
To: SC22WG5 and X3J3 N1243
From: David Epstein X3J3/97-111
Subject: Part III, Conditional Compilation Page 1 of

Dear SC22WG5 and X3J3,

Below is the proposed Part III of the standard regarding conditional compilation (coco). I
introduced a conditional compilation facility (CCF) to X3J3 in 1993. At the last seven
X3J3 meetings, coco has been discussed at increased depth and intensity along the road of
standardization.

At the San Diego SC22WG5 meeting, a vote between a Fortran-like approach and a cpp-like
approach was 13-1-10 in favor of the Fortran-like approach. At the Dresden SC22WG5 meeting,
a vote between a Fortran-like definition and fpp (a cpp-like definition) was 13-6 in favor of the
Fortran-like definition.

I am pleased to provide the below Fortran-like conditional compilation language definition, an
updated version of the definition presented in Dresden. This document was reviewed by Dick
Hendrickson, Jeanne Martin and John Reid. My thanks to these reviewers. My thanks also to
the coco development body and the primary development body for their designing and reviewing
efforts during the last two years.

Looking forward to discussing this paper in Las Vegas,
David Epstein
Imagine1, Inc.
david@imagine1.com
==
---- paper N1243 and X3J3/97-111 follows ----

����������	
�����	�����
��
������

ISO/IEC 1539-3 : 1997

{Auxiliary to ISO/IEC 1539 : 1997 "Programming Language Fortran"}

��������

 1. Introduction

 2. Rationale

 3. General
 1. Scope

 2. Normative References

 4. The Conditional Compilation Language Definition

 Annex CCA : Examples

��
������������

This part of ISO/IEC 1539 has been prepared by ISO/IEC JTC1/SC22/WG5, the technical
working group for the Fortran language. This part of ISO/IEC 1539 is an auxiliary standard to
ISO/IEC 1539 : 1997, which defines the latest revision of the Fortran language, and is the first
part of the multipart Fortran family of standards; this part of ISO/IEC 1539 is the third part. The
revised language defined by the above standard is informally known as Fortran 95.

This part of ISO/IEC 1539 defines a conditional compilation language facility.

��
�������	�

Programmers often maintain multiple copies of code to vary the features or allow for different
operating systems. Keeping several copies of the source code is error prone. A conditional
compilation language facility permits the programmer to rely on the processor to select blocks of
code based on specified conditions. The additional lines inserted to control this process and all
the lines that are not selected are marked to be skipped by the processor during the compilation
phase. These lines have no effect on the interpretation of the source during the compilation
phase and conceptually are replaced by comment lines.

��
������	

��
�����

This part of ISO/IEC 1539 defines facilities for use in Fortran for conditional compilation. This
part of ISO/IEC 1539 provides an auxiliary standard for the version of the Fortran language
informally known as Fortran 95. The international Standard defining this revision of the Fortran
language is

ISO/IEC 1539-1 : 1997 "Programming Language Fortran"

��
������� �
��!���"��#

The following standard contains provisions which, through reference in this text, constitute
provisions of this part of ISO/IEC 1539. At the time of publication, the edition indicated was
valid. All standards are subject to revision, and parties to agreements based on this part of
ISO/IEC 1539 are encouraged to investigate the possibility of applying the most recent editions
of the standard indicated below. Members of IEC and ISO maintain registers of currently valid

International Standards.

ISO/IEC 1539-1 : 1997, Information technology--Programming Languages--Fortran.

$�
�%�
����������	
�����	�����
	�������
���������

������"
���

� �� ��&

�����

��"'����"�(
�����(����"
�"'
��������##�")

Conditional compilation (coco) is achieved during a preprocessing phase that is controlled by
directives in the source text. These directives and any source lines skipped by the conditional
compilation have no effect on the interpretation of the source during the compilation phase. The
compilation phase, which is described in part 1 of this standard, is referred to as the post-coco
processing phase in this part of ISO/IEC 1539.

The execution of coco directives occurs during a phase called the preprocessing phase because
conceptually it occurs before the post-coco processing phase described in part 1 of this standard.

