
ISO/IEC JTC1/SC22/WG5 N1209
 A SPECIFIC PROPOSAL FOR INTERVAL ARITHMETIC IN FORTRAN

 March 20, 1996

 compiled by

 R. Baker Kearfott

 as a result of discussions in the group consisting of

 Keith Bierman
 George Corliss
 David Hough
 Andrew Pitonyak
 Michael Schulte
 William Walster
 Wolfgang Walter

CONTENTS

I. INTRODUCTION

II. GENERAL PRINCIPLES

III. THE INTERVAL DATA TYPE AND INTERVAL INTRINSIC FUNCTIONS

 A. The Data Type and Basic Operations
 B. New Infix Operators
 C. Interval Versions of Relational Operators
 D. Special Interval Functions
 E. Interval Versions of the Intrinsics

IV. INTERVAL I/O

 A. Interval Constants
 B. The Interval VF Edit Descriptor
 C. The Interval VE Edit Descriptor
 D. The Interval SE and SF Edit Descriptors
 E. The Interval SG and VG Edit Descriptors
 F. Other Interval I/O
 G. An Example

V. ADDITIONAL NOTES (not part of proposal proper)

 A. On Optimization of Interval Expressions
 B. Can Interval Arithmetic be Implemented Effectively in a Module?

===

ISO/IEC JTC1/SC22/WG5 N1209
Page 2 of 26

I. INTRODUCTION

This document is to propose standard syntax and requirements for
interval computations in Fortran, and to give occasional guidelines for
implementation. These requirements are based upon precedents, as well
as thorough discussion of various points.

II. GENERAL PRINCIPLES

Containment: Every interval result must CONTAIN the exact mathematical
range of the corresponding point operation or function evaluation.

 Note: Containment is crucial for verification and validation
 computations to be rigorous, and is easy to achieve using
 floating point arithmetic and directed rounding, as defined by
 the IEEE 754 standard, or (less accurate) simulations thereof.

Accuracy: There is no accuracy requirement.

 Note: The lack of an accuracy requirement facilitates
 universal implementation of the standard syntax.

 Note: Ideally, results of the elementary operations and
 intrinsic functions should have as small a width as is
 mathematically possible subject to the condition that the
 result contain the exact mathematical range. This is not
 difficult for the four basic operations "+", "-", "*", and "/",
 if IEEE 754 arithmetic is available. For the standard
 functions, a more realistic goal is that the lower bound be at
 most 1ULP (unit in the last place) less than the ideal lower
 bound, and that the upper bound be at most 1ULP more than the
 ideal upper bound.

Speed: There is no speed requirement.

 Note: It is reasonable to expect machine-specific
 implementations to come within a factor of 5, or perhaps within
 a factor of 2, of the speed of point arithmetic. This is
 particularly true if IEEE 754 is available and if the floating
 point standard function library was designed to produce results
 with known relative accuracy.

Intrinsic data type: The proposed standard requires an intrinsic
interval data type to implement interval arithmetic in Fortran.

ISO/IEC JTC1/SC22/WG5 N1209
Page 3 of 26

 Note: Some, but not all, aspects of the standard can be
 implemented in a module. In particular, the interval edit
 descriptors for interval I/O (VE, VF, and VG formats, as well
 as extensions of the standard formats to interval computations)
 cannot be implemented within a module, although subroutine
 calls can be used to implement interval I/O. The representation
 of interval constants within Fortran executable statements,
 e.g. representing the interval [1,2] as (<1,2>) on the right
 side of an assignment statement, cannot be done with a module.
 Also, type parameters for the interval data type cannot be
 implemented with a module. Finally, there is no way to define
 the natural precedence of interval operators within a module.

In addition to the containment requirement, the following items
are required:

* an INTERVAL numeric data type, obeying the same syntax as the other
 numeric data types,

* several new infix operators and intrinsics,

* INTERVAL versions of all Fortran 90 intrinsics that accept REAL
 data,

* natural extensions to Fortran standard I/O to include intervals.

 Note: A complex interval data type is neither required nor
 prohibited.

 Note: Various forms of extended interval arithmetic are neither
 prohibited nor required. There are at least three different
 extended interval arithmetics (Kahan arithmetic, Kaucher
 arithmetic, and Markov arithmetic), all useful but designed for
 different purposes.

III. THE INTERVAL DATA TYPE AND INTERVAL INTRINSIC FUNCTIONS

A. The Data Type and Basic Operations

Name and structure: The INTERVAL type is a numeric type. Its values
are closed and bounded real interval which are defined by an ordered
pair of real values. The first real value is the lower bound (or
infimum), the second real value is the upper bound (or supremum). All

ISO/IEC JTC1/SC22/WG5 N1209
Page 4 of 26

real numbers between and including these two bounds (or endpoints) are
said to be elements of the interval.

The two storage units of an interval type are each of the same real
type available on the processor. The individual storage units are
accessible through the functions INF and SUP defined below.

Arithmetic operations: The four basic operations +, -, *, are defined
to contain the ranges of the corresponding operations on real numbers.
Specifically, let X = [xl,xu] an Y = [yl,yu] be intervals, where xl
represents the lower bound of X, xu represents the upper bound of X, yl
represents the lower bound of Y, and yu represents the upper bound of
Y. Then:

X + Y shall contain the exact value [xl + yl, xu + yu],

X - Y shall contain the exact value [xl - yu, xu - yl],

X * Y shall contain the exact value
 [min{xl*yl, xl*yu, xu*yl, xu*yu}, max{xl*yl, xl*yu, xu*yl, xu*yu}]

1 / X shall contain the exact value

 | [1/xu, 1/xl] xu < 0 or xl > 0
 |
 | [-inf, inf] otherwise

where "inf" is the abbreviation for the symbols IEEE_NEGATIVE_INF and
IEEE_POSITIVE_INF stipulated below.

