
X�J��������
Page � of ��

Date� �� January ����
To� X	J	
From� Van Snyder
Subject� Proposals for Discussion for Fortran �
� ���� and ���

The intent of this proposal is to put ideas on the table� to get WG
 and
X	J	 thinking about things that haven�t been considered before� or about
old things that have been forgotten� or just haven�t been considered from
every reasonable angle

Most of the changes we propose are independent from each other and
from other parts of the language
 A few of the changes depend on each other
or a�ect several areas of the language

Some of the changes we propose can be implemented incrementally� that
is� if changes are necessary in several areas in order to gain the full bene�t of
a proposal� it is nonetheless possible to implement a few of the simpler and
possibly less controversial changes� see how they work� and see how di�cult
they are to implement� before proceeding with others

We�re interested to see the principles embodied by the herein proposed
changes implemented into Fortran
 The details are negotiable
 Where de�
tails are presented� for example� in the form of concrete editorial proposals�
consider them to be examples
 We would be pleased to learn that some of
the ideas proposed here are already under study

This document is organized in roughly the order of the probability we
attach to getting the proposals implemented� not in order according to the
desirability we attach to each proposal

This document may also be viewed on the world�wide�web at the URL
http���gyre�jpl�nasa�gov��vsnyder�fortran
 The web contains the
same material� but is organized di�erently
 In particular� concrete proposals
for change to ISO�IEC �
	������ are presented separately for each area of
proposal
 In this document� all the changes are presented in an appendix�
in page�number order

Contents

� The 	Curse of Compatibility
 is not as much of a constraint
as it seems �

� Some of ISO�IEC ����
���� Needs Reorganization �

X�J��������
Page � of ��

� Intrinsics �

	
� Linear Algebra

 �
	
� Dealing with I�O trouble

	
	 ATAN� � ATAN

� Gratuitous Constraints �

� Include Line �

� A More Complete Type System �

� WRITE�u���� � PRINT �

� Minor FORMAT Extensions ��

� Pointers to Procedures ��

�� Control Structure Extensions � Regularizations ��

��
� Extend EXIT to allow it to refer to any construct

 ��
��
� Introduce a BLOCK construct

 �	
��
	 Extensions � Regularizations for CASE

 ��

��
	
� CASE BLOCKS

 ��
��
	
� Open or closed ranges of CASE

 �

��
	
	 Real CASE ranges

 �

��
	
� CASE��
AND
 �logical�expression�

 ��

��
� GOTO could be tamed

 ��

�� Exploiting Modern Processor Architectures ��

�� Character Type Would Bene�t From Regularization ��

�� LIMITED attribute for types and INTENT �LIMITED� ��

�� Three Simple Language�size Reductions ��

��
� Combine attribute discussions

 ��
��
� Contains

 ��
��
	
EQV
 �
EQ

 ��

�� Object Oriented Fortran ��

�� INTENT�OUT� for Module Variables ��

X�J��������
Page 	 of ��

�� More Can Be Done With Fortran I�O ��

��
� Window units

 ��
��
� Event units

 �

��
	 Pipe units

 ��
��
� Non�synchronous I�O

 ��
��

 Associated variables

 ��

�� Threads ��

�� 	Very Local
 Variables ��

�� Is FPP or CoCo Necessary� ��

�� A SWAP Operator Would Be Useful ��

�� Enumeration Types Would Be Useful ��

�� Module Interfaces and Implementations Should Be Sepa�

rated ��

�� Modules Need Initialization Parts ��

�� Fortran Could Have Referential Invariance ��

�

� Updaters

 	�
�

�
� An Example Where Updater Works and Left�hand

Function Doesn�t

 ��
�

� Intrinsic Updaters

 ��
�

	 Make the Array Section Selector a First�Class Type

 ��
�

� Function References that Look Like Derived Type Field Ref�

erences

 ��
�

 Replacing a Scalar or Whole�array By Procedures

 ��

�� Subtypes of INTEGER Need Regularization ��

Appendix
 Some Concrete Proposals to Change ISO�IEC
����
���� ��

X�J��������
Page � of ��

� The �Curse of Compatibility� is not as much of
a constraint as it seems

The things that we propose that might not be the same way as in Fortran
�� wouldn�t really cause much trouble to users� the changes are designed so
that they can be translated by a simple processor

This is a strategy that X	J	 and WG
 could use in general
 X	J	 and
WG
might go so far as to stipulate that a processor system does not conform
to the standard if such a translator is not included
 �Yes� I know the standard
presently applies to the language� not to processors
�

� Some of ISO�IEC ���	
�		� Needs Reorganiza�
tion

Since �host association� applies to derived type de�nitions� as well as in�
ternal procedures and module procedures� Sections ��
�
�
�
� and ��
�
�
�
�
should be in Chapter ��
 Also� since the title of Chapter �� is �Scope� asso�
ciation and de�nition� one might be tempted to look therein for a discussion
of �host association
�

If �very local� Variables �see section �� on page 	�� are allowed� there
is one more reason to move the discussion to Chapter ��

The discussions of list�directed and namelist input and output could
be simpli�ed by being combined� or by referring from the discussions of
namelist input and output to parallel sections concerning list�directed input
and output

� Intrinsics

��� Linear Algebra

Linear algebra needs MaxAbsLoc and MaxAbsVal operations� e
g
 for piv�
oting
 I don�t trust the compiler�s optimizer to get rid of the temp in
MaxLoc�Abs�A��� so I�d write

I� � MinLoc�A�

I� � MaxLoc�A�

IF �ABS�A�I��� � ABS�A�I���� I� � I� � I� � MaxAbsLoc�A� here

Intrinsic MaxAbsLoc� MaxAbsVal� MinAbsLoc and MinAbsVal would be
more e�cient� and� for me� clearer

X�J��������
Page
 of ��

�MinAbsVal and MinAbsLoc aren�t needed for linear algebra � but they
should be included for symmetry
�

��� Dealing with I�O trouble

When I try to write a robust� portable program that responds gracefully to
trouble with I�O� I put IOSTAT� and ERR� clauses in I�O statements
 But
I can�t do anything meaningful with the IOSTAT result except print it� and
admonish the user to look in the manuals
 The implementor has graciously
provided explanatory error messages� but these are emitted only in the case
that I don�t mention IOSTAT� or ERR� in the control list

Can we have a standard intrinsic subroutine that takes an IOSTAT value
and a unit number� and prints a meaningful related message� Or� a standard
intrinsic function that takes an IOSTAT value and a unit number� and returns
a character variable in which there is a meaningful message related to the
IOSTAT value� It needn�t be the same message that would be printed if
IOSTAT� or ERR� had been absent� because some vendors like to put extra
stu� in some messages� but almost any message is better than �Error ���

Look in your manual to discover what that means�� which is all I can print
now� if I want to maintain portability

��� ATAN� � ATAN

ATAN��Y	X� is an anachronism
 Use ATAN�Y	X� instead� and deprecate
ATAN�

Also���

Also see �Subtypes of INTEGER Need Regularization� �section �� on page
�
�

� Gratuitous Constraints

It would simplify the language� and the life of implementors� if gratuitous
constraints could be removed
 For example� an implementor remarked to me
during the F�� standardization that it required extra code in his compiler to
prevent list�directed or namelist I�O on internal �les �character variables
�
So why not allow it�

X	J	 responded to my suggestion during the �nal public comment on
F�� that these constraints would not be removed
 The constraint on list�

X�J��������
Page � of ��

directed I�O using internal �les has been removed� but the constraint on
namelist I�O using internal �les remains
 Other bizarre constraints remain
as well� In complex input items in list�directed or namelist input� blanks
may appear before or after numeric items� but end�of�line may not appear
between a numeric item and a parenthesis

Similarly� Univac Fortran uses END� in a WRITE statement to mean
�End of tape� or �End of allocated disk space
� The Univac compiler writer
assures me it was easier to allow than prohibit �because of the way Univac�s
OS����� returns I�O errors�
 For implementors who don�t or can�t detect
such things� there�s just never a jump to END� if it appears in a WRITE
statement
 That�s simpler than prohibiting it

The language could be simpli�ed if X	J	 were to examine every con�
straint �both explicit and implied�� and replace as many as possible with
de�nitions of what happens� including the possibility that nothing might
happen �e
g
 WRITE �
	 end���� might never jump to statement �� on a
system that doesn�t have pre�allocated disk extents� instead of prohibitions

� Include Line

The interpretation of the literal on INCLUDE lines is presently SYSTEM
DEFINED
 It should be changed to USER DEFINED
 In correspondence
with X	J	 during F�� standardization� I explained how this could be done �
I�ve done it already in preprocessors� so it�s not untried methodology
 Allow�
ing INCLUDE to remain SYSTEM DEFINED causes portability problems