Coco execution is a sequence, in time, of actions specified by the coco directives. The actions
are performed in the order that the directives appear. The result is conceptually a sequence of
lines that is identical to the original sequence except that all coco directive lines are replaced by
comment lines or deleted and all lines within a coco FALSE block (CC6.2.2.2) are replaced by
comment lines or deleted. The lines that are conceptually replaced by comment lines or deleted
are referred to as lines that are marked to be skipped during post-coco processing.

Note CC1.1
Coco execution may be performed by a processor that is separate from the Fortran processor and
passes altered source lines to the Fortran processor. Alternatively, it may be integrated into the
Fortran processor.
ENDNote CC1.1

�����

������"
"*�+��#
�"'
#,"��-
�*(�#

In this part of ISO/IEC 1539, sections are numbered CCs, where s is a one or two-digit section
number. The notation used in this part of ISO/IEC 1539 is described in Part 1, section 1.6.
However, item (4) in Part 1, section 1.6.2 is replace with:

 (4) Each syntax rule is given a unique identifying number of the form CCRsnn, where s is a
 one or two-digit section number and nn is a two-digit sequence number within that section.
 The syntax rules are distributed as appropriate throughout the text, and are referenced by
 number as needed. Some rules in Section CC2 and CC3 are more fully described in later
 sections; in such cases, the section number s is the number of the later section where the
 rule is repeated.

������"
���

%�).
(� �(
#,"��-

This section introduces the terms associated with the conditional compilation program.

 CCR201 coco-program is pp-input-item [pp-input-item] ...

 CCR202 pp-input-item is coco-construct
 or noncoco-line
 The term <noncoco-line> refers to any line without the characters "??" in character positions 1
 and 2.

 CCR203 coco-construct is coco-type-declaration-directive
 or coco-executable-construct

 CCR204 coco-executable-construct is coco-action-directive
 or coco-if-construct

 CCR205 coco-action-directive is coco-assignment-directive
 or coco-error-directive
 or coco-stop-directive

������"
���

��"#��"�#/
#�*���
!���
�"'
�"�(*'�")
��-�

�����

����
��"#��"�#

 CCR301 coco-constant is coco-literal-constant
 or coco-named-constant

 CCR302 coco-literal-constant is coco-int-literal-constant
 or coco-logical-literal-constant

 CCR303 coco-int-literal-constant is digit-string

 CCR304 coco-logical-literal-constant is .TRUE.
 or .FALSE.

 CCR305 coco-char-literal-constant is ' [rep-char]... '
 or " [rep-char] ... "

 CCR306 coco-named-constant is name

Constraint: coco-named-constant shall have the PARAMETER attribute.

[digit-string is specified in part 1, R402 of this standard.]
[rep-char is specified in part 1, section 4.3.2.1 of this standard.]

[A name is specified in part 1, section 3.2.1 of this standard.]

�����

����
#�*���
!���

A coco program is a sequence of one or more lines, organized as coco directives, coco comment
lines (CC3.2.1) and noncoco lines. A coco directive is a sequence of one or more coco lines. A
coco line is a line with the characters "??" in character positions 1 and 2. These characters are
not part of the coco directive. A noncoco line is a line that does not begin in this way.

A coco character context means characters within a coco character literal constant (CCR305).

A coco comment may contain any character that may occur in any coco character context.

In coco source, each source line may contain from zero to 132 characters.

In coco source, blank characters shall not appear within coco lexical tokens other than in a coco
character context. Blanks may be inserted freely between coco tokens to improve readability. A
sequence of blank characters outside of a coco character context is equivalent to a single blank
character.

[Lexical token is specified in part 1, section 3.2 of this standard.]

A blank shall be used to separate coco names, or coco constants from adjacent keywords, coco
names, or coco constants.

One or more blanks shall be used to separate adjacent keywords except in the following cases,
where blanks are optional:

 Adjacent keywords where separating blanks are optional
 ELSE IF
 END IF

�������

����
�����"���,

Within a coco directive, the character "!" in any character position initiates a coco comment
except when it appears within a coco character context. The coco comment extends to the end of
the source line. If the first nonblank character on a coco line after character positions 1 and 2 is
an "!", the line is a coco comment line. Coco lines containing only blanks after character
positions 1 and 2 or containing no characters after character positions 1 and 2 are also coco
comment lines.

