERENCE attribute is not yet de
ned in this TR� but this func�
tionality is necessary to support �call by reference��
This may be implemented by rede
ning INTENT semantics within a
BIND�C� interface� so that no INTENT or INTENT�IN� implies call by
value� whereas INTENT�OUT� or INTENT�INOUT� implies call by refer�
ence� INTENT�IN� for arrays should not imply call by value but rather
mimic the const quali
er of a C array argument�

Additionally� a derived type with type�name C VOID PTR shall be supported�
this type shall have the BIND�C� attribute and PRIVATE components�This type
shall be mapped by the Fortran processor to the C type �pointer to void��
Pointers to void and all other C pointer types which have the same representation
can be mapped to this type� this applies to function results and dummy arguments
as well as to struct member objects� The behavior for cases where the C pointer
type has a representation di�erent from �pointer to void� is processor dependent�

����� Mapping C character strings to Fortran

The processor shall provide an intrinsic module ISO C STRINGS� which shall pro�
vide access to three derived type de
nitions with type�names C CHAR STRING�
C SCHAR STRING� and C UCHAR STRING� They shall have the BIND�C� at�
tribute and PRIVATE components�
These types shall be used to map C character strings which are dummy arguments
of a procedure with the BIND�C� or BIND�C STDARG� attribute to Fortran� as
speci
ed in section
�
 of this Technical Report� They may also be used to access
C character strings which are data objects with external linkage de
ned in a C
translation unit� as speci
ed in section
�� of this Technical Report�

The module ISO C STRINGS shall also provide the following�

� ASSIGNMENT��� for the following combinations of variable and expr �

Type of variable Type of expr

TYPE�c char string� TYPE�c char string�
TYPE�c char string� CHARACTER�KIND�c char kc�

CHARACTER�KIND�c char kc� TYPE�c char string
TYPE�c schar string� TYPE�c schar string�
TYPE�c schar string� CHARACTER�KIND�c schar kc�

CHARACTER�KIND�c schar kc� TYPE�c schar string
CHARACTER�KIND�c uchar kc� TYPE�c uchar string

TYPE�c uchar string� TYPE�c uchar string�
TYPE�c uchar string� CHARACTER�KIND�c uchar kc�

Assignments among objects of the same TYPE shall copy the contents of
expr to variable� up to and including the
rst ASCII NUL character�
Assignment of a CHARACTER expr to its corresponding TYPE shall copy

	� Draft PDTR ���Apr���

the value of expr and append an ASCII NUL character�
Assignment to a CHARACTER variable from its corresponding TYPE shall
copy the contents of expr to variable� up to and excluding the
rst ASCII
NUL character� if the lengths of expr and variable do not agree� the rules for
intrinsic character assignment apply�

� Extension of the generic interface for the LEN intrinsic function �	
�	������
LEN shall accept a scalar argument of TYPE�c char string�� TYPE�c schar string�
or TYPE�c uchar string�� the result value for these arguments shall be the
number of characters in the internal representation of these types� up to and
excluding the
rst ASCII NUL character�

Editor�s Note

The concatenation and comparison operators may also be extended� as well
as some intrinsic procedures for character processing �and perhaps type
conversion procedures from CHARACTER to these types��

����� Mapping of C typedef names

In C� a declaration whose storage�class specifyer is typedef can be used to de
ne
identi
ers that name types� These typedef�names do not introduce new types�
only synonyms for types that could be speci
ed in another way� They may be
used as type�speci�ers� This Technical Report introduces a type�alias�stmt� which
is a declaration�construct� to allow similar type name aliasing in Fortran�

Riop� type�alias�stmt is TYPE � � � access�spec � �� � �
� type�alias�name �� type�spec

Constraint� An access�spec is only allowed if the type�alias�stmt is within the
speci�cation�part of a module�

Constraint� A type�name shall not be the same as the name of any intrinsic
type de
ned in IS 	�
� nor the same as any accessible type�name

or type�alias�name�

The type�alias�name declared in a type�alias�stmt can be used interchangeable
with the corresponding type�spec� entities declared with TYPE�type�alias�name�
have the same type as if they were declared with the corresponding type�spec�

Note ����

For derived type type�names� this is similar to a rename of the name in a
USE statement� The type�alias�stmt is more general in that it also allows
aliasing intrinsic types� and is not limited to the USE statement�

���Apr��� Interoperability of Fortran and C 	�

Note ����

Example�
The Xlib application programming interface includes a type Window� It is
de
ned in
X���Xlib�h�� by the following typedefs�

typedef unsigned long XID�

typedef XID Window�

Rather than directly using an INTEGER�C ULONG KI� type�spec in
the application program� these details may be hidded by declaring type
aliases

TYPE XID �� INTEGER�c ulong ki�

TYPE Window �� TYPE�XID�

for the above typedefs and using TYPE�Window� as the type�spec�

����
 No support of
wchar�h� and
wctype�h�

This Technical Report does not specify mappings for the types de
ned in
wchar�h�

and
wctype�h�� which are standardized in Normative Addendum 	 to IS �����

	� Draft PDTR ���Apr���

��� Procedure calling conventions

This section de
nes mechanisms to instruct the Fortran processor to follow the call�
ing conventions of the processor designated by the lang�keywords C and C STDARG
when an external procedure de
ned by means of C is referenced� An explicit
interface for that procedure shall be accessible in all scoping units containing a
procedure reference that should follow these modi
ed calling conventions� The cor�
responding interface�body shall contain a bind�spec speci
cation with lang�keyword

C or C STDARG�

If a C function�s return type is void� the Fortran interface for such a function shall
specify a subroutine� If a C function returns a type other than void for which this
Technical Report establishes a corresponding Fortran type� the Fortran interface
shall specify a function with that type� In all other cases� the Fortran interface
may specify a function but the behavior is processor dependent�

If the bind�spec does not specify a name�string� the function�name or subroutine�
name is used to generate an external entry for the procedure� using the Fortran
processor�s conventions �this implies ignoring alphabetic case of the name�� If a
name�string is speci
ed� the external entry is generated using the C processor�s
conventions� as if the value of the name�string were a C identi
er with external
linkage�

����� Procedure interface for BIND�C� binding

The interface�body that speci
es a Fortran interface to a C procedure shall specify
dummy arguments that correspond by position with the arguments of the C pro�
cedure� and have a Fortran type that corresponds to the type of the C procedure
argument as speci
ed in section
�� of this Technical Report� If the argument of
a C procedure has type �function returning T� �or �pointer to function return�
ing T� ��� the Fortran interface shall specify a dummy procedure� There shall
be an explicit interface for the dummy procedure in the speci�cation�part of the
interface�body� that interface shall specify the BIND�C� attribute�
The following additional rules apply for the speci
cation of the procedure interface�

� The POINTER and TARGET attr�specs shall not appear

� INTENT other than IN shall not be speci
ed for dummy arguments which
are passed according to the C default conventions �call by value�

� If a dummy argument is of derived type� that type shall have the BIND�C�
attribute

� A dummy argument shall not have type COMPLEX or LOGICAL

� OPTIONAL shall not be speci
ed

� A dummy procedure shall have an explicit interface� and that interface shall
specify the BIND�C� attribute

���Apr��� Interoperability of Fortran and C 	�

In a reference to a procedure with the BIND�C� attribute� all scalar dummy ar�
guments that do not have the BYREFERENCE attribute imply that the actual
argument is passed by value� All actual arguments that have the DIMENSION
or BYVALUE attribute are passed by reference� The processor shall generate a C
function type for actual arguments that are associated with dummy procedures�
using the speci
cations of the dummy procedure�s explicit interface�

Editor�s Note ��

See the Editor�s note in section
���� concerning BYREFERENCE� Key�
word arguments should be allowed� PURE should be allowed� if the C
procedure is pure� ELEMENTAL reference may be allowed� this may need
some wording� RECURSIVE is allowed and has no e�ect�

Note ����

Examples of bindings to the C routine double MPI�Wtime�void��

INTERFACE

FUNCTION MPI�WTIME� � �

USE iso�c� ONLY� c�dbl�kr

REAL�c�dbl�kr�� BIND�C��MPI�Wtime�� �� MPI�WTIME�

END FUNCTION MPI�WTIME�

BIND�C��MPI�Wtime�� FUNCTION MPI�WTIME� � �

USE iso�c� ONLY� c�dbl�kr

REAL�c�dbl�kr� MPI�WTIME�

END FUNCTION MPI�WTIME�

REAL�c�dbl�kr� FUNCTION MPI�WTIME� � �

USE iso�c� ONLY� c�dbl�kr

BIND�C��MPI�Wtime�� �� MPI�WTIME�

END FUNCTION MPI�WTIME�

END INTERFACE

The kind value c�dbl�kr is de
ned in section
��� Note that in the
last interface�body� it is also accessible in the function�stmt�

����� Procedure interface for BIND�C STDARG� binding

The C STDARG language�keyword can be used to specify the binding to a C
procedure that utilizes C variable argument lists� as de
ned in the ISO C header

stdarg�h��
If C STDARG binding is speci
ed� the behavior is as if C binding were speci
ed�
except for the following rules for the speci
cation of the procedure interface�

� The interface shall specify at least one non�optional dummy argument

�� Draft PDTR ���Apr���

� The OPTIONAL attribute on dummy arguments that are not dummy pro�
cedures is allowed

� In the dummy�arg�name�list� all OPTIONAL dummy arguments shall be
speci
ed after all non�optional dummy arguments

If a procedure interface speci
es BIND�C STDARG� binding� the semantics of a
call to this procedure are changed so that all non�optional arguments are passed
according to the conventions of the C processor �like for BIND�C� binding speci
ed
above�� all PRESENT optional paramenters are passed in a way the
stdarg�h�
macros can handle� and nothing is passed for those optional parameters that
are not PRESENT� The last non�optional parameter speci
es the o�set for the
va start macro�

��� Access to global C data objects

This section de
nes mechanisms to reference global data objects that are de
ned
in C translation units from within a Fortran program�

To access a C data object of type T with external linkage from within Fortran� a
Fortran variable with the Fortran type corresponding to T �as speci
ed in section

�� of this Technical Report� shall be declared in a module� and may then be
accessed within the module and all other scoping units that contain a module
reference for that module�
To specify that the storage for the Fortran variable is reserved by the C translation
unit� the BIND�C� attribute shall be speci
ed� with a name�string whose value is
the identi
er of the C data object� The following additonal restrictions apply�

� The BIND�C� attribute for a module variable implies the SAVE attribute

� No initialization shall appear in the entity�decl

� PARAMETER� POINTER or TARGET shall not be speci
ed

� Appearance of a data entity having the BIND�C� attribute as a common�

block�object is prohibited�

� For a given name�string� there shall be at most one Fortran variable with
the BIND�C�name�string� attribute in the program�

� The name�string is a global name� The rules of section 	��	 apply�

Editor�s Note ��

This is a very preliminary speci
cation� Some more work is needed� espe�
cially to avoid unintended storage association�

���Apr��� Interoperability of Fortran and C �	

� Editorial changes to ISO	IEC �
���� � ���

This section contains the editorial changes to ISO�IEC 	�
��	�	��� required to
include the extensions de
ned in this Technical Report in a revised version of the
International Standard for the Fortran language�

Page xiv

Line ��

Update the �Organization of this International Standard� subclause�

Page �

Subclause ���
Conformance paragraph at line
� may be a�ected�

Page �

Subclause ��

At the end of the references� add

ISO�IEC �����	���� Information technology Programming languages
 C �also ANSI X
�	���	���� American National Standard for Infor�
mation Systems Programming Language C�

Page �	

Subclause ���

In
R��� declaration�construct is derived�type�def

or interface�block

� � �

add after line ��

or type�alias�stmt

Page �	

Subclause ���
In
R�	� speci�cation�stmt is access�stmt

or allocatable�stmt

� � �

add after line
��

or bind�stmt

�� Draft PDTR ���Apr���

Page �

Subclause �����
In line �� change �procedures� to �procedures� modules��
After line �� add

Entities de
ned in an intrinsic module may be used without further
de
nition or speci
cation in those scoping units that contain a module
reference for that intrinsic module� subject to the rules of use associa�
tion �		�
����

Page ��

Subclause �����
In
R��� private�sequence�stmt is PRIVATE

or SEQUENCE

add after line
	�

or bind�spec

Editor�s Note ��

Also do a global rename of private�sequence�stmt to derived�type�body�stmt�

Page ��

Subclause �����
In the Constraints list� add after line
��

Constraint� If a bind�spec is present� it shall not contain a name�string and
lang�keyword shall not be C STADRG�

Constraint� If a bind�spec is present� all derived types speci
ed in component
de
nitions shall have that BIND attribute�

Page �

Subclause �����

In the Constraints list� add after line ���

Constraint� component�initialization shall not appear if a bind�spec is present
in the derived type de
nition�

Page
�

Subclause ���
In
R��
 attr�spec is PARAMETER

or access�spec

� � �

add after line ���

or bind�spec

���Apr��� Interoperability of Fortran and C �

Page
�

Subclause ���
In the Constraints list� add after line 	��

Constraint� A bind�spec may only be speci
ed in an interface�body or in the
speci�cation�part of a module�

Page
�

Subclause ���

After the Constraints list� add after line �	�

If a bind�spec is present� the additional constraints of section 	��x ap�
ply�

Page ��

Subclause �����

After section ��	����� insert a new section after line ��

�������a BIND attribute

The BIND attribute speci
es that mechanisms for interoper�
ability with other languages are used� Binding to entities that are
de
ned by means of ISO C and have external linkage is described
in section 	�� This attribute may also be declared via the BIND
statement �	��x�y��

Editor�s Note ��

Maybe dd a note explaining that there is another usage of BIND� in derived�

type�def s�

Page ��

Subclause ���

At line �	� change

This also applies to EXTERNAL and INTRINSIC statements�

to

This also applies to BIND� EXTERNAL and INTRINSIC statements�

Editor�s Note ��

Maybe something in ��
 �dynamic association� for dealing with C dynamic
memory in BIND�C� structures� like the C string datatypes���

Editor�s Note ��

Maybe something in section � for the C string operations���

�� Draft PDTR ���Apr���

Page �
�

Subclause ��������
After line 	�� add a new clause to the list �	��

�f� That should follow other than the processor�s default calling con�
ventions �	��x��

Page �	�

Subclause ��������

In
R	�	� pre�x�spec is type�spec

or RECURSIVE
or PURE
or ELEMENTAL

add after line 	�

or bind�spec

Page �	�

Subclause ��������
In the Constraints list following R	�	�� add after line ��

Constraint� A bind�spec may only be speci
ed in an interface�body�

Page �	�

Subclause ��������

Add after line ��

If a bind�spec is present in the pre�x or speci�cation�part of the func�
tion� the additional constraints of section 	��x apply�

Page �	�

Subclause ��������

After R		�
 at line
�� add�

Constraint� If a bind�spec is present in the speci�cation�part of the subroutine�
! shall not appear as dummy�arg�

Page �	

Subclause ��������
Add after line ��

If a bind�spec is present in the speci�cation�part of the subroutine� the
additional constraints of section 	��x apply�

Page ���

Subclause ������

After �external subprogram on line 	�� add �� except when the binding mechanisms
described in section 	� are used��

���Apr��� Interoperability of Fortran and C ��

Page ���

Subclause ����
�Scope of names� may be a�ected�

Page �
�

New clause �

Introduce a new section 	� �Interoperability with ISO C��

Editor�s Note �

This is a big edit� The
nal form of section
 of this TR should be that this
edit reads �take section
� replace section heading with "Interoperability
with ISO C�� replace all "TR� by "IS�� renumber sectioning� rules and notes�
and include the result as section 	� into IS 	�
��	��

Page �
�

Annex A

Update the Glossary�
After ��
�
�� add the term binding with a de
nition�
After ������ add the term calling conventions with a de
nition�

Page �	

Annex C
C���� �Procedures de
ned by means other than Fortran �	����
� � and C���
 �Pro�
cedure interfaces �	��
�� on pages

�� may be a�ected�

Page �
�

Annex D
Update the Index ���

�� Draft PDTR ���Apr���

