
To : X3J3
From : John Cuthbertson
Subject : Minimal OO Features in Fortran
References : 92-183, 96-114, 96-142, 96-149, and 96-172

Introduction
Fortran 90/95 already possesses many of the features that are commonly that facilitate Object
Oriented Programming (that is allowing the realisation of an object model into actual program
code). This paper aims to summarise those features and describe the features that Fortran lacks.

Specification of an Object-types and Objects
There seems to be a consensus within the Fortran community that if Fortran is to be made an
object oriented language it should be a "class-based language." In OO terms, a class is a
structural entity used as a template for defining objects that have the same structural components
as the class. This is exactly what the existing Fortran 90 derived-type already provides. In fact
extending the derived-type mechanism is seen by some as the most natural way of introducing
object functionality in Fortran; others agree with this in principle, but would prefer alternative
syntax. Example syntax alternatives:

 TYPE name CLASS name
 0 or more component specs 0 or more component specs
 END TYPE END CLASS

The same controversy exists over the syntax of defining an actual object.

At least two pieces of extra semantics, associated with objects but not structures, have currently
been identified and so a different syntax defining both objects and classes may be desirable,
although for the purposes of this document the TYPE keyword will be used to define classes and
objects.

Inheritance
One of the features of OOP where Fortran provides no language support is inheritance, where a
new class is generated by extending an existing class. This is sometimes termed type extension
or Example:

 TYPE name
 0 or more component specifications
 END TYPE

 TYPE newname, EXTENDS name
 0 or more additional component specifications
 END TYPE

or:

X3J3/97-106
Page 1 of 6

 TYPE newname
 EXTENDS [::] name
 0 or more additional component specifications
 END TYPE

The components that have been specified in name are implicitly specified in newname (that is
they are inherited by newname). There is the obvious extension of this syntax to allow selective
inheritance, where the programmer can select which components from name that newname will
contain.

Note: this model describes "single-inheritance" (a class extends only one class, but can be
extended by any number of classes), but can easily be amended to cope with
"multiple-inheritance".

In an extended class (newname), the layout of the components of the base class (name) is
unchanged; the name of the base class is also visible as a component of the extended class, where
it represents a sub object of the base class. The following example from 96/149 should serve as
an illustration:

 TYPE POINT
 REAL::X,Y,Z
 END TYPE

 TYPE SPACETIME_POINT
 EXTENDS::POINT
 REAL::TIME
 END TYPE

 TYPE(POINT)::W
 ! W contains only the POINT components which are accessed using
 ! W%X, W%Y, W%Z

 TYPE(SPACETIME_POINT)::V
 ! V contains the components: V%X, V%Y, V%Z, and V%TIME
 ! V also contains V%POINT

In my opinion, and I'm sure that there are people who agree with me, enhancing Fortran with
some inheritance mechanism should be a primary goal of X3J3. Inheritance is one of the most
widely used Object Oriented Programming features, and is the most difficult to simulate in
Fortran. A good measure of OOP support would be provided if inheritance alone was added to
Fortran.

Methods
Another item of semantics that is applicable to objects, but not structures, are methods: that is the
association of procedures with specific types or classes. This functionality (albeit in a more
flexible form) is offered by "procedure pointer components" that is part of the Procedure Pointers
requirement that has already been approved for inclusion into Fortran 2000.

X3J3/97-106
Page 2 of 6

For a particular class, a method can be thought of as a component that is procedure pointer, but
cannot be modified (overridden) except in a class that extends the current one. Example:

 INTERFACE
 SUBROUTINE SUB(a,b)
 REAL A,B
 END SUBROUTINE
 END INTERFACE

 TYPE POINT
 REAL::X,Y,Z
 PROCEDURE,POINTER,PARAMETER::FRED => SUB
 END TYPE

An alternative syntax (as specified in 92-183) could be:

 TYPE POINT
 REAL::X,Y,Z
 CONTAINS
 INTERFACE FRED
 SUBROUTINE SUB(a,b)
 ...
 END SUBROUTINE
 END INTERFACE
 END TYPE

The above syntax is purely for illustration purposes only. Both examples mean the same thing
and would probably be implemented in the same way.