Note CC3.1
Examples of coco comment lines are:

?? ! SET "SYSTEM" TO "SYSTEM_A"

??
ENDNote CC3.1

�������

����
'������ �
��"��"*����"

The character "&" is used to indicate that the current coco directive is continued on the next line.
The next line shall be a coco line. Coco comment lines shall not be continued; an "&" in a coco
comment has no effect during coco execution. When used for continuation, the "&" is not part of
the coco directive. After character positions 1 and 2, no coco line shall contain a single "&" as
the only nonblank character or as the only nonblank character before an "!" that initiates a coco
comment.

���������

����0"�"�.�������
��"��-�
��"��"*����"

In a coco directive, if an "&" not in a coco comment is the last nonblank character on a line or the
last nonblank character before an "!" that initiates a coco comment, the coco directive is
continued on the next line. If the first nonblank character after character positions 1 and 2 on the
next coco-noncomment line is an "&", the coco directive continues at the next character
following the "&"; otherwise, it continues with the first character position after character
positions 1 and 2 of the next coco-noncomment line.

If a coco lexical token is split across the end of a line, the first nonblank character after character
positions 1 and 2 on the first following coco-noncomment line shall be an "&" immediately
followed by the successive characters of the split token.

Note CC3.2
An example of coco-noncharacter context continuation is:

?? LOGICAL :: TOO_GOOD&
??&_TO_BE_&
??&TRUE = &
?? ! These six lines contain 1 coco directive
?? ! and two coco comment lines.
?? .FALSE.
ENDNote CC3.2

���������

����
�.�������
��"��-�
��"��"*����"

If a coco character context is to be continued, the "&" shall be the last nonblank character on the
line and shall not be followed by coco commentary. An "&" shall be the first nonblank character
after character positions 1 and 2 on the next line and the coco directive continues with the next
character following the "&".

Note CC3.3
An example of coco character context continuation is:

?? ERROR "DE&
?? &F&
?? &INE 'SYSTEM' VALUE" ! 3 lines, 1 coco directive
ENDNote CC3.3

 CC3.2.3 Coco directives

If a coco directive has one or more continuation lines, every line from the start of the coco
directive until the end of the coco directive shall be a coco line.

A coco directive shall not have more than 39 continuation lines.

 Note CC3.4
 Examples of coco directives are:

 ?? INTEGER, PARAMETER :: SYSTEM_A = 1
 ?? ERROR "SYSTEM_A = ", SYSTEM_A
 ?? IF (.FALSE.) THEN
 ?? ENDIF
 ENDNote CC3.4

�����

�"�(*'�")
#�*���
��-�

Additional text may be incorporated into the source text of a coco program during coco
execution. This is accomplished with the INCLUDE line, which has the form

INCLUDE char-literal-constant

[The INCLUDE line is specified in part 1, section 3.4 of this standard.]

Included source text cannot directly or indirectly include itself.

An INCLUDE line in a coco FALSE block (CC6.2.2) is not expanded. Each coco directive that
is a coco-else-if-directive, coco-else-directive, or coco-endif-directive shall appear in the same
source text as the matching coco-if-directive; that is, the directives that create a coco IF construct
(CC6.2) shall not be split across included source text.

Note CC3.5
An example of erroneous included source text is:

?? ELSEIF (version == V8) THEN
 PRINT *, "The matching coco IF is missing"
?? ELSE
 PRINT *, "Wow, the matching coco ENDIF is also missing"
ENDNote CC3.5

������"
��$

����
�,��
'��(������"
'������ �#

Every data object has a type and may have the PARAMETER attribute. The type of a named
data object, and possibly the PARAMETER attribute, is specified in a type declaration directive.

