X3J3/97-114r2/7
Page 1 of 2

Date: 15 February 1997

To: X3J3

From: Van Snyder

Subject: Pre-connected 1/O unit numbers

The capability advocated in Section 7 of X3J3/97-114r2, that allows ac-
cess to pre-connected 1/O unit numbers, was added to the “C” list during
X3J3 meeting 140. Illustrative editorial changes that apply to ISO/IEC
1539:1991(E) were suggested in X3J3/97-11412, but are not reproduced here.

Section 7 of 97-114r2: WRITE(u...) = PRINT

Every time I write a library subprogram that does output, I find myself
wanting to allow output either to stdout, or to a file, or none at all. So I
end up with code blocks of the form

IF (UNIT == 0) THEN

WRITE (*,100) ... ! or PRINT 100,...
ELSE IF (UNIT > O) THEN

WRITE (UNIT,100)
ENDIF

My life would be simplified here if the standard provided a mechanism
to write onto a unit and have the effect of WRITE(*,...) or PRINT, and to
read from a unit and have the effect of READ format or READ(*,format).
I’ll propose three mechanisms that provide the functionality that I want,
have no impact on other parts of the language, are compatible to earlier
versions of standard Fortran, and don’t add much burden for developers.

The simplest mechanism would be if the standard defined unit numbers
for these purposes. The standard presently prohibits negative unit numbers,
so the interpretation of standard-conforming programs would be unchanged
if Fortran 2000 were to specify that READ(-1,format) has the same effect
as READ format or READ(*,format), that WRITE(-1,format) has the same
effect as PRINT format or WRITE(*,format), and that WRITE(-2,format)
doesn’t do anything. READ(-2,format) could be defined to do nothing, or
do the same as READ(-1,format) or be an error —I don’t care, but somebody
else might have an opinion. Or X3J3 could choose different unit numbers.

One might also want to allow different unit numbers for units equivalent
to Unix’s stdout and stderr.

X3J3/97-114r2/7
Page 2 of 2

Less simple, but also workable, would be for the standard to define a
syntax of INQUIRE, say FILE=#, that returns a unit number that one can use
to get the same effect as READ and PRINT, or provide an intrinsic function
to return this value (but, lacking arguments, the intrinsic would be a little
goofy). (Some implementors might want to return different unit numbers
for READ and PRINT, say 5 and 6. So maybe FILE=* and FILE=**, or
two intrinsics could be used.) | haven’t given any thought to how one could
extend the INQUIRE mechanism to provide a non-functional unit.

Given any of these mechanisms, I could just write

WRITE (UNIT,what_format_100_really_is)...

and assume that if the user wanted stdout, or no output, UNIT would be
set accordingly.

When 1 proposed this for F90, somebody remarked that it would be
“impossible” for some implementors. I think the (unimaginative) complainer
had in mind that some implementors don’t pre-open units for stdin and
stdout (say, 5 and 6), and therefore “couldn’t” tell me the unit numbers to
use. I don’t see any related problem whatsoever with specifying the meaning
of unit -1 as suggested above: Just test for the unit number being -1, and
jump to the code for READ or PRINT.

Otherwise, one could avoid the “it’s impossible” argument outlined above
thus: The standard could stipulate that negative unit numbers have system-
defined effect. Implementors would thereby be free to return either pre-
opened positive unit numbers for stdin etc. when INQUIRE (or an intrinsic)
asks for them, or use system-dependent negative unit numbers. Anybody
who puts a negative unit number into a WRITE statement, but one that
wasn’t gotten from INQUIRE (or an intrinsic) deserves his non-portability.