 A More Complete Type System

A more complete type system could correct some oversights or mistakes in
earlier Fortran standards� and allow some extensions� especially those having
to do with object oriented programming� to be expressed in more natural
ways

Fortran cannot presently construct an array of pointers� except by a
clumsy circumlocution

Fortran cannot presently give a name to a what amounts to a �subtype��
and therefore cannot take advantage of several optimizations developed by
authors of compilers for languages that have named subtypes

Consider extending type declarations to allow types to have attribute
declarations� using a syntax similar to attribute declarations for variables

For example

X�J��������
Page � of ��

TYPE	 POINTER	 INTEGER�KIND������ �� PI

TYPE	 POINTER	 TYPE�FOO� �� PFOO

TYPE�PI�	 ARRAY���� �� API

TYPE�PFOO� �� APFOO����

constructs an array API of �� pointers to integers� and an array APFOO of
�� pointers to objects of type FOO

By combining extension to INTEGER KIND speci�cation �see section ��
on page �
�� the ability to name attributed types� and the ability to use type
names for array index set speci�cations� one gets a signi�cant bene�t noticed
by Ada compiler writers� Array bounds checking can be done signi�cantly
more completely at compile time

Consider the following�

INTEGER	 PARAMETER �� PR� � SELECTED
INT
KIND��	���

TYPE	 INTEGER�KIND�PR�� �� TR�

REAL	 ARRAY�TR�� �� R

TYPE�TR�� �� IR�

This de�nes

�
 A parameter PR� that is the KIND index of a subtype of integer of
which variables can take only values in ����

�
 TR� is speci�ed to be a name of that subtype

	
 R is declared to be an array with the dimension TR�
 This speci�es
the bounds for R� and that R must be subscripted either by a variable
of type TR�� or by a constant

�
 IR� is a variable of type TR�

If bounds are checked when values are assigned to IR�� then no bounds�
checking is needed when IR� is used as a subscript for R
 Furthermore�
bounds need not be checked when IR� gets a value from another value of
type TR�� or from a constant � run�time bounds checking is necessary only
when IR� gets a value from an integer of a di�erent subtype

A complete system of named types� with attribute speci�cations� allows
an improved design of object oriented programming features
 In particular�
it allows to use the type�safe Ada �class�wide pointer� instead of the type�
unsafe C�� �virtual� declaration for run�time dispatching

Stealing some words from Ada� one might have the following fragment
of an example

X�J��������
Page � of ��

TYPE	 TAGGED

 BASE � TAGGED means it can be extended

� component declarations

END TYPE BASE

TYPE	 NEW�BASE�

 DERIVED � NEW�BASE� means an extension of BASE

� component declarations in addition to those from type BASE

END TYPE DERIVED

TYPE	 POINTER	 CLASS�BASE�

 TPCBASE � Pointer to BASE�s class

TYPE	 POINTER	 TYPE�BASE�

 TPTBASE � Pointer to BASE only

TYPE�BASE�	 TARGET

 VBASE

TYPE�DERIVED�	 TARGET

 VDERIVED

TYPE�TPCBASE�

 PCBASE � Pointer to VBASE or VDERIVED	 dispatched

TYPE�TPTBASE�

 PTBASE � Pointer to VBASE only	 not dispatched�

PCBASE �� VDERIVED � OK

PCBASE �� VBASE � OK

� PTBASE �� VDERIVED � Error

PTBASE �� VBASE � OK

Words di�erent from TAGGED� NEW and CLASS could be used
 The
important idea is to be able to give names and attributes to types and
subtypes

Later �maybe never�� for more type safety� it may be desirable to have
recognizably separate declarations for types and subtypes
 For example

TYPE	 INTEGER �� T�

SUBTYPE	 INTEGER�KIND�SELECTED
INT
KIND��	����� �� S�

declares T� to be a new type� and prevents variables of type T� to be as�
signed� or argument associated� with variables of any other type �including
default INTEGER�� or subtype of any type other than T� �in particular�
not S��
 But S� can be assigned� or argument associated� with any variable
of type INTEGER or any subtype of INTEGER

� WRITE�u���� � PRINT

Every time I write a library subprogram that does output� I �nd myself
wanting to allow output either to stdout� or to a �le� or none at all
 So I
end up with code blocks of the form