 CCR401 coco-type-declaration-directive is coco-type-spec [, PARAMETER] :: >
 < coco-entity-decl-list

 CCR402 coco-type-spec is INTEGER
 or LOGICAL

 CCR403 coco-entity-decl is coco-object-name [coco-initialization]

Constraint: A coco-object-name shall not be the same as any other coco-object-name in its
coco-type-declaration-directive or any other exectued coco-type-declaration-directive.

Constraint: coco-object-name shall appear in an executed coco-type-declaration-directive before
appearing elsewhere in a coco program.

 CCR404 coco-initialization is = coco-initialization-expr

Constraint: The types of the coco-initialization-expr and the coco-type-spec shall either both be
integer or both be logical.

Constraint: In a coco-type-declaration-directive, if the PARAMETER attribute is specified, a
coco-initialization shall appear for every coco-object-name.

Note CC4.1
Examples of coco type declaration directives are:

?? INTEGER, PARAMETER :: F77 = 1, F90 = 2, F95 = 3, F2000 = 4
?? INTEGER :: FORTRAN_LEVEL = F95
?? LOGICAL :: DEBUG_PROCEDURE_ENTRY_EXIT
ENDNote CC4.1

Note CC4.2
Coco type declaration directives are not required to appear before coco executable constructs.
ENDNote CC4.2

������"
��1

����
 ����+(�#/
�-���##��"#
�"'
�##�)"��"�
'������ �

��1��

����
 ����+(�#

 CCR501 coco-variable is coco-variable-name

Constraint: coco-variable-name shall not have the PARAMETER attribute.

��1��

����
�-���##��"#

��1����

����
������,

 CCR502 coco-primary is coco-constant
 or coco-variable
 or (coco-expr)

Constraint: A coco-variable shall be defined (CC8.2) before appearing as a coco-primary.

��1����

	� �(0�
�-���##��"#

 CCR503 coco-add-operand is [coco-add-operand mult-op] coco-primary

 CCR504 coco-level-1-expr is [[coco-level-1-expr] add-op] coco-add-operand

[mult-op and add-op are specified in part 1, section 7.1.1.3 of this standard.]

��1����

	� �(0�
�-���##��"#

 CCR505 coco-level-2-expr is [coco-level-1-expr rel-op] coco-level-1-expr

[rel-op is specified in part 1, section 7.1.1.5 of this standard.]

��1���$

	� �(0�
�-���##��"#

 CCR506 coco-and-operand is [not-op] coco-level-2-expr

 CCR507 coco-or-operand is [coco-or-operand and-op] coco-and-operand

 CCR508 coco-equiv-operand is [coco-equiv-operand or-op] coco-or-operand

 CCR509 coco-level-3-expr is [coco-level-3-expr equiv-op] coco-equiv-operand

[not-op, and-op, or-op and equiv-op are specified in part 1, section 7.1.1.6 of this standard.]

��1���1

��"���(
!���
�!
�
����
�-���##��"

 CCR510 coco-expr is coco-level-3-expr

��1��

����
�,��
�!
�
����
�-���##��"

The data type of a coco expression is either Integer or Logical.

[The data type of a coco expression is specified in part 1, table 7.1 of this standard.]

Note CC5.2
The following table of operator precedence differs from table 7.8 in part 1 of this standard only
by the removal of defined operators, exponentiation and concatenation:

 Table CC7.1 Categories of operations and relative precedences

 Category of Operation Operators Precedence Term
 Numeric * or / Highest mult-op
 Numeric unary + or - . add-op
 Numeric binary + or - . add-op
 Relational .EQ., .NE., .LT., .LE., .GT., .GE. . rel-op
 ==,/=, <, <=, >, >=
 Logical .NOT. . not-op
 Logical .AND. . and-op
 Logical .OR. . or-op
 Logical .EQV. or .NEQV. Lowest equiv-op
ENDNote CC5.2

 CCR511 coco-logical-expr is coco-expr

Constraint: coco-logical-expr shall be type logical.

��1�$

����
�"����(�2����"
�-���##��"

 CCR512 coco-initialization-expr is coco-expr

Constraint: A coco-initialization-expr shall not have a coco-variable as a coco-primary.