X / Y shall contain the exact value
 [min{xl/yu, xl/yl, xu/yu, xu/yl}, max{xl/yu, xl/yl, xu/yu, xu/yl}]

 if yu < 0 or yl > 0

 and shall be equal to [-inf, inf] otherwise.

 Note: The second case of interval division may be replaced by
 sharper definitions on particular processors in a separate
 extended interval arithmetic.

 Note: Using floating point arithmetic, the operations on the
 right-hand sides may first be computed, then the lower bound
 may be rounded down to a number known to be less than or equal
 to the exact mathematical result, and the upper bound may be
 rounded up to a number known to be greater than or equal to the
 exact mathematical result. If a processor provides directed
 roundings upwards (towards plus infinity) and downwards

ISO/IEC JTC1/SC22/WG5 N1209
Page 5 of 26

 (towards minus infinity), then the operation and the rounding
 can be performed in one step, e.g. if the processor conforms to
 the IEEE 754 standard. The excess interval width caused by
 this outward rounding is called ROUNDOUT ERROR.

 Note: There is an alternate implementation of interval
 multiplication that also gives the range of the real operator
 "*" over the intervals X and Y. This alternative involves nine
 cases determined by the algebraic signs of the endpoints of X
 and Y; see page 12 of R. E. Moore, "Methods and Applications of
 Interval Computations," SIAM, Philadelphia, 1979. The average
 number of multiplications required for this alternative is less
 than above, but one or more comparisons are required.
 Implemented in software, the relative efficiencies of the
 alternative above and the nine-case alternative are
 architecture-dependent, although the nine-case alternative is
 often preferred in low-level implementations designed for
 efficiency.

 Note: The only processor requirement is that the computed
 intervals contain the exact mathematical range of the
 corresponding point operations. In an ideal implementation (not
 required), the result of the operations is the smallest-width
 machine interval that contains the exact mathematical range.

 Note: IEEE arithmetic helps with outward roundings. For example
 take

 [xl,xu] + [yl,yu] = [xl+yl,xu+yu]

 in exact interval arithmetic. The IEEE 754 standard defines a
 downwardly rounded operation as producing the same result as
 would be obtained by computing the exact result, then rounding
 it to the nearest floating point number less than or equal to
 the exact result, and an upwardly rounded operation as
 producing the same result as would be obtained by computing the
 exact result, then rounding it to the nearest floating point
 number greater than or equal to the exact result. Thus, if the
 result xl+yl is rounded down and xu+yu is rounded up
 according to the IEEE specifications, an ideal interval
 addition results.

Infinities: Two (case-insensitive) symbols, IEEE_NEGATIVE_INF and
IEEE_POSITIVE_INF, shall also be defined.

 Note: IEEE_NEGATIVE_INF and IEEE_POSITIVE_INF correspond to
 negative infinity and positive infinity in IEEE arithmetic, but
 shall be defined on all processors. The symbol IEEE_NEGATIVE_INF

ISO/IEC JTC1/SC22/WG5 N1209
Page 6 of 26

 represents something less than all floating point numbers, and
 IEEE_POSITIVE_INF represents something greater than all floating
 point numbers. Intervals with one or both endpoints equal to
 these symbols shall be allowed, and arithmetic on them is
 defined, consistently with IEEE arithmetic.

The empty set: The interval (<IEEE_POSITIVE_INF,IEEE_NEGATIVE_INF>)
shall represent the empty set.

 Note: Intervals in which the upper endpoint is less than the
 lower endpoint are non-standard. However, various useful
 non-standard extensions can be based on such representations.

Mixed mode operations: mixed-mode INTERVAL/REAL and mixed mode
INTERVAL/INTEGER operations shall be defined. The result of such a
mixed-mode operation shall be the same as if the other data type
(INTEGER or REAL) were first converted to an INTERVAL that contains the
mathematical interpretation of the original data type.

 Note: Mixed-mode INTERVAL/COMPLEX is not defined.

No implicit conversion from interval: Implicit conversion from interval
to other data types shall not be allowed.

 Note: The functions INF and SUP defined below may be used to
 convert an INTERVAL to another data type. Similarly, MID may
 also be viewed as producing a real approximation to an
 interval, while INTERVAL converts from real to interval.

Implicit conversion to interval: Implicit conversion to interval shall
be possible. The result of an implicit conversion to interval shall
contain the mathematical interpretation of the original data type.

Type parameters: The INTERVAL data type shall admit one or more type
parameters. Each type parameter shall be equal to the corresponding REAL
type parameter.

 Note: The default INTERVAL type should correspond to a REAL type
 with at least 64 bits. ("DOUBLE PRECISION" on many machines). It
 is the consensus of experts that 32-bit interval arithmetic is
 of limited use.

B. New Infix Operators

The following infix operators shall be a part of standard interval
support.

ISO/IEC JTC1/SC22/WG5 N1209
Page 7 of 26

 Syntax function
 ______ ________

Z = X.IS.Y Z <-- intersection of X and Y, that is,
 [max{xl,yl},min{xu,yu}] if
 max{xl,yl} < = min{xu,yu} and
 [inf,-inf] otherwise.

