
From: Kurt W. Hirchert (for /data) X3J3/96-142 (Page 1 of 2)
Subject: Draft Procedure Pointers Specification Meeting 138

X3J3/96-142 (Page 1 of 2)

1. Proposals for procedure pointers and procedure variables offer similar functionality.
After much discussion, /data is recommending the procedure pointer formulation
because it more naturally offers the null pointer or null association concept.

2. Specifications for this facility are based on analogies with two existing language
features.5

a. Dummy procedures. If a set of declarations of a name in conjunction with
that name appearing in a dummy argument world make that name the name
of a dummy procedure, then that same set of declarations in conjunction
with that name being declared with the POINTER attribute will make that
name the name of a procedure pointer. The class of procedures which can10

then be associated with that procedure pointer is exactly the class of
procedures which could have been supplied as the corresponding actual
argument in the dummy procedure case. Thus, procedure pointers cannot be
associated with internal procedures, statement functions, generic procedures,
most intrinsic procedures, etc. If the interface of the procedure pointer is15

explicit, the interface of the procedure being associated must also be explicit
(with matching characteristics).

b. Data-object pointers. The mechanism for establishing an association is the
pointer assignment statement, a disassociated status can be created with the
NULLIFY statement or the NULL intrinsic function, the one-argument form20

of the ASSOCIATED intrinsic function can be used to test for a null
association status, and the two-argument form of the ASSOCIATED intrinsic
function can be used to test for a particular association. However, we do not
proposed to allow one to ALLOCATE or DEALLOCATE a procedure pointer.

As with data object pointers, the default initial status for such pointers is25

“undefined”. Just as a data-object pointer can become undefined if it is
associated with a module variable and the module goes out of scope, a
procedure pointer can become undefined if it is associated with a module
procedure and the module goes out of scope.

Procedure-pointer dummy arguments, function results, and derived type30

components would be allowed analogous with the data-object pointers.

3. There are a number of smaller details which may not be immediately obvious.

a. No TARGET attribute for procedures is proposed.

b. The description of the NULL intrinsic procedure must be extended to allow
the optional argument to be a procedure.35

c. Allowing procedure pointers as components means that interface blocks may
be nested inside type definitions.

From: Kurt W. Hirchert (for /data) X3J3/96-142 (Page 2 of 2)
Subject: Draft Procedure Pointers Specification Meeting 138

X3J3/96-142 (Page 2 of 2)

d. There are no arrays of procedure pointers, but the usual workaround of
having arrays of a derived type with pointer components works as well for
procedure pointers as for data-object-pointers.

e. We recommend that procedure reference syntax be extended to allow the
procedure to be specified as a structure component, e.g.5

CALL PARENT%PROC_POINTER(ARGS)

On the other hand, we do not recommend a similar extension for functions
that return procedure pointers. E.g., we would require

PP=>PPF(ARGS1)
CALL PP(ARGS2)10

rather than extending to allow

CALL PPF(ARGS1)(ARGS2)

This is consistent with data-object pointers, which can be subscripted,
substringed, etc. as components, but not as function results.

f. Note that for the two-argument form of ASSOCIATED, two pointers are15

nominally different if they are associated with the same module procedure
but from different instances of the host module. However, it appears that
such queries must always involve at least one pointer that is really
undefined, so implementations are not required to track this.

4. Looking to the next phase, we expect most of the syntax to be obvious given the20

underlying analogies. The one area where it may not be straightforward is in the
area of a combined specification of the POINTER attribute and the interface
specifications. E.g.,

REAL,POINTER,EXTERNAL::FP ! function pointer with implicit interface
POINTER,EXTERNAL::SP ! subroutine pointer with implicit interface25

INTERFACE
 SUBROUTINE SP2, POINTER ! subroutine pointer with explicit interface
 END SUBROUTINE
END INTERFACE

5. We identified two orthogonal but related issues:30

a. Should there be a way to assign a symbolic name to a particular interface so
procedure pointers can be declared to be of a particular procedure “type” or
class rather than requiring the matching interfaces to be repeatedly declared in
detail?

b. Should “procedureness” be made a basis for generic resolution (so, for35

example, one can distinguish between a procedure accepts a REAL variable
from one that accepts a function that returns a REAL result)?

Ω