��1�1

����
�##�)"��"�
'������ �

A coco variable may be defined or redefined by execution of a coco assignment directive.

 CCR513 coco-assignment-directive is coco-variable = coco-expr

In a coco assignment directive, the types of coco-variable and coco-expr shall either both be
integer or both be logical.

Note CC5.3
Examples of coco assignment directives are:

?? DEBUG_LEVEL = DEBUG_LEVEL + 1

?? IS_COMPANY_X_MACHINE = (SYS == SYS_E) .OR. (SYS == SYS_F)
?? PROJECT_LEVEL = FOO_VERSION + LATEST_RELEASE
ENDNote CC5.3

������"
��3

����
�-��*���"
��"���(
�"'
��"'����"�(
�����(����"

The execution sequence and conditional compilation are controlled by coco if constructs.

Note CC6.1
A coco program is not required to contain any coco directives.
ENDNote CC6.1

��3��

����
+(��4#

A coco block is a sequence of coco directives, coco comment lines, INCLUDE lines and noncoco
lines that are treated as a unit.

 CCR601 coco-block is [pp-input-item] ...

Coco executable constructs may be used to control which coco blocks of a coco program are
skipped during post-coco processing.

��3��

����
�
��"#��*��

The coco IF construct marks to be skipped during post-coco processing all but at most one of its
constituent coco blocks. If there is a coco block that is not marked to be skipped during
post-coco processing, it is called the coco TRUE block. The remaining coco blocks are called
coco FALSE blocks.

��3����

���
�!
�.�
����
�
��"#��*��

 CCR602 coco-if-construct is coco-if-then-directive

 coco-block

 [coco-else-if-directive

 coco-block] ...

 [coco-else-directive

 coco-block] ...

 coco-end-if-directive

 CCR603 coco-if-then-directive is IF (coco-logical-expr) THEN

 CCR604 coco-else-if-directive is ELSE IF (coco-logical-expr) THEN

 CCR605 coco-else-directive is ELSE

 CCR606 coco-end-if-directive is END IF

Note CC6.2
An example of two coco if constructs, one nested within the other, is:

?? IF (IS_COMPANY_X_MACHINE) THEN
?? IF (FORTRAN_LEVEL == F95) THEN
 PURE FUNCTION GET_RABBIT_WEIGHT(A_RABBIT) RESULT(WEIGHT)
 TYPE (RABBIT), INTENT(IN) :: A_RABBIT
?? ELSEIF (FORTRAN_LEVEL == F90) THEN
 FUNCTION GET_RABBIT_WEIGHT(A_RABBIT) RESULT(WEIGHT)
 TYPE (RABBIT) :: A_RABBIT
?? ELSE
?? ERROR "We do not have a FORTRAN 77 product from company X"
?? ENDIF
?? ELSE
 FUNCTION GET_RABBIT_WEIGHT() RESULT(WEIGHT)
?? ENDIF
ENDNote CC6.2

��3����

�-��*���"
�!
�"
�
��"#��*��

At most one of the coco blocks in the coco IF construct is selected as a coco TRUE block. If
there is a coco ELSE directive in the construct, exactly one of the coco blocks in the construct
will be selected as a coco TRUE block. The coco logical expressions are evaluated in the order
of their appearance in the construct until a true value is found or a coco ELSE directive or coco
END IF directive is encountered. If a true value or a coco ELSE directive is found, the coco
block immediately following is selected as a coco TRUE block and this completes the execution
of the construct. The coco logical expressions in any remaining coco ELSE IF directives of the
coco IF construct are not evaluated. If none of the evaluated expressions are true and there is no
coco ELSE directive, the execution of the construct is completed without the selection of any
coco block within the construct as a coco TRUE block. All other blocks of the construct are
selected as coco FALSE blocks.

Any coco IF constructs nested within a coco TRUE block are treated similarly. No coco
processing occurs for coco IF constructs nested within a coco FALSE block. No coco processing
occurs for coco action directives, coco type declaration directives or INCLUDE lines within a
coco FALSE block.

Execution of a coco END IF directive has no effect.