Z = X.CH.Y Z <-- [min{xl,yl}, max{xu,yu}]
 ("interval hull" of X and Y. The mnemonic is
 "convex hull")

 X.SB.Y .TRUE. if X is a subset of Y
 (i.e. if xl >= yl .AND. xu <= yu)

 X.PSB.y .TRUE. if X is a proper subset of Y
 (i.e. if X.SB.Y .AND. (xl > yl .OR. xu < yu)

 X.SP.Y .TRUE. if and only if Y.SB.X is true
 (i.e. if xl <= yl .AND. xu >= yu)

 X.PSP.Y .TRUE. if and only if Y.PSB.X is true
 (i.e. if Y.SB.X .AND. (yl > xl .OR. yu < xu)

 X.DJ.Y .TRUE. if X and Y are disjoint sets
 (i.e. if xl > yu or xu < yl)

 R.IN.X .TRUE. if the REAL value R is contained in the
 interval X (i.e. if xl <= R <= xu)

 Note: Intervals are viewed as closed intervals, so, if R.IN.X,
 then R may be equal to one of the endpoints of X.

C. Interval Versions of Relational Operators

The following relational operators shall be extended to interval
operations, in the "certainly true" sense. That is, the result is .TRUE.
if and only if it is true for each pair of real values taken from the
corresponding interval values.

 Syntax function
 ______ ________

 X.LT.Y .TRUE. if xu < yl

ISO/IEC JTC1/SC22/WG5 N1209
Page 8 of 26

 X.GT.Y .TRUE. if xl > yu

 X.LE.Y .TRUE. if xu <= yl

 X.GE.Y .TRUE. if xl >= yu

As with non-interval data types in the Fortran standard, the newer
symbols "<", ">", "<=",and ">=" shall be interchangeable with ".LT.",
".GT.", ".LE.", and ".GE.", respectively.

Another set of relational operators, the POSSIBLY TRUE relationals,
shall be defined as follows.

 Syntax function
 ______ ________

 X.PLT.Y .TRUE. if xl < yu (i.e. if .NOT.(X.GE.Y))

 X.PGT.Y .TRUE. if xu > yl (i.e. if .NOT.(X.LE.Y))

 X.PLE.Y .TRUE. if xl <= yu (i.e. if .NOT.(X.GT.Y))

 X.PGE.Y .TRUE. if xu >= yl (i.e. if .NOT.(X.LT.Y))

Finally, equality and inequality of intervals are defined by viewing
the intervals as sets.

 Syntax function
 ______ ________

 X.EQ.Y .TRUE. if xl=yl and xu=yu

 X.NE.Y .TRUE. if .NOT. (X.EQ.Y)

 Note: "/=" and "==" shall be interchangeable with ".NE." and
 ".EQ.", respectively.

D. Special Interval Functions

The following utility functions shall be provided for conversion from
INTERVAL to REAL, etc.

ISO/IEC JTC1/SC22/WG5 N1209
Page 9 of 26

 Syntax function attainable accuracy
 ______ ________ ___________________

R = INF(X) Lower bound of X (the value in the lower
 storage unit of the interval
 datum X)

R = SUP(X) Upper bound of X (the value in the upper
 storage unit of the interval
 datum X)

R = MID(X) Midpoint of X (a floating point approximation,
 always greater than or equal to
 the value returned by INF and
 less than or equal to the value
 returned by SUP)

R = WID(X) R <-- xu - xl (the value shall be rounded up,
 "Width" to be greater than or equal to
 the actual value)

R = MAG(X) R <-- max { |xl|, |xu| }
 "Magnitude"

 | min { |xl|, |xu| } if .NOT.(0.IN.X),
R = MIG(X) R <--|
 | 0 otherwise.

 "Mignitude"

 |
Z = ABS(X) Z <-- | [min{|x|}, max{|x|}]
 | x.IN.X x.IN.X

 Range of absolute value

Z = MAX(X,Y) Z <-- [max {xl,yl}, max {xu,yu}]

 Range of maximum
 MAX shall be extended analogously
 for more than two
 arguments.

Z = MIN(X,Y) Z <-- [min {xl,yl}, min {xu,yu}]

ISO/IEC JTC1/SC22/WG5 N1209
Page 10 of 26

 Range of minimum
 MIN shall be extended analogously
 for more than two
 arguments.

N = NDIGITS(X) Number of leading decimal digits that are the same in
 xl and xu. n digits shall be counted as the same if
 rounding xl to the nearest decimal number with n
 significant digits gives the same result as rounding
 xu to the nearest decimal number with n significant
 digits.

Z = INTERVAL(R,S) Z <-- [R,S] (see below)
Z = INTERVAL(R) Z <-- [R,R]

The conversion function INTERVAL shall be an enclosure for the
specified interval, with an ideal enclosure equal to a machine interval
of minimum width that contains the exact mathematical interval in the
specification.

 Note: On many machines, INF, SUP, MAG, MIG, ABS, MAX, and MIN
 can be exact, if the target is of a type that corresponds to the
 input. This is because these functions merely involve storing one
 of the endpoints of the interval into the target variable.
 Similarly, the conversion function INTERVAL can be exact on such
 machines if it specifies conversion from REAL data of
 corresponding type.

All of these functions except MAX, MIN, and NDIGITS shall be elemental
functions.

 Note regarding conversion of decimal constants: If R or S are
 decimal constants, then a conversion error can occur before the
 conversion to INTERVAL. For this reason, such quantities
 should be input as interval constants (see I/O below), rather
 than with the function INTERVAL. For example, in the statement

 Z = INTERVAL(0.500000000000000000000000000123454321),

 the constant 0.500000000000000000000000000123454321 will first
 be converted to an internal representation equal to 0.5, then
 the internal representation of the stored interval is
 [0.5,0.5], an interval that does not contain the interval
 constant. However, if an interval constant (defined at the
 beginning of the I/O section below) is used, the statement

 Z = (< 0.500000000000000000000000000123454321>)

ISO/IEC JTC1/SC22/WG5 N1209
Page 11 of 26

 causes the internal representation for Z to contain the value
 0.500000000000000000000000000123454321.

 Note regarding NDIGITS: For example, if X = [0.1996,0.2004],
 then three leading decimal digits of this function are the
 same, and NDIGITS(X) is equal to 3. This is because, if
 .1996 and .2004 are each rounded to the nearest decimal number
 with three significant digits, they both round to .200, yet
 they round to different four-digit decimal numbers.

 Note: three interval functions, MAG, MIG, and ABS, correspond to
 the point intrinsic ABS. The specification of ABS is as the
 range of the absolute value function, consistent with the general
 principle that the results of interval functions shall contain
 the ranges of corresponding point intrinsics. Although "MAG(X)"
 is written |X| in much of the interval literature, it is more
 natural in various applications to have ABS(X) denote the range
 of the absolute value function.

 Note: The function WID(X) shall be upwardly rounded, since it
 often appears in convergence criteria of the form WID(X) <
 EPS. The criterion is certain to be satisfied if the computed
 value WID(X), used in the comparison, is greater than or equal
 to the exact value.

E. Interval versions of the intrinsic functions
 __

General requirements are:

* All Fortran intrinsic functions that accept REAL data shall also
 accept INTERVAL data.

* All functions shall return enclosures of the range.

* Those generic intrinsics that are REAL elemental functions shall also
 operate as elemental functions with INTERVAL vector data.

 Note: The sharpness of the enclosures is not specified, but an
 ideal enclosure should be the smallest-width interval with
 machine numbers as endpoints that contains the actual range.
 Thus, the only accuracy requirement for interval versions of the
 intrinsics mandates that they contain the range of the
 corresponding mathematical function over the set of interval
 arguments. (In some cases, such as when the argument to the

ISO/IEC JTC1/SC22/WG5 N1209
Page 12 of 26

 intrinsic contains a pole of the function, the range will
 be the interval [-inf,inf].)

IV. INTERVAL I/O

The following are specified:

* the form of INTERVAL constants;

* conversion of INTERVAL constants to internal storage;

* four formats for input and output of INTERVAL values.

The underlying principle is the same as with the four basic operations
and the interval intrinsic functions: the interval result shall contain
the exact mathematical result. Specifically:

* On input, the stored interval shall contain the interval represented by
 the character input string.

* On output, the printed interval shall contain the internally
 represented interval.

A. Interval Constants

Both where literal constants are admitted in a program and as input or
output data, INTERVAL's shall be represented by a single REAL or
INTEGER or a pair of REAL's, INTEGER's, or combinations thereof,
beginning with "(<", separated by "," if there are two numbers, and
ending in ">)". For example

(<1,2>), (<1E0,3>), (<1>), and (<.1234D5>)

are all valid INTERVAL constants. An INTERVAL constant specified by a
single number is the same as an INTERVAL constant specified by two
numbers, both of whose endpoints are equal to the single number. When
such a decimal constant is converted to its internal representation, the
internal representation shall contain the decimal constant, regardless of
how many digits are specified by the decimal constant. For example,
upon execution of the statement:

X = (<0.31415926535897932384626433832795028D+01>)

ISO/IEC JTC1/SC22/WG5 N1209
Page 13 of 26

the interval X shall contain the smallest-width machine interval that
contains the number 3.1415926535897932384626433832795028.

 Note: Thus, on machines in which the interval data type X
 appearing in the example above contained components with accuracy
 that corresponded to less than 35 decimal digits, the interval X
 would contain the mathematical number PI.

 Note: In contrast, the statement

 X = 0.31415926535897932384626433832795028D+01

 is allowed, since implicit conversion is allowed. However, the
 compiler can first convert the REAL decimal constant to a valid
 REAL that may correspond to fewer digits than the original
 representation. When this REAL is rounded into an interval, the
 resulting interval does not necessarily contain PI.
 As a simpler example of this phenomenon, take the assignment
 statement

 X = 0.500000000000000000000000000123454321

 If the internal representation of a real only corresponded to 16
 decimal digits, then the right-hand side may first be rounded to
 the binary equivalent of

 0.5000000000000000.

 The interval X would then be the binary equivalent of

 (<0.5000000000000000,0.5000000000000000>),

 and X would not contain the original right-hand-side. To
 guarantee X contains the actual right-hand side, the statement

 X = (<0.500000000000000000000000000123454321>)

 should be used.

B. The Interval VF Edit Descriptor

The VF edit descriptor is of the form VF<w>.<d>. Here, <w> is meant to
be the width of each of the two numeric fields of the output or input,
and <d> is the number of units to the right of the decimal place in each
of the two output fields. Formally, an output field for a VF<w>.<d>
edit descriptor is of the form <vf-output-field>, where

ISO/IEC JTC1/SC22/WG5 N1209
Page 14 of 26

1) vf-output-field is (<f-output-field_sub1, f-output-field_sub2>)

2) f-output-field is the output field for the F<w>.<d>
 format, where <w> and <d> are the
 values specified in the VF<w>.<d>
 edit descriptor.

The value corresponding to f-output-field_sub1 shall be less than or
equal to the exact lower bound of the corresponding output list item,
regardless of the number of digits in the field and number of digits in
the internal representation. The value corresponding to
f-output-field_sub2 shall be greater than or equal to the exact upper
bound of the corresponding output list item, regardless of the number of
digits in the field and number of digits in the internal representation.

