
 X3J3/97−102
 page 1 of 16
 To: X3J3
 From: Rich Bleikamp
 Subject: Syntax and Edits for Async I/O
 Date: Jan. 15, 1997

 (a revision of X3J3/96−158r2)

 See paper X3J3/96−147r1 for the semantics previously
 approved by X3J3 for this feature.

 Also see the Rationale and Conceptual Model at the end of
 this document.

 Changes since 96−158r2 (look for "|"s in the left margin) :

 | − Added text to deal with COPYIN/COPYOUT semantics of
 | actual arguments passed to procedures. We need to
 | prohibit copyin/copyout in some situations, to
 | avoid clobbering I/O list items being read into
 | by an asynchronous read.
 |
 | I had several choices:
 |
 | − disallow copyin/copyout as an argument passing
 | mechanism, at least some of the time.
 | Rejected: too big a change for async i/o
 |
 | − disallow some obvious "triggers" for copyin/out,
 | but leave some behavior processor dependent.
 | Rejected: would work most of the time, for most
 | users, but isn’t truly portable.
 |
 | − Restrict how list items (with active async I/O pending)
 | can be passed as an actual argument.
 | I chose this approach. See the last set of edits
 | for the new section 9.4.1.10.

 X3J3/97−102
 page 2 of 16
 |
 | − Required the ASYNCHRONOUS attribute to be present in
 | all scoping units where an I/O list item that is
 | undergoing asynchronous I/O may be referenced or defined.
 | Even if the reference/definition is before the I/O
 | statement or after the WAIT operation.
 | This issue was discovered by Larry Meadows during an
 | HPF meeting where a subset of X3J3’s async I/O proposal
 | was adopted (more or less) for a future HPF revision.
 | See edits for 5.1.2.12.
 |
 | This change is required to prevent the optimizer from
 | moving references to such variables, when neither
 | the async READ/WRITE nor the corresponding CLOSE
 | statement are in scope. For example:
 |
 | INTEGER :: x ! local variable X
 | READ (1,ASYNCHRONOUS, ...) x
 | call foo (x)
 | RETURN
 | END
 |
 | SUBROUTINE foo (x)
 | INTEGER :: x ! we need an ASYNCHRONOUS
 | ! attribute here!
 |
 | CALL who ! WHO does a WAIT
 |
 | a = x ! optimizer may want to hoist
 | ! a=x above the "CALL who",
 | ! since there is no apparent
 | ! reference to "x" in who.
 | END
 |
 | SUBROUTINE who
 | WAIT(1,...)
 | RETURN
 | END

 Changes since 96−158r1:

 − Added an ASYNCHRONOUS statement (per the straw vote).

 − changed ASYNC to ASYNCHRONOUS (attribute name,
 specifier name)

 − fixed 9.6.1.14: sort of, the phrase is still awkward.

 − added a conceptual model after the rationale.

 − fixed NAMELIST, so only those variables affected by
 the namelist I/O are restricted like other list items.

 X3J3/97−102
 page 3 of 16
 − Added a paragraph about implied−do−variables
 becoming undefined, in data transfer statements.
 This will prohibit the user from examining said variables,
 until the corresponding WAIT operation is performed.

 − functions referenced in item lists in async data
 transfer statements shall be PURE.

 − I addressed the issue of PRIVATE components needing
 the ASYNCHRONOUS attribute by adding the text
 ", or shall be a subobject of an object with the
 ASYNCHRONOUS attribute" wherever we required a
 variable to have that attribute. I considered
 interp 140 (not approved yet) in this context. The
 alternative is to change 6.1.2, where components
 inherit some attributes from their parent object.

 Unresolved Issues

 − We have not decided if ID= variables should be of
 some type other than default integer (either pointer,
 a new intrinsic type, or an implicitly defined derived
 type). This request came from Robert Corbett of Sun.
 This might simplify the implementation in the runtime
 library of keeping track of pending I/O operations.

 Resolved issues with no action taken:

 − I’ve looked at the restrictions on namelist−group−
 objects not being pointers, and it is similar to
 other restrictions, namely, only arrays with constant
 bounds are permissible. So i’ve decided not to do
 anything about this. It is unrelated to ASYNC i/o.

 "Notes to the reader" are not notes to be included in the
 standard. Text to be included in the standard is either
 "quoted" or indented.

 Edits to 96−007R1:

 In rule R426 (component−attr−spec), add:
 or ASYNCHRONOUS

 In rule R503 (attr−spec), add:
 or ASYNCHRONOUS

 X3J3/97−102
 page 4 of 16
 and add a new section (page 57):
 | 5.1.2.12 ASYNCHRONOUS attribute
 |
 | The ASYNCHRONOUS attribute may be specified for any
 | variable, in any scoping unit.
 |
 | A variables that :
 |
 | 1) is used in an asynchronous data transfer statement
 | input/output list, or
 |
 | 2) is in a namelist group that is used in an
 | asynchronous data transfer statement, and is
 | actually read or written by that data transfer
 | statement, or
 |
 | 3) is specified in a SIZE= specifier in an
 | asynchronous data transfer statement
 |
 | shall have the ASYNCHRONOUS attribute,
 | or be a subobject of an object with the ASYNCHRONOUS
 | attribute, if :
 |
 | 1) that variable is referenced, defined, or used as
 | an actual argument in a scoping unit other than the
 | scoping unit containing the asynchronous
 | data transfer statement, and
 |
 | 2) any executable statement in such a scoping unit
 | might be executed while the asynchronous
 | data transfer operation is pending.
 |

 Note: A pending data transfer operation exists when a
 READ or WRITE statement with the ASYNCHRONOUS
 specifier is executed, but the corresponding wait
 operation has not yet been executed.

 Note to reader: we allow any variable to have the
 asynchronous attribute so users can remove ASYNCHRONOUS
 specifiers from data transfer statements without having to
 delete the ASYNCHRONOUS attribute.

 Note: The ASYNCHRONOUS attribute is similar to the
 VOLATILE attribute provided by some processors, and is
 intended to facilitate traditional code motion
 optimizations in the presence of asynchronous input /
 output. Variables in asynchronous input / output lists
 implicitly have the ASYNCHRONOUS attribute in the
 scoping unit of that asynchronous READ or WRITE
 statement, but shall have the ASYNCHRONOUS attribute in
 | other scoping units when those variables are referenced,
 | defined, or otherwise used in a scoping unit, and ANY
 | executable statements in that scoping unit might be
 | executed while the asynchrounous I/O is pending.
 −− End Note

 X3J3/97−102
 page 5 of 16

 Add a new section, 9.2.10 (and renumber 9.2.10 and later
 sections):

 9.2.10 ASYNCHRONOUS statement

 R5xx is ASYNCHRONOUS [::] <object−name−list>

 The ASYNCHRONOUS statement specifes the ASYNCHRONOUS
 attribute for a list of objects.

 In rule R905 (OPEN statement connect−spec), add, after PAD=
 (on its own line)(pg. 140):
 or ASYNCHRONOUS

 Add section 9.3.4.11 (page 142/143):

 9.3.4.11 ASYNCHRONOUS specifier in the OPEN statement

 If the ASYNCHRONOUS specifier is specified for a unit
 in an OPEN statement, then READ and WRITE statements
 for that unit may include the ASYNCHRONOUS specifier
 in the control information list.

 The presence of an ASYNCHRONOUS specifier in a READ or
 WRITE statement permits, but does not require, a
 processor to perform the data transfer asynchronously.
 The WAIT, CLOSE, and file positioning statements may be
 used to wait for asynchronous data transfer operations
 to complete, and the INQUIRE statement may be used to
 inquire whether or not asynchronous data transfer
 operations have completed.

 Note to the reader: the above rules imply only external unit
 input / output may specify an ASYNCHRONOUS specifier for
 READs and WRITEs, since internal files are not OPENed.

 In section 9.3.5 (CLOSE statement), page 143, add the
 following paragraph and
 notes after line 5:

 Execution of a CLOSE statement causes the processor to
 wait for all pending data transfer operations for the
 specified unit to complete.