Note CC6.3
An example of declaring a coco variable and including source inside a coco IF construct is:

?? IF (MACHINE==BIG) THEN
?? INTEGER :: CHIPS = 3
 INCLUDE "STUFF.BIG"
?? ELSE
?? INTEGER :: CHIPS = 1
 INCLUDE "STUFF.ONE"
?? ENDIF
ENDNote CC6.3

��3������

�-��*���"
�!
�
����
����
+(��4

Source lines contained in a coco TRUE block are processed by the coco processor.

��3������

�-��*���"
�!
�
����
�	��
+(��4

Source lines contained in a coco FALSE block are marked to be skipped during post-coco
processing.

Note CC6.4
If a processor offers an output file as a result of coco execution,
some possible options on the handling of coco directive lines and
lines in a coco FALSE block are:
 (1) delete them,
 (2) replace them with blank lines,
 (3) replace them with a "!" in character position 1, followed by the
 original source line shifted one position to the right,
 (4) replace them with a "!" in character position 1, followed by the
 the characters starting from character position 2 of the original
 source line, or
 (5) replace them with a "!?>" in character positions 1 to 3,
 followed by the original source line shifted three positions
 to the right.
All other lines could be copied without modification into the output file.
ENDNote CC6.4

������"
��5

����
�����
'������ �
�"'
����
#���
'������ �

 CCR701 coco-error-directive is ERROR [coco-output-item-list]

 CCR702 coco-output-item is coco-expr
 or coco-char-literal-constant

Execution of a coco ERROR directive specifies that a programmer detected error has occurred

during coco execution. At the time of execution of a coco ERROR directive, the
output-item-list, if any, is available in a processor-dependent manner. Execution of a coco
ERROR directive does not halt coco execution.

Note CC7.1
Examples of the coco error directive are:

?? ERROR "system shall be set to 'sys1' or 'sys2'"
?? ERROR "system = ", SYSTEM
?? ERROR
ENDNote CC7.1

 CCR703 coco-stop-directive is STOP

Execution of a coco STOP directive specifies that a severe programmer detected error has
occurred during coco execution. Execution of a coco STOP directive halts coco execution.
At the time of execution of a coco STOP directive, the fact that coco execution was halted by the
execution of a coco STOP directive is available in a processor-dependent manner.

Note CC7.2
When an error has occurred during coco execution, whether or not post-coco processing follows
is processor-dependent.
ENDNote CC7.2

Note CC7.3
An example of using the coco ERROR directive and the coco STOP directive for error reporting
is:
?? IF (MACHINE==BIG) THEN
?? INTEGER :: CHIPS = 3
 INCLUDE "STUFF.BIG"
?? ELSEIF (MACHINE==SMALL) THEN
?? INTEGER :: CHIPS = 1
 INCLUDE "STUFF.ONE"
?? ELSE
?? ERROR "SET MACHINE TO EITHER BIG OR SMALL"
?? ERROR "MACHINE = ", MACHINE
?? ERROR "PREPROCESSING ERROR. HALTING! "
?? STOP ! FATAL ERROR. HALT COCO EXECUTION
?? ENDIF
ENDNote CC7.3

������"
��6

�����
�"'
'�!�"����"
�!
����
 ����+(�#

��6��

�����
�!
����
 ����+(�#

Coco variables have the scope of the coco program in which they are declared.

��6��

� �"�#
�.��
��*#�
����
 ����+(�#
��
+�����
'�!�"�'

Coco variables become defined as follows:

(1) Execution of a coco assignment directive causes the coco variable that precedes the equals
to become defined.

(2) Execution of a coco initialization in a coco type declaration directive causes the coco
variable that precedes the equals to become defined.

(3) Execution of the coco-set-option (Section CC10) causes the coco variable to become
defined.

������"
��7

����
���)���
��"!����"��

A coco program is a standard-conforming coco program if it uses only those forms and
relationships herein and if the program has an interpretation according to this standard.

A coco processor conforms to this standard if:

 (1) It executes any standard-conforming coco program in a manner
 that fulfills the interpretations herein, subject to any limits
 that the processor may impose on the size and complexity of
 the coco program.