It shall be possible to use the VF edit descriptor to output REAL data.
In that case, the value corresponding to f-output-field_sub1 shall be
less than or equal to the exact value of the corresponding real output
list item, regardless of the number of digits in the field and number of
digits in the internal representation. The value of f-output-field_sub2
shall be greater than or equal to the exact upper bound of the
corresponding real output list item, regardless of the number of digits
in the field and number of digits in the internal representation.

An input field for a VF<w>.<d> edit descriptor is of the form
vf-input-field, where

3) vf-input-field is f-input-field
 or (< f-input-field >)
 or (< f-input-field_sub1, f-input-field_sub2 >)

4) f-input-field is a valid input field for the F<w>.<d>
 format, where <w> and <d> are the
 values specified in the VF<w>.<d>
 edit descriptor.

If vf-input-field is of the form (< f-input-field_sub1,
f-input-field_sub2 >), then f-input-field_sub1 represents the lower
bound and the f-input-field_sub2 represents the upper bound. In this
case, the lower bound of the internal representation of the variable in
the corresponding input item list shall be less than or equal to
f-input-field_sub1, and the upper bound of the variable shall be greater
than or equal to f-input-field_sub2, regardless of the number of digits
in the field and number of digits in the internal representation.

If vf-input-field is of the form f-input-field or (< f-input-field >),
then the internal representation of the corresponding variable in the

ISO/IEC JTC1/SC22/WG5 N1209
Page 15 of 26

input item list shall have lower bound that is less than or equal to the
value represented by f-input-field, and shall have upper bound that is
greater than or equal to f-input-field, regardless of the number of
digits in the field and number of digits in the internal representation.

In ALL interval input fields, blanks between an initial "(<" and the
first numerical fields, blanks to the left and right of a separating
",", and blanks to the left of a closing ">)" shall be ignored.

Examples. Suppose it is required to input the degenerate interval
[1.5,1.5]. Suppose the READ statement is:

 INTERVAL X
 READ(*,'(1X,VF18.5)') X

Then any of the following input lines results in an internal
representation for X that is equal to or contains the interval
[1.5,1.5].

 1.5

or

 1.5E0

or

 (<1.5>)

or

 (<1.5,1.5>)

 Note: It is also possible to use single-number input to
 describe intervals of width 1 unit in the last place exhibited,
 and centered on the input value. See the SF edit descriptor
 below.

C. The Interval VE Edit Descriptor

VE editing is analogous to VF editing, except that it corresponds to the
E, rather than F, edit descriptor.

The form and interpretation of the input field shall be the same as for
VF editing.

ISO/IEC JTC1/SC22/WG5 N1209
Page 16 of 26

An output field for a VE<w>.<d>[E<e>] edit descriptor shall be of the
form ve-output-field, where

5) ve-output-field is (< e-output-field_sub1, e-output-field_sub2 >)

6) e-output-field is the output field for the E<w>.<d>[Ee]
 format, where <w>, <d>, and <e> are the
 values specified in the VE<w>.<d>[E<e>]
 edit descriptor.

The value corresponding to e-output-field_sub1 shall be less than or
equal to the exact lower bound of the corresponding output list item,
and the value corresponding to e-output-field_sub2 shall be greater than
or equal to the exact upper bound of the corresponding output list item,
regardless of the number of digits in the field and number of digits in
the internal representation.

It shall be possible to use the VE edit descriptor to output REAL data.
In that case, the value corresponding to e-output-field_sub1 shall be
less than or equal to the exact value of the corresponding real output
list item, and the value of e-output-field_sub2 shall be greater than or
equal to the exact upper bound of the corresponding real output list
item, regardless of the number of digits in the field and number of
digits in the internal representation.

For both input and output, the symbols "(<" , ">)" and "," that are part
of the field shall not be counted as part of the width <w> of the
overall VE field. The total width of the field is thus 2<w>+5.

Example: Suppose an interval variable X is defined in a program,
suppose the program contained the statement

 WRITE(*,'(1X,VE12.5E1)') X

and suppose the internal representation of X is that of the interval

 (<1.9921875,2.9921875>)}}

Then a valid output produced by the WRITE statement is

 (< +0.19921E+1, +0.29922E+1>)

D. The Interval SE and SF Edit Descriptors

ISO/IEC JTC1/SC22/WG5 N1209
Page 17 of 26

The SE and SF formats are for single number output of INTERVAL's, with
an implied error of plus or minus .5 units in the last exhibited digit.

 Note: In a decimal representation, a number with an implied
 error of plus or minus .5 units in the last exhibited digit
 corresponds to the set of decimal numbers that are rounded
 into the exhibited number.

The basic representation of an INTERVAL as a single number is as
follows:

 a) A single number without a decimal point shall represent an
 interval whose lower and upper endpoints are identical
 (a degenerate, i.e. a point interval).

 b) A single number with a decimal point shall represent
 an interval whose endpoints are constructed by subtracting
 and adding .5 units in the last exhibited decimal digit.

Examples. Here are some intervals represented by single numbers:

 Single Number Interval represented

 (<.1>) [0.05,.15]
 (<1>) [1, 1]
 (<.1000>) [.09995, .10005]
 (<1E-1>) [0.1,0.1]
 (<.0>) [-.05,.05]
 (<0.E3>) [-0.5E3, 0.5E3]

 Note: Degenerate interval decimal constants, such at [0.1,0.1],
 are not always representable exactly on binary machines.
 Conversion of such degenerate intervals to internal format is
 specified by outward rounding, as explained below.