 If a CLOSE statement is executed for a unit with
 pending data transfer operations, that CLOSE statement
 is considered to be the corresponding wait operation
 for the READ or WRITE statements that initiated those
 pending data transfer operations, and the CLOSE
 statement is considered to be a data transfer statement
 for purposes of end of file, end of record, and error
 processing.

 X3J3/97−102
 page 6 of 16
 |
 |Deleted a big paragraph that discussed when a variable
 |needed the asynchronous attribute.
 |

 In rule 912 (io−control−spec) (page 144), add:

 or ASYNCHRONOUS
 or ID = <scalar−default−int−variable>

 Add the following constraint after the constraint on line
 19, page 145:

 Constraint: An ASYNCHRONOUS specifier shall be present
 if an ID= specifier is present.

 Constraint: An ASYNCHRONOUS specifier shall not be
 specified if the <io−unit> is an <internal−file−unit>.

 Note to the reader: the first constraint implies an ID=
 specifier, typically used in a corresponding WAIT statement,
 is NOT required in an asynchronous READ or WRITE statement.
 The user would have to CLOSE the unit (or execute another
 wait operation) before referencing any storage locations in
 an input list or namelist, and to NOT define any storage
 locations referenced by an output list or namelist in an
 output statement. This allows a knowledgeable user to
 READ or WRITE massive amounts of data to a file, without
 ever waiting for completion, as long as they close the file
 or perform some other wait operation before modifying or
 referencing any storage locations referenced by an
 input / output list or namelist.

 In section 9.4.1.9 (page 147), first sentence, insert

 without an ASYNCHRONOUS specifier

 before "terminates", and add the following as the last
 sentence of that paragraph:

 If an ASYNCHRONOUS specifier is present, the variable
 specified in the SIZE= specifier, if any, will become
 defined, with the value described above, when the wait
 operation corresponding to the non−advancing input
 statement is executed.

 Note: A CLOSE, INQUIRE or a file positioning statement,
 as well as a WAIT statement, can be a wait operation
 (9.3.5).

 X3J3/97−102
 page 7 of 16
 Insert a new section:

 9.4.1.10 Asynchronous specifier

 The ASYNCHRONOUS specifier indicates that this data
 transfer operation can be performed asynchronously.
 Records read or written by asynchronous data transfer
 statements will be read, written, and processed in the
 same order as they would have been if the data transfer
 statement did not contain the ASYNCHRONOUS specifier.

 The ASYNCHRONOUS specifier shall not be present in a
 READ or WRITE statement unless the OPEN statement for
 the unit referenced in the READ or WRITE statement
 contained an ASYNCHRONOUS specifier.

 When a data transfer statement with the ASYNCHRONOUS
 specifier is executed, the program shall not execute
 any statements that would cause any variable in the
 input / output list, namelist, any do−variable in the
 item list, or the variable specified in a SIZE=
 specifier to become undefined as described in 14.7.6,
 until the corresponding wait operation is performed.
 When a namelist group name is specified in data transfer
 statement with the ASYNCHRONOUS specifier, any
 variables in the namelist group that are not actually
 read or written by the data transfer statement are not
 subject to the restrictions described in this
 paragraph.

 When a data transfer statement with the ASYNCHRONOUS
 specifier is executed, the program shall not execute
 any statements that would cause the pointer
 association status of any variable in the input /
 output list, namelist, any do−variable in the item
 list, or a variable specified in the SIZE= specifier to
 change, or would cause any such variable to become
 associated with a different target, as described in
 14.6.2, until the corresponding wait operation is
 performed. When a namelist group name is specified in
 a data transfer statement, variables in the namelist
 group not actually read or written by the data transfer
 statement are not subject to the restrictions
 described in this paragraph.

 Note: These last two restrictions ensure that certain
 variables referenced in asynchronous data transfer
 statements must still exist and reference the same
 storage locations when the corresponding wait operation
 is performed, including the implicit CLOSE for open
 units when a program is exiting.