 (2) It contains the capability to detect and report the use within
 a submitted coco program of an additional form or relationship
 that is not permitted by the numbered syntax rules or their
 associated constraints.

 (3) It contains the capability to detect and report the use within
 a submitted coco program of source form not permitted by
 Section CC3.

 (4) It contains the capability to detect and report the use within
 submitted coco SET options of values and names not permitted
 by Section CC10.

 (5) It contains the capability to detect and report the reason for
 rejecting a submitted program.

������"
���8

�.�
����
���
�����"

There is one coco option--the coco-set-option. A processor shall supply at least one method of
recognizing the coco-set-option separate from the coco program. A processor may allow many

coco-set-options.

Note CC10.1
The invocation line may be the chosen method of communicating the coco-set-option to the
processor. Another method of communicating the coco-set-option to the processor could be a
coco input file.
ENDNote CC10.1

The coco-set-option is a method of
 (1) documenting the value of a coco PARAMETER;
 (2) assigning an initial value to a coco variable (CCR501);
 (3) overriding the initial value assigned to a coco variable in a coco initialization expression
(CCR512) without editing the coco program.

The coco-set-option consists of one or more pairs of coco-object-names and
coco-literal-constants. The requirements on the coco-object-names and coco-literal-constants are
as follows:

(1) A coco-object-name specified in a coco-set-option shall be declared in a coco type declaration
directive in the coco program. The coco-literal-constant specified in a coco-set-option shall
match the type specified in the coco type declaration directive for the coco-object-name.

(2) The type of a coco-object-name specified in a coco-set-option shall match the type of its
coco-literal-constant.

(3) If a coco-object-name specified in a coco-set-option has the PARAMETER attribute specified
in its coco type declaration directive, the value of its coco-literal-constant shall match the value
supplied in its coco type declaration directive.

(4) If a coco-object-name specified in a coco-set-option appears in the coco program as the coco
variable in a coco assignment directive, it shall appear at least once in a previous coco executable
construct or be initialized in its coco type declaration directive. An example that shows the
enforcement of this requirement is found in Note CC10.4

Note CC10.2
A processor may allow other representations for constants and expressions in a coco-set-option.
For example, the characters 'T' or 'F' could be used to represent .TRUE. or .FALSE. respectively.
In this case it is as if .TRUE. or .FALSE. were specified as the coco-literal-constant.
ENDNote CC10.2

If a coco-object-name specified in a coco-set-option has the PARAMETER attribute specified in
its coco type declaration directive, this coco-object-name and coco-literal-constant pair has no
effect. Otherwise, the coco-set-option for this coco-object-name and coco-literal-constant pair
acts as if a coco assignment directive (CCR513)--which consists of the specified
coco-object-name as the coco variable and the coco-literal-constant as the coco expression

(CCR510)--were placed immediately following the coco type declaration directive that declared
the coco-object-name.

Note CC10.3
A coco-object-name that has the PARAMETER attribute is allowed in a coco-set-option for
documentation purposes. For example, the following coco-set-option:

 COCO-SET-OPTION->DOS=1,MAC=2,UNIX=3,SYSTEM=1

will override the initial value given to the coco-variable SYSTEM in the following source text:

?? INTEGER, PARAMETER :: DOS = 1, MAC = 2, UNIX = 3, OTHER = 4
?? INTEGER :: SYSTEM = UNIX

Note that the syntax shown above for the coco-set-option is simply one example syntax, using an
arrow ("->"), and equals ("=") and a comma (","), that may be used for the coco-set-option.
ENDNote CC10.3

Note CC10.4
The value assigned to a coco variable with the coco-set-option does not override the value
assigned to a coco variable with the coco assignment directive. The above fourth requirement
may save the inexperienced programmer from expecting that the coco-set-option:

 COCO-SET-OPTION(DOS=1:MAC=2:UNIX=3:SYSTEM=1)

will override the initial value given to the coco-variable SYSTEM in the following source text:

?? INTEGER, PARAMETER :: DOS = 1, MAC = 2, UNIX = 3, OTHER = 4
?? INTEGER :: SYSTEM
?? SYSTEM = UNIX

A coco processor shall detect and report that coco-variable SYSTEM is initialized in the
coco-set-option, but the specified initial value is not used.