The SE and SF specifiers have the same form as the E and F specifiers,
i.e. SF<w>.<d> and SE<w>.<d>[E<e>]. However, the output of an SE or SF
specifier shall be of the form

 (<single-number-output>)

where single-number-output is of the form specified by F<w>.<d> for the
SF<w>.<d> specifier, and of the form specified by E<w>.<d>[E<e>] for the
SE<w>.<d>[E<e>] specifier, with the following differences:

* Only those leading digits that are equal in the left and right
 endpoints of the internally represented interval, in the sense

ISO/IEC JTC1/SC22/WG5 N1209
Page 18 of 26

 above, shall be printed.

* For zero-width intervals, neither a decimal point nor digits past the
 decimal point shall be displayed.

* For the SF specifier, the positions defined in the descriptor that
 correspond to digits that are not displayed shall be filled by blanks,
 so the displayed digits are justified as though all digits prescribed by
 the specifier were printed. For the SE specifier, if only s digits are
 printed, the output will be in the form of an E<w>.<s> specifier,
 left-justified in the field that it would occupy if s were equal to d.

* If a number is too inaccurate to be represented within a specified
 SF format, the entire field will be filled with asterisks.

 Note: The "SF" format, when used for zero-width intervals, is
 limited to integers., since all other zero-width intervals will
 be output as fields of asterisks.

 Note: The <w> specifies the width of the numerical field, and
 not the spaces taken by "(<" and ">)". Thus, the total width of
 an SE or SF field is <w>+4.

The input for an SE or SF specifier shall be of the form
sf-input-field, where:

 sf-input-field is f-input-field
 or (< f-input-field >)

 f-input-field is a valid input field for the F<w>.<d>
 format, where <w> and <d> are the
 values specified in the SF<w>.<d>
 or SE<w><d>[E<e>] edit descriptor.

Upon input, the internal representation shall depend upon whether the
input string contains a decimal point. If the input string contains a
decimal point, the number shall be equal to or contain the interval
centered upon the number represented by f-input-field, and with width
equal to one decimal unit in the least significant digit exhibited. If
the input does not contain a decimal point, the internal representation
shall be the same as if a VF format specifier is used.

Examples. Suppose the number 1.5 is known to be correct to the
last digit represented, to within rounding.
Suppose the READ statement is:

 INTERVAL X

ISO/IEC JTC1/SC22/WG5 N1209
Page 19 of 26

 READ(*,'(1X,SF18.5)') X

Then any of the following input lines result in an internal
representation for X that is equal to or contains the interval
[1.45,1.55].

 1.5

or

 1.5E0

or

 (<1.5>)

However, the following inputs merely result in an internal
representation for X that is equal to or contains the degenerate
interval [1.5,1.5].

 15E-1

or

 (<15E-1>)

In a second example, inputs of

 0.E1

or

 (<0.E1>)

or

 0.0E2

or

 (<0.0E2>)

result in an internal representation for X that contained the interval
[-5,5].

 Note: In single number interval I/O, input immediately followed
 by output can appear to suggest that a decimal digit of accuracy

ISO/IEC JTC1/SC22/WG5 N1209
Page 20 of 26

 has been lost, when in fact radix conversion has caused a 1 ulp
 increase in the width of the interval stored in the machine. For
 example, an input of 0.100 followed by an immediate print will
 result in 0.10. Users and implementers need to expect this
 behavior.

E. The Interval SG and VG Edit Descriptors

 (i) The interval SG edit descriptor

The interval SG edit descriptor is for general single-number interval
input and output.

For input, the SG edit descriptor is identical to the SF edit
descriptor.

The form of the interval SG descriptor is SGw.d or SGw.dEe, where w is
the width of the field and d is the maximum number of digits actually
displayed. The method of representation of the output field depends
both on the magnitude of the datum being edited and on the number of
digits that are equal in the lower bound and upper bound. Define the
following:

 Round a lower and upper bound to s significant decimal digits.
 Then if all s digits agree, the s digits are said to
 CORRESPOND.

 Let r be the minimum of d and q, where q is less than or equal
 to the maximum number of significant digits of the lower and
 upper bounds of the internal representation that correspond.

If at least one decimal digit of the lower bound and upper bound
correspond then the number printed by the SGw.d or SGw.dEe formats
shall be the same as that printed by the respective Gw.r and Gw.rEe
formats. The printed number is preceded by the string "(<" and is
followed by the string ">)".

In determining the number of digits that correspond, the lower and upper
bounds of the internal representation may first be converted to a
decimal number in such a way that the converted lower bound is less than
or equal to the lower bound of the internal representation and the
converted upper bound is greater than or equal to the upper bound of the
internal representation. In any case, the number actually printed shall
have r digits that are equal to the r most significant decimal digits of

ISO/IEC JTC1/SC22/WG5 N1209
Page 21 of 26

the lower bound and upper bound of the internal representation.

 Note: Ideally, the number of digits determined to correspond
 should be the number of digits that actually are equal (in the
 sense of rounding in the last digit) in the internal
 representation.

If no digits correspond in the above sense, then the output is the same
as with an SEw.0 or SEw.0Ee edit descriptor, left-justified in
the field.

Example. If the internal representation equals (<1,100>), then an
SG12.5E1 edit descriptor can result in output of the form

 (<0.E3 >)

This output is interpreted as the interval [-500,500].

 (ii) The interval VG edit descriptor

The interval VG edit descriptor is identical to the SF edit descriptor
for input. For output with VGd.w or VGd.wEe, two decimal numbers are
printed, preceded by "(<", separated by ",", and followed by ">)".
The formats of the lower bound and upper bound are determined in
accordance with the rules for Gd.w or Gd.w.Ee editing respectively, as if
the lower bound and upper bound were REAL output. However, the printed
lower bound shall be less than or equal to the lower bound of the
internal representation, and the printed upper bound shall be greater
than or equal to the upper bound of the internal representation.