 X3J3/97−102
 page 8 of 16

 When an input data transfer statement with the
 ASYNCHRONOUS specifier is executed, the input list or
 namelist items, any implied−do−variables, and the
 variable specified in the SIZE= specifier, if any,
 become undefined until the corresponding wait operation
 is executed (9.3.5, 9.5). When a namelist group name
 is specified in a data transfer statement, variables
 in the namelist group not actually read by the data transfer
 statement do not become undefined.

 When an output data transfer statement with the
 ASYNCHRONOUS specifier is executed, the output list or
 namelist items, and any implied−do−variables in the
 item list, shall not be redefined until the
 corresponding wait operation is executed (9.3.5, 9.5).
 When a namelist group name is specified in such an
 data transfer statement, variables in the namelist
 group not actually written by the data transfer
 statement may be redefined before the corresponding
 wait operation.

 When an output data transfer statement with the
 ASYNCHRONOUS specifier is executed, any implied−do−
 variables in the item list become undefined until the
 corresponding wait operation is performed, at which
 time it becomes defined with the value it would have
 at the end of execution of the original READ or WRITE
 statement if that statement had not specified the
 ASYNCHRONOUS specifier.

 When a data transfer statement with the ASYNCHRONOUS
 specifier is executed, all functions referenced in the
 item list shall be pure functions.

 Note: This restriction on functions appearing in item
 lists for asynchronous data transfer statements applies
 to all function references, including those used in
 subscript, substring, and implied do loop calculations.
 End Note

 X3J3/97−102
 page 9 of 16

 |
 | When a READ statement with the ASYNCHRONOUS
 | specifier is executed, the program shall not execute
 | any procedure call where any variable :

 | 1) in the input / output list or namelist,
 | 2) which is a do−variable in the item list, or
 | 3) specified in a SIZE= specifier,
 |
 | or subobject or parent object thereof, is passed as an
 | actual argument, until the corresponding wait operation
 | is executed, unless :
 |
 | 1) the actual argument passed does not include any storage
 | location defined or referenced by the data transfer
 | statement, or
 |
 | 2) the corresponding dummy argument is an assumed
 | shape array
 |
 | Note: This restriction prevents interactions between
 | actual arguments passed with so−called
 | copyin/copyout semantics and asynchronous I/O.
 |
 Question: Should we allow scalars? Can they be passed
 by copyin/out? Any other ways to force pass by address
 or descriptor?

 Insert a new section 9.4.1.11:

 9.4.1.11 ID= specifier

 The ID= specifier identifies a variable that is
 assigned a processor dependent value during the
 execution of an asynchronous data transfer statement.
 This value can be used in a WAIT statement to force
 the processor to wait for a particular data transfer
 operation to complete.

 In section 9.4.4, list item (5), change "namelist" to

 namelist, except that if the ASYNCHRONOUS= specifier
 was also present, the entities specified in the
 input/output list or namelist become undefined

 In section 9.4.4, list item (8), change "defined" to

 defined, except that a variable specified in a SIZE=
 specifier becomes undefined if an ASYNCHRONOUS
 specifier was also specified

 X3J3/97−102
 page 10 of 16
 In section 9.4.4.4, page 152, before the paragraph that
 starts "On output ...", insert the following paragraphs:

 If an ASYNCHRONOUS specifier is specified in a data
 transfer statement, the actual list processing and data
 transfers may occur during execution of the input
 statement, during execution of the corresponding wait
 operation, or anywhere in−between. The data transfer
 operation is considered to be a pending data transfer
 operation until a corresponding wait operation is
 performed.

 If an ASYNCHRONOUS specifier is specified on an input
 statement, the list items or namelist variables, any do−
 variable in the item list, and the variable specified
 in the SIZE= specifier, if any, become undefined until
 the corresponding wait operation is executed (9.3.5,
 9.5). When a namelist group name is specified in a
 data transfer statement, variables in the namelist
 group not actually read by the input statement do not
 become undefined.

 If an ASYNCHRONOUS specifier is specified on an output
 statement, the list items or namelist variables, and
 any do−variable in the item list shall not be redefined
 until the corresponding wait operation is executed
 (9.3.5, 9.5). When a namelist group name is specified
 in an output statement, variables in the namelist
 group not actually written by the data transfer
 statement are not subject to the restrictions described
 in this paragraph.