IF �UNIT �� �� THEN

WRITE ��	���� ��� � or PRINT ���	���

ELSE IF �UNIT � �� THEN

WRITE �UNIT	���� ���

ENDIF

X�J��������
Page � of ��

My life would be simpli�ed here if the standard provided a mechanism
to write onto a unit and have the e�ect of WRITE��	���� or PRINT� and to
read from a unit and have the e�ect of READ format or READ��	format�

I�ll propose three mechanisms that provide the functionality that I want�
have no impact on other parts of the language� are compatible to earlier
versions of standard Fortran� and don�t add much burden for developers

The simplest mechanism would be if the standard de�ned unit numbers
for these purposes
 The standard presently prohibits negative unit numbers�
so the interpretation of standard�conforming programs would be unchanged
if Fortran ���� were to specify that READ���	format� has the same e�ect
as READ format or READ��	format�� that WRITE���	format� has the same
e�ect as PRINT format or WRITE��	format�� and that WRITE���	format�
doesn�t do anything
 READ���	format� could be de�ned to do nothing� or
do the same as READ���	format� or be an error � I don�t care� but somebody
else might have an opinion
 Or X	J	 could choose di�erent unit numbers

One might also want to allow di�erent unit numbers for units equivalent
to Unix�s stdout and stderr

Less simple� but also workable� would be for the standard to de�ne a
syntax of INQUIRE� say FILE��� that returns a unit number that one can use
to get the same e�ect as READ and PRINT� or provide an intrinsic function
to return this value �but� lacking arguments� the intrinsic would be a little
goofy�
 �Some implementors might want to return di�erent unit numbers
for READ and PRINT� say
 and �
 So maybe FILE�� and FILE���� or
two intrinsics could be used
� I haven�t given any thought to how one could
extend the INQUIRE mechanism to provide a non�functional unit

Given any of these mechanisms� I could just write

WRITE�UNIT	what
format
���
really
is����

and assume that if the user wanted stdout� or no output� UNIT would
be set accordingly

When I proposed this for F��� somebody remarked that it would be
�impossible� for some implementors
 I think the �unimaginative� complainer
had in mind that some implementors don�t pre�open units for stdin and
stdout �say�
 and ��� and therefore �couldn�t� tell me the unit numbers to
use
 I don�t see any related problem whatsoever with specifying the meaning
of unit �� as suggested above� Just test for the unit number being ��� and
jump to the code for READ or PRINT

Otherwise� one could avoid the �it�s impossible� argument outlined above
thus� The standard could stipulate that negative unit numbers have system�
de�ned e�ect
 Implementors would thereby be free to return either pre�

X�J��������
Page �� of ��

opened positive unit numbers for stdin etc
 when INQUIRE �or an intrinsic�
asks for them� or use system�dependent negative unit numbers
 Anybody
who puts a negative unit number into a WRITE statement� but one that
wasn�t gotten from INQUIRE �or an intrinsic� deserves his non�portability

� Minor FORMAT Extensions

Minimal width formatting

If I want to use exactly enough space to print an integer� I need to use
something like

INTEGER J	 N

CHARACTER����� FMT

DATA FMT ������ I 	 ������

���

N � � � LOG���MAX�ABS�J�	 ���

IF �I �LT� �� N � N � �

WRITE �FMT�����	 ��I���� N

WRITE ��	FMT� ��� 	 J	 ���

In Modula�� I can use WriteInt�J	 ��� which means �Write J using
no more character spaces than necessary
�

A simple extension to Fortran is to allow the W part of an I format
descriptor to be absent or zero
 Instead of the above mess� I could use

INTEGER J

WRITE ��	 ����� I	 ������ ��� 	 J

It�s even more of a mess to write a REAL using F format with as few
character spaces as necessary
 I usually write it into a character variable
using large values of W and D� then scan to remove leading blanks� and
trailing blanks and zeroes
 Ick

So it also makes sense to allow W
D to be absent in F descriptors

An interpretation similar to list�directed input can apply on input� con�

tinue reading until a blank� comma� or end�of�line is encountered

This is not a new idea in Fortran� One can already use an A edit descrip�

tor� with no W given� to mean �Output the corresponding list item using
no more character positions than necessary
�

I�ve been informed that I� and F��w are in F��� If so� I�ll remove
this section from my list