F. Other Interval I/O

It shall also be possible to input and output INTERVAL data with the E
and / or F edit descriptors. In that case, two E or F fields, or one of
each, are required for each INTERVAL datum, and the lower and upper
bounds of the INTERVAL datum are treated as usual REAL data.

 Note: Warning: In this case the printed interval endpoints may
 not contain the internal representation.

Intervals may be also be input and output with a "G" edit descriptor.
Input of an INTERVAL with the G edit descriptor shall be identical to
input with the SF edit descriptor. Output of an interval with a "G"
edit descriptor shall be identical to output with an "SG" edit
descriptor if one or more digits of the internal representation

ISO/IEC JTC1/SC22/WG5 N1209
Page 22 of 26

correspond, and shall be identical to output with the "VG" edit
descriptor otherwise.

 Note: The reason the "G" format favors VG when no digits
 correspond is because the resulting ideal output interval has a
 smaller width in this case. For example, if the internal
 representation is [1,2], an SG output gives an interval that
 contains (<0.E1>) = [-5,5], whereas the output corresponding to
 a VG specifier can be exact.

INTERVAL's can also be input and output with NAMELIST and list-directed
I/O.

Output of intervals in list-directed I/O shall be identical to output
with a "G" edit descriptor, with reasonable, processor-dependent values
of <w>, <d>, and <e>.

G. An Example

The following program implements a one-dimensional interval Newton
method to enclose a solution to x**2 - 4, beginning with starting
interval [1,2].

PROGRAM INTERVAL_NEWTON_ITERATION_1_D
 IMPLICIT NONE

 REAL(KIND=KIND(0.0D0)) :: XP
 INTERVAL :: X, X_IMAGE
 INTEGER K
 REAL(KIND=KIND(0.0D0)) :: WIDTH_OF_X, OLD_WIDTH

 CALL SIMINI
 WIDTH_OF_X = 4
 X = INTERVAL(1,2)
 DO K = 1,10000
 OLD_WIDTH = WIDTH_OF_X
 WIDTH_OF_X = WID(X)
 XP = MID(X)
 WRITE(*,*) K, INF(X),SUP(X), XP, WIDTH_OF_X, WIDTH_OF_X/OLD_WIDTH**2
 X_IMAGE = XP - (INTERVAL(XP)**2-INTERVAL(4)) / (2*X)
 IF(WIDTH_OF_X.LT.1D-11) EXIT
 X = X_IMAGE
 END DO
END PROGRAM INTERVAL_NEWTON_ITERATION_1_D

The output for this program can be:

ISO/IEC JTC1/SC22/WG5 N1209
Page 23 of 26

Columns 1 through 4:

 1 0.9999999999999998 2.0000000000000004 1.5000000000000000
 2 1.9374999999999991 2.3750000000000018 2.1562500000000004
 3 1.9886592741935472 2.0195312500000009 2.0040952620967740
 4 1.9999724292486507 2.0000354537727549 2.0000039415107027
 5 1.9999999999417792 2.0000000000659868 2.0000000000038831
 6 1.9999999999999989 2.0000000000000009 2.0000000000000000

Columns 5 and 6:

1.0000000000000009 6.2500000000000056E-02
0.4375000000000028 0.4375000000000020
3.0871975806453740E-02 0.1612903225806542
6.3024524104227111E-05 6.6127289936492972E-02
1.2420753314756896E-10 3.1270065174661590E-02
1.9984014443252822E-15 1.2953492022672087E+05

 Note: The new iterate is contained in the interior of the old
 iterate between steps 2 and 3. This constitutes a mathematical
 proof that there is a unique solution of x**2-4 = 0 within
 iterate 2, and hence within iterate 3, and all subsequent
 iterates will contain this solution.

For the VE format, replace the line:

 WRITE(*,*) K, INF(X),SUP(X), XP, WIDTH_OF_X, WIDTH_OF_X/OLD_WIDTH**2

by:

 WRITE(*,'(1X,I2,1X,VE10.4E1,3(1X,E12.4E2))') &
 K, X, XP, WIDTH_OF_X, WIDTH_OF_X/OLD_WIDTH**2

The output is then:

 1 (< 0.9999E+0, 0.2001E+1 >) 0.1500E+01 0.1000E+01 0.6250E-01
 2 (< 0.1937E+1, 0.2376E+1 >) 0.2156E+01 0.4375E+00 0.4375E+00
 3 (< 0.1987E+1, 0.2020E+1 >) 0.2004E+01 0.3087E-01 0.1612E+00
 4 (< 0.1999E+1, 0.2001E+1 >) 0.2000E+01 0.6302E-04 0.6612E-01
 5 (< 0.1999E+1, 0.2001E+1 >) 0.2000E+01 0.1242E-09 0.3127E-01
 6 (< 0.1999E+1, 0.2001E+1 >) 0.2000E+01 0.1998E-14 0.1295E+05

For the SE format, replace the WRITE statement by

 WRITE(*,'(1X,I2,1X,SE10.4E1,3(1X,E12.4E2))') &
 K, X, XP, WIDTH_OF_X, WIDTH_OF_X/OLD_WIDTH**2

ISO/IEC JTC1/SC22/WG5 N1209
Page 24 of 26

The output is then:

 1 (< 0.E+1 >) 0.1500E+01 0.1000E+01 0.6250E-01
 2 (< 0.2E+1 >) 0.2156E+01 0.4375E+00 0.4375E+00
 3 (< 0.20E+1 >) 0.2004E+01 0.3087E-01 0.1612E+00
 4 (< 0.2000E+1 >) 0.2000E+01 0.6302E-04 0.6612E-01
 5 (< 0.2000E+1 >) 0.2000E+01 0.6302E-04 0.6612E-01
 6 (< 0.2000E+1 >) 0.2000E+01 0.6302E-04 0.6612E-01