 When a data transfer operation is performed
 asynchronously, any errors that would have caused the
 ERR= branch on a non−asynchronous READ or WRITE to be
 taken, and the IOSTAT variable to be defined with a non−
 zero value, may instead occur during execution of the
 corresponding wait operation (a WAIT, CLOSE, INQUIRE
 or file positioning statement) and take the ERR= branch
 of that wait operation instead. If an ID= specifier is
 not present in the initiating READ or WRITE statement,
 the errors may occur during the execution of any
 subsequent data transfer statement for that same unit,
 and not just during the corresponding wait operation.

 X3J3/97−102
 page 11 of 16
 Insert a new section 9.5, and renumber every section
 thereafter appropriately:

 9.5 WAIT statement

 Execution of a WAIT statement causes the processor to
 wait for one of more previously initiated (pending)
 asynchronous data transfers to complete.

 R919 <wait−statement> is WAIT (<wait−spec−list>)

 R920 <wait−spec> is [UNIT =]
 <external−file−unit>
 or IOSTAT =
 <scalar−default−int−variable>
 or ERR = <label>
 or ID =
 <scalar−default−int−variable>
 or END = <label>

 Constraint: A <wait−spec−list> shall contain exactly one
 <external−file−unit> specifier, and may contain at most
 one of each of the other specifiers.

 Constraint: If the optional characters UNIT= are
 omitted from the unit specifier, the unit specifier
 shall be the first item in the <wait−spec−list>.

 (note to Richard Maine: insert other appropriate
 constraints, similar to the position−spec constraints,
 and one for the END=label branch target)

 The IOSTAT=, ERR=, and END= specifiers are described in
 x, x, and x respectively.

 If an ID= specifier is not present, the processor waits
 for all pending data transfers on the specified unit to
 complete, if any. If an ID= specifier is present, the
 processor waits for the corresponding READ or WRITE
 operation to complete. The corresponding READ or WRITE
 operation is that READ or WRITE that returned the same
 value for the ID= specifier for the specified unit.
 The value specified for the ID= specifier shall be a
 value returned by a READ or WRITE statement for the
 specified unit, for which a corresponding wait
 operation has not been executed.

 The data transfer operation specified in the
 corresponding READ or WRITE statement may happen when
 the WAIT statement is executed, when the corresponding
 READ or WRITE statement was previously executed, or
 anytime in−between. The WAIT statement is considered
 to be a data transfer statement for purposes of end of
 file, end of record, and error processing.

 X3J3/97−102
 page 12 of 16
 |
 |Deleted a big paragraph that discussed when a variable
 |needed the asynchronous attribute.
 |

 Note: The CLOSE , INQUIRE, and file positioning
 statements, as well as the WAIT statement, can be a
 "wait" operation.

 Note: If an asynchronous READ attempts to read beyond
 the end of a file, then the end of file condition may
 occur either during execution of the READ statement or
 during execution of the corresponding wait operation.
 If the end of file condition occurs during the wait
 operation, and there is not an END= or IOSTAT specifier
 in the statement that is the corresponding wait
 operation, then program execution terminates. Error
 conditions are handled in a similar manner.

 and renumber all subsequent rules.

 In the old section 9.5 (File Positioning statements), add
 the following after the last sentence in that section:

 Execution of a file positioning statement causes the
 processor to wait for all pending data transfer
 operations for the specified unit to complete.

 If a file positioning statement is executed for a unit
 with pending data transfer operations, that statement
 is considered to be the corresponding wait operation
 for the READ or WRITE statements that initiated the
 pending data transfers, and is also considered to be an
 data transfer statement for purposes of end of file,
 error, and end of record processing.

 |
 |Deleted a big paragraph that discussed when a variable
 |needed the asynchronous attribute.
 |

 In section 9.6.1, add the following to rule 924:
 or ID = <scalar−default−int−variable>
 or PENDING = <scalar−default−logical−variable>

 and add these constraints around line 40 on page 156:
 Constraint: The ID= and PENDING= specifiers shall not
 appear in an INQUIRE statement if the FILE = specifier
 is present.