Such constant component procedure pointers could be initialised using the NULL() intrinsic. In
this case the method is said to be deferred and should be initialised with a proper procedure in an
extended class.

A reference to a constant component procedure pointer is given as:

 CALL X%FRED(<actual-argument-list>)

Or for a function reference:

 Z = Y%SUE(<actual-argument-list>)

Methods and Type Extension
If the "constant procedure pointers" model of methods is adopted, then a method should only be
overridden (that is the procedure pointer component is initialised with the name of another
procedure) when a class is extended to produce another class. When a method is being
overridden, the component name and attributes in both the base type and the extended type must
match; otherwise a new component is being defined.

X3J3/97-106
Page 3 of 6

Any, all, or none of the methods can be overridden when extending a type; additional methods
can also be included in the extended type. In object oriented programming it is very common to
extend a class just to override the methods. Example:

 TYPE POINT
 REAL X, Y, Z
 POINTER, PARAMETER::METHOD1=>FRED
 END TYPE

 TYPE SPACETIME_POINT
 EXTENDS::POINT
 REAL TIME
 POINTER, PARAMETER::METHOD1=>SUE ! Method 1 overridden
 POINTER, PARAMETER::METHOD2=>JACK ! New method
 END TYPE

A method need not be overridden, in which case the extended type has exactly the same methods
and behaviour as the base type. If the second implementation strategy is adopted then intrinsic
procedures such as the MATCH function, as described in 96-142, can easily be implemented.

Deferred Methods
A deferred method is a nullified procedure pointer component. Example:

 TYPE POINT
 REAL::X,Y,Z
 POINTER,PARAMETER::METHOD1=>NULL()
 END TYPE

The nullified procedure pointer component, METHOD1, of POINT should be initialised
(overridden) in a class that extends POINT. Example:

 TYPE SPACETIME_POINT
 EXTENDS::POINT
 REAL::TIME
 POINTER,PARAMTER::METHOD1=>FRED
 END TYPE

As with a normal Fortran 90 disassociated pointer, a deferred method should not be referenced.
Referencing a deferred method will probably result in a run-time error and usually indicates an
error in the programmer's model. To offset this, the programmer could easily perform an
ASSOCIATED test before the actual reference:

 SUBROUTINE SUB(A)
 TYPE(POINT) :: A

 IF (ASSOCAIATED(A%METHOD1)) THEN
 CALL A%METHOD1()
 ENDIF
 END SUBROUTINE

X3J3/97-106
Page 4 of 6

Alternatively the deferred method could be initialised with some programmer supplied default
(that if called prints a message and halts) which in turn can be overridden.

Suggested Implementation Strategies for Methods
One of the major obstacles in getting approval for methods, and allowing them to be overridden
in extended classes, is the execution overhead that would be involved. One way of implementing
methods would be to actually store the value of the procedure pointer in the object.

SUB:
X
Y:
Z:

: FRED

Thus any reference of a method would at most involve a dereference. Because the methods are
constants a processor, if it can resolve the reference at compile-time, would be free to substitute
the component with the name of the actual procedure. Also the reference could be substituted for
inline code. The disadvantage of this implementation strategy is that objects with a small
number of data components, but a large number of associated methods, would be artificially
large.

Another strategy would be to store a reference to a procedure table (some sort of structure that
contains pointers to procedures) in the actual object. Objects of the same class/type would
"point" to the same procedure table. Procedure references would involve two pointer
dereferences, but determining whether two objects were of the same type would be trivial.

Conclusion
Fortran contains many of the features that make a programming language "object orientated", but
it has no support for the functionality of inheritance. While it is possible to "simulate"
inheritance with good modular design and code duplication, the result is often a piece of software
that is larger than it really should be; it may also be the case that such software is harder to
maintain that if it was developed using traditional software engineering techniques as change is
more widespread.

Methods can be simulated in Fortran just now with good disciplined programming, the semantics
of methods will also be superseded by "Procedure Pointers", and so they are of a lesser
importance than inheritance.

X3J3/97-106
Page 5 of 6

Of all the so-called OO features, inheritance alone will provide a good measure of the support for
OO programming that people want. Inheritance is the one key feature of object oriented
programming that Fortran 2000 should provide.

X3J3/97-106
Page 6 of 6