For the SF format, replace the WRITE statement by

 WRITE(*,'(1X,I2,1X,SF18.15,3(1X,E12.4E2))') &
 K, X, XP, WIDTH_OF_X, WIDTH_OF_X/OLD_WIDTH**2

The output is then:

 1 (<******************>) 0.1500E+01 0.1000E+01 0.6250E-01
 2 (< 2. >) 0.2156E+01 0.4375E+00 0.4375E+00
 3 (< 2.0 >) 0.2004E+01 0.3087E-01 0.1612E+00
 4 (< 2.0000 >) 0.2000E+01 0.6302E-04 0.6612E-01
 5 (< 2.000000000 >) 0.2000E+01 0.1242E-09 0.3127E-01
 6 (< 2.00000000000000 >) 0.2000E+01 0.1998E-14 0.1295E+05

The number of digits printed in this case is the number of digits known
to be correct, assuming the actual number, displayed as an infinite
decimal sequence, has been rounded into the displayed digits by rounding
to nearest.

For the SE format, replace the WRITE statement by

 WRITE(*,'(1X,I2,1X,SG18.15,3(1X,E12.4E2))') &
 K, X, XP, WIDTH_OF_X, WIDTH_OF_X/OLD_WIDTH**2

and the output can be:

 1 (< 0.E+1 >) 0.1500E+01 0.1000E+01 0.6250E-01
 2 (< 2. >) 0.2156E+01 0.4375E+00 0.4375E+00
 3 (< 2.0 >) 0.2004E+01 0.3087E-01 0.1612E+00
 4 (< 2.0000 >) 0.2000E+01 0.6302E-04 0.6612E-01
 5 (< 2.000000000 >) 0.2000E+01 0.1242E-09 0.3127E-01
 6 (< 2.00000000000000 >) 0.2000E+01 0.1998E-14 0.1295E+05

__
__
__

ISO/IEC JTC1/SC22/WG5 N1209
Page 25 of 26

V. ADDITIONAL NOTES (not part of proposal proper)

A. On Optimization of Interval Expressions

Optimizing compilers generally attempt to reduce the total number of
point operations. However, since interval arithmetic is only
subdistributive, there are additional issues in optimizing interval
expressions. For example,

 (<0,1>)**2 - (<0,1>)
evaluates to
 (<0,1>) - (<0,1>) = (<-1,1>),
while
 (<0,1>) * ((<0,1>)-(<1,1>))
evaluates to
 (<0,1>) * (<-1,0>) = (<-1,0>).

However, both (<-1,1>) and (<-1,0>) are bounds on the range of x**2-x
over (<0,1>). We want to transform x**2-x to x*(x-1) in this case, or
else compute the expression BOTH ways and take the intersection, to
obtain the smallest possible enclosure to the range of x**2 - x over
(<0,1>). Such rewriting should be possible with modifications of
existing optimizing compiler technology.

B. Can Interval Arithmetic be Implemented Effectively in a Module?

The following items appear central to this question:

* INTERVAL constants are not implementable in a module.

* The I/O edit descriptors cannot be defined in a module.

* The precedence of the new infix operators cannot be defined in a
 module.

* There is an efficiency issue.

Although edit descriptors in Fortran 95 are fixed, INTERVAL I/O can be
defined in a module through subroutines. Furthermore, derived-type I/O,
discussed for Fortran 2000, would ameliorate the situation with I/O
descriptors, should derived-type I/O materialize.

There is no way other than intrinsic language support to allow INTERVAL
constants in program statements. INTERVAL constants can be supported in
module subroutines for input and output.

ISO/IEC JTC1/SC22/WG5 N1209
Page 26 of 26

However, a crucial property of such constants cannot be easily
implemented in a module. Namely, the proposal stipulates that conversions
to and from internal representations shall contain the original results,
regardless of the number of digits present in the internal
representation or the number of digits in the decimal constant or format
item.

Regarding efficiency: User-supplied modules for interval arithmetic
contain subroutines for each of the four arithmetic operations and for
the other infix operators. At least one existing compiler translates
each elementary operation to a subroutine call to the corresponding
subroutine. The resulting machine code executes 20 or more times more
slowly than point arithmetic, although factors of five or even two are
often practical. It can be argued that an optimizing compiler will
in-line short subroutines. The concept of an INTRINSIC MODULE, that is,
a module supplied by the manufacturer and bundled with the compiler, has
been put forward for Fortran 2000. Presumably, with an intrinsic
module, there would be essentially no difference between implementation
of interval arithmetic intrinsically in the language and as a module,
except that access to the interval arithmetic would be enabled through a
"USE" statement. However, we are unaware of in-lining Fortran
compilers, and intrinsic modules have not yet materialized as part of
the language.

There is a natural operator precedence for the INTERVAL operators that
differs from that for user-defined operators in Fortran 90 (i.e.
user-defined binary operations always have the lowest precedence). This
order, followed in aACRITH-XSC, is:

Numeric **
Numeric *, /, .IS.
Numeric unary + or -
Numeric binary + or -, .CH.
Character //
Relational .EQ.,.NE.,.LT.,.LE.,.GT.,.GE.,.SB.,.SP.,.DJ.,.IN. .
 ==, /=, <, <=, >, >=
Logical .NOT.
Logical .AND.
Logical .OR.
Logical .EQV. or .NEQV.

At present, such an ordering can be defined only intrinsically in the
language, not through a module.