Note that the syntax shown above for the coco-set-option is simply one example syntax, using
parentheses ("(",")"), and equals ("=") and a colon (":"), that may be used for the coco-set-option.
ENDNote CC10.4

�""�-
���
9
�:���	��

This annex includes two examples illustrating the use of facilities conformant with this part of
ISO/IEC 1539.

The first example uses conditional compilation to facilitate the editing of a large block comment.

The second example uses conditional compilation to provide debugging information upon

entering and exiting procedures. The example intentionally has a programming bug in it. Note,
the conditional compilation directives in this example could be automatically generated.

Each example contains a conditional compilation program and a possible output file from
conditional compilation execution. The first example shows an output file from conditional
compilation execution that handles the lines treated as comments by shifting them three positions
to the right and placing the characters "!?>" in character positions one to three.

--- initial text --
! EXAMPLE 1 shows a possible shift file for output
?? IF (.FALSE.) THEN

One convenient use of conditional compilation is the
ability to write large comments that span across many
lines without requiring each line to start with a "!".
Since conditional compilation specifies blocks of lines
to be skipped over by the processor, this whole paragraph
can be written and modified without the overhead of
making sure that each line is a Fortran comment.

One can imagine this use of conditional compilation for
header comments preceding Fortran programs, modules and
procedures.

?? ENDIF

--- possible text output from conditional compilation execution ---
! EXAMPLE 1 shows a possible shift file for output
!?>?? IF (.FALSE.) THEN
!?>
!?>One convenient use of conditional compilation is the
!?>ability to write large comments that span across many
!?>lines without requiring each line to start with a "!".
!?>Since conditional compilation specifies blocks of lines
!?>to be skipped over by the processor, this whole paragraph
!?>can be written and modified without the overhead of
!?>making sure that each line is a Fortran comment.
!?>
!?>One can imagine this use of conditional compilation for
!?>header comments preceding Fortran programs, modules and
!?>procedures.
!?>
!?>?? ENDIF

--- initial text --
! EXAMPLE 2 shows a possible short file for output
?? LOGICAL :: DEBUG_PROC_NAME = .FALSE.
?? LOGICAL :: DEBUG_PROC_ARGS = .FALSE.
?? ! Make sure to debug the procedure name if debugging the
arguments
?? DEBUG_PROC_NAME = DEBUG_PROC_NAME .OR. DEBUG_PROC_ARGS

SUBROUTINE INTSWAP (LEFT, RIGHT)
 INTEGER, INTENT(INOUT) :: LEFT, RIGHT
 INTEGER :: WRONG
?? IF (DEBUG_PROC_NAME) THEN
 PRINT *, "Entering IntSwap"
?? ENDIF
?? IF (DEBUG_PROC_ARGS) THEN
 PRINT *, " IntSwap(in):left = ", LEFT
 PRINT *, " IntSwap(in):right = ", RIGHT
?? ENDIF

 WRONG = RIGHT
 LEFT = RIGHT
 RIGHT = WRONG

?? IF (DEBUG_PROC_ARGS) THEN
 PRINT *, " IntSwap(out):left = ", LEFT
 PRINT *, " IntSwap(out):right = ", RIGHT
?? ENDIF
?? IF (DEBUG_PROC_NAME) THEN
 PRINT *, "Exiting IntSwap"
?? ENDIF
ENDSUBROUTINE INTSWAP

--- possible text output from conditional compilation execution ---
! EXAMPLE 2 shows a possible short file for output
SUBROUTINE INTSWAP (LEFT, RIGHT)
 INTEGER, INTENT(INOUT) :: LEFT, RIGHT
 INTEGER :: WRONG

 WRONG = RIGHT
 LEFT = RIGHT
 RIGHT = WRONG

ENDSUBROUTINE INTSWAP