 Constraint: If an ID= specifier is present, a PENDING=
 specifier shall also be present.

 X3J3/97−102
 page 13 of 16

 On page 159, add section 9.6.1.23
 9.6.1.23 ID= and PENDING= specifiers in the INQUIRE
 statement
 If an ID= specifier is not present in an INQUIRE
 statement, the variable specified in the PENDING=
 specifier is assigned the value true if there are any
 pending asynchronous data transfers for the specified
 unit that have not completed. If an ID= specifier is
 present, the variable specified in the PENDING=
 specifier is assigned the value true if the data
 transfer identified by the ID= specifier for the
 specified unit has not yet completed. In all other
 cases, the variable specified in the PENDING= specifier
 is set to false.

 When the variable specified in the PENDING= specifier is
 set to false, then any pending data transfer operations
 for this unit are considered to have completed, and
 this INQUIRE is the corresponding wait operation for
 the corresponding READ or WRITE statements. When an
 ID= specifier is present, the corresponding operation
 is the READ or WRITE statement identified by the unit
 and ID= specifier value. When an ID= specifier was not
 present, then this INQUIRE statement is the
 corresponding wait operation for all pending data
 transfer operations for the specified unit. When an INQUIRE
 statement is considered to be a wait operation, it is also
 considered to be a data transfer statement for purposes
 of end of file, end of record, and error processing.

 In section 9.6.1.14, add the following sentence as the last
 sentence of the paragraph.
 If there are pending data transfer operations for the
 specified unit, the value assigned to the variable specified
 in a NEXTREC= specifier is computed as if all the pending
 data transfers had already completed.

 Note to the reader: the POSITION= specifier does not appear
 to need any edits.

 Note to the reader. In section 14, we discuss events
 causing definition and undefinition of variables. In item
 (3) of 14.7.5, we discuss when input causes an item to be
 defined, in terms of when the data is transferred, so no
 edit is needed in (3). Note that the second part of (3)
 applies to internal units, which cannot be written to
 asynchronously.

 In section 14.7.5, item (5), change "an input/output
 statement" to "an input/output statement without the
 ASYNCHRONOUS specifier".

 X3J3/97−102
 page 14 of 16

 In section 14.7.5, item (8), change "statement" to
 "statement without an ASYNCHRONOUS specifier".

 In section 14.7.5, insert this new item (9), and renumber
 the remaining items:
 (9) Execution of a READ statement containing both an
 ASYNCHRONOUS and a SIZE= specifier may cause the
 variable specified in the SIZE= specifier to become
 defined, or the corresponding wait operation may cause
 that variable to become defined. Either the READ
 statement or the corresponding wait operation will
 cause that variable to become defined.

 In section 14.7.6, item (4), change "input/output statement"
 to "input/output statement or its corresponding wait
 operation".

 In section 14.7.6, item (5), change "input/output statement"
 to "input/output statement or its corresponding wait
 operation".

 In section 14.7.6, item (7), change "input statement" to
 "input statement or its corresponding wait operation".

 In section 14.7.6, add a new item (16) (the editor may
 relocate to another part of the list if desired):
 Execution of a READ or WRITE statement with the
 ASYNCHRONOUS specifier causes all variables in the item
 list or namelist, all <implied−do−variables> in the item
 list, and the variable specified in the SIZE=
 specifier, if any, to become undefined. Variables in a
 namelist group specified in such a READ or WRITE
 statement that are not actually read or written by the
 data transfer statement do not become undefined.

 X3J3/97−102
 page 15 of 16

 −−−
 Rationale for Asynchronous I/O: may be inserted in the
 appropriate annex if desired.

 Rather than limit support for asynchronous I/O to what has
 been traditionally provided by facilities such as BUFFERIN−
 BUFFEROUT, this standard builds upon existing Fortran syntax.
 This permits alternative approaches for implementing
 asynchronous I/O, and simplifys the task of adapting existing
 standard conforming programs to utilize asynchronous I/O.

