
From: Kurt W. Hirchert X3J3/96-146 (Page 1 of 3)
Subject: Procedure Pointer Examples Meeting 138

X3J3/96-146 (Page 1 of 3)

The principle underlying procedure pointers declarations is that if

subroutine sub(NAME)
! declarations and usage patterns for NAME
…

results in NAME identifying a dummy procedure with certain properties, then5

pointer::NAME
! same declarations and usage patterns for NAME

should result in NAME identifying a procedure pointer with analogous properties. Thus,

pointer::SP
…10

CALL SP

results in SP being a procedure pointer than can be associated with subroutines and that
has an implicit interface. Similarly,

pointer::FP
…15

Y=FP(X)

or

pointer::FP
real,external::FP

results in FP being a procedure pointer that can be associated with real functions and that20

has an implicit interface, and

pointer::RFP
interface; real function RFP(X); end function; end interface

results in RFP being a procedure pointer that can be associated with real functions of a
single real argument and that has an explicit interface. (The case of25

pointer::P
external P

should be resolved in a similar fashion, but we have some disagreement on exactly how
the corresponding dummy procedure case is interpreted.)

Such a procedure pointer can then be associated with an actual procedure using pointer30

assignment. For example,

RFP=>SIN

would associate the (specific) intrinsic function SIN with RFP. As with dta-object pointers,
the right hand side could be another procedure pointer:

FP=>RFP35

Note, however, that

RFP=>FP ! Wrong !

is not legal because, analogous with dummy procedures, a procedure with an implicit
interface may not be associated with a procedure pointer that has an explicit interface.

From: Kurt W. Hirchert X3J3/96-146 (Page 2 of 3)
Subject: Procedure Pointer Examples Meeting 138

X3J3/96-146 (Page 2 of 3)

As with data-object pointers, one can make a procedure pointer testably disassociated with

nullify(PP)

or

PP=>NULL()

or even5

real,pointer,external::PP=>NULL()

This is tested with the one-argument form of ASSOCIATED:

if (associated(PP)) …

As with data-object pointers, one can have procedure pointer dummy arguments and
function results:10

function MERGE_REAL_FUNCS(TP,FP,MASK)
pointer::MERGE_REAL_FUNCS,TP,FP
interface; real function MERGE_REAL_FUNCS(X); end function; end interface
interface; real function TP(X); end function; end interface
interface; real function FP(X); end function; end interface15

logical::MASK

if (MASK) then
MERGE_REAL_FUNCS=TP

else20

MERGE_REAL_FUNCS=FP
end if

end function MERGE_REAL_FUNCS

Although I believe the above is unambiguous for a compiler, it has been suggested that it25

might be clearer if we require the use of a RESULT variable, so the above would become

function MERGE_REAL_FUNCS(TP,FP,MASK) result(RP)
pointer::RP,TP,FP
interface; real function RP(X); end function; end interface
interface; real function TP(X); end function; end interface30

interface; real function FP(X); end function; end interface
logical::MASK

if (MASK) then
RP=TP35

else
RP=FP

end if

end function MERGE_REAL_FUNCS40

As with data-object pointers, one can have a procedure pointer component in a derived
type:

From: Kurt W. Hirchert X3J3/96-146 (Page 3 of 3)
Subject: Procedure Pointer Examples Meeting 138

X3J3/96-146 (Page 3 of 3)

type REAL_FUNCTION_LIST
type(REAL_FUNCTION_LIST),pointer::NEXT
real,pointer,external::F

end type REAL_FUNCTION_LIST
5

…

type(REAL_FUNCTION_LIST),pointer::RFLP

…10

allocate(RFLP)
RFLP%F=>SIN

…15

Y=RFLP%F(X)

If the procedure pointer in the previous example is to have an explicit interface, the
appropriate syntax is less obvious. One possibility is

type REAL_FUNCTION_LIST20

type(REAL_FUNCTION_LIST),pointer::NEXT
interface

pointer, &
function F(X)
end function F25

end interface
end type REAL_FUNCTION_LIST

Ω