 Not all processors will actually perform I/O asynchronously,
 nor will every processor that does be able to handle data
 transfer statements with complicated I/O item lists in an
 asynchronous manner. Such processors can still be standard
 conforming. Hopefully, the documentation for each Fortran
 processor will describe when, if ever, I/O will
 be performed asynchronously.

 −−
 Conceptual Model

 This proposal accomodates at least two different conceptual
 models for asynchronous I/O.

 Model 1: the processor will perform asynchronous I/O when the
 item list is simple (perhaps one contiguous named array) and the
 I/O is unformatted (possibly MAGTAPE). The implementation cost
 is reduced, and this is the scenario most likely to be
 beneficial on traditional "big−iron" machines.

 Model 2: The processor is free to do any of the following:
 on output, create a buffer inside the I/O library, completely
 formatted, and then start an async write of the buffer, and
 immediately return to the next statement in the program. The
 processor is free wait for previously issued WRITEs, or not.
 OR
 pass off the I/O list to another processor/process, that will
 process the list items independently of the processor which
 executes the users code. There is still an ordering
 requirement on list item processing, to handle things
 like READ (...) N,(a(i),i=1,N). But there are restrictions
 on the user to ensure that function calls in the i/o list,
 and implied−do− variables, are free to be called/defined
 asynchronously. Hence the requirement that an
 implied−do−variable not be referenced or redefined by any
 other statement, including another I/O statement, until the
 matching wait operation is executed, and that functions
 called as part of evaluating the I/O list be PURE.

 One source of confusion is the role of the ID= values and
 wait operations. The standard allows a user to issue an
 large number of async I/O requests, without waiting for any of
 them to complete, and to then wait for any or all of them.
 It is impossible, and undesirable to keep track of each of
 these I/O requests individually.

 X3J3/97−102
 page 16 of 16

 The proposed support does not require all requests to be
 tracked by the runtime library. When the user does NOT specify
 an ID= specifier on a READ or WRITE, the runtime is free to
 forget about this particular request once it has successfully
 completed. If it gets an ERR or END condition, the processor
 is free to report this during any I/O operation to that unit.

 When an ID=specifier is present, the runtime is required to keep
 track of any END or ERR conditions for that specific I/O request.
 However, if the I/O request succeeds without any exceptional
 conditions occuring, then the runtime can forget about that
 ID= value if it wishes. Typically, I except a runtime to only
 keep track of the last request made, or perhaps a very few.
 Then, when a user WAITs for a particular request, either the
 library knows about it (and does the right thing w.r.t. error
 handling, etc.), or will assume it is one of those requests
 that successfully completed and was forgotten about (and will
 just return without signaling any end/err conditions). It is
 encumbent on the user to only pass in valid ID= values. There
 is no requirement on the processor to detetct invalid ID= values.

 There is of course, a processor dependent limit on how many
 outstanding I/O requests which generate an END or ERROR conditions
 can be handled before the processor runs out of memory to keep
 track of such stuff.

 The restrictions on the SIZE= variables are designed to allow
 the processor to update such variables at any time (after the
 request has been processed, but before the WAIT operation),
 and to then forget about them. That’s why there is no SIZE=
 specifier allowed in the various WAIT operations. Only
 exceptional conditions (errors or EOFs) are expected to be
 tracked by individual request by the runtime, and then
 only if an ID= specifier was present.

 The EOR= specifier has not been added to the WAIT operations.
 Instead, the IOSTAT variable will have to be queried after
 a WAIT operation to handle this situation. This choice was
 made because an EOR condition is not perceived to be an
 exceptional condition, like those that trigger and END=
 or ERR= branch. This particular choice is philosophical,
 and was not based on significant technical difficulties.

 Note that the requirement to set the IOSTAT variable correctly
 requires an implementation to remember which I/O requests got
 an EOR condition, so that a subsequent wait operation will
 return the correct IOSTAT value. This means there is a
 processor defined limit on the number of outstanding I/O
 requests (non−advancing) which got an EOR condition
 (constrained by available memory to keep track of this info,
 similar to END/ERR conditions).