X�J��������
Page �� of ��

Type conversion during formatted I�O

One is presently allowed to mix numbers of type INTEGER and REAL in
expressions
 One cannot� however� input or output a REAL with I format�
or an INTEGER with E� F or G format

It would increase the semantic regularity if one could do this� and expect
the same conversions to apply as would during mixed�mode intrinsic numeric
assignment

	 Pointers to Procedures

I don�t know what�s been proposed for pointers to procedures� if anything

But it�s important to be careful
 One cannot allow storing the address of a
procedure into a pointer that is visible when the up�level �host associated�
environment for the procedure no longer exists
 So don�t allow storing the
address of an internal procedure into a variable more global than the �con�
taining� procedure
 Modula�� solves this problem by allowing one only to
store the address of a non�internal procedure� but I think that�s too restric�
tive

I hope F���� will allow multiple levels of internal procedures� and allow
them to be arguments
 There�s no reason to prevent it� other than the
potential cost of deep binding
 But deep binding is di�erent from shallow
binding only when a procedure is passed through a recursive invocation of
itself or �one of� its owner�s�
 So compilers could do the simple e�cient
thing almost always
 If Fortran ���� allows passing internal procedures as
arguments it�s important to prevent copying the address of the procedure
from an argument into a too�globally�visible variable

In Ada��
� one can copy a pointer into any variable that has a lifetime no
longer than the type of the pointed�to thing
 This prevents passing internal
procedures as arguments �except to other internal procedures at the same
level as the passed one�� because a procedure could copy an argument that is
a pointer�to�procedure into a variable having a lifetime longer than the up�
level environment existent at the instant the internal procedure was passed
as an actual argument
 �This is true because a named type having the same
signature as the internal procedure must also be visible to the �owner� of
the called procedure
�

What I proposed to cure the problem in Ada was equivalent to an �in�
tent� that imposes the same constraints as Ada�s �limited� type attribute

�The �limited� attribute for a type means that intrinsic assignment is unde�
�ned
� The result is that the procedure can�t do anything with a �limited�

X�J��������
Page �� of ��

pointer except dereference it or pass it to another procedure argument that�s
also limited
 In particular� it can�t store a copy into a pointer variable that
might have a longer lifetime than the up�level environment existent at the
instant the procedure is passed as an argument
 Therefore� it�s a simple exer�
cise in induction to prove that the up�level can�t vanish between the instants
of creating a pointer to a procedure �by using it as an actual argument� and
calling it by way of a pointer

If Fortran ���� allows both pointers�to�procedures and internal proce�
dures as actual arguments� something similar is needed

A �limited� intent by itself looks kind of silly
 It would also be useful to
provide the limited attribute for derived types �see section �	 on page ���

�� Control Structure Extensions � Regularizations

Several extensions to control structures are useful
 Some of these regular�
ize the language� and thereby simplify it
 Extensions are discussed in the
following areas�

� Extend EXIT to allow it to refer to any construct

� Introduce a BLOCK construct

� Extensions � Regularizations for CASE

� GOTO could be tamed

���� Extend EXIT to allow it to refer to any construct

Extend EXIT so it can apply to any construct� not just DO�s
 Of course� to
maintain compatibility� one would need to use the �EXIT construct�label�
syntax
 �I tried to get EXIT extended during Fortran �� standardization� to
avoid the latter
� This has no e�ect on other parts of the language � EXIT
from an inner DO to an outer one is already de�ned� and exit from an inner
DO to an enclosing non�DO construct has the same e�ect on the inner DO

To reduce the number of construct labels one needs to invent� EXIT
could be further extended by including the construct type
 Some syntaxes
might be

EXIT � construct�label � � � construct�type �
or EXIT � construct�label � � �construct�type� �
or EXIT � �construct�type� � � construct�label �

X�J��������
Page �	 of ��

where ��

�� means

 is optional� and construct�type could be DO� IF�
CASE or BLOCK
 This has the additional bene�t that it allows to cross�
check the construct label and construct type

If EXIT is thus extended it bene�ts from introduction of a BLOCK
construct

���� Introduce a BLOCK construct

Extending EXIT and CASE� and allowing �very local� variables �see section
�� on page 	�� would bene�t from introduction of a BLOCK construct

A BLOCK construct would serve four purposes�

� It provides a place to hang a construct label� to which EXIT can refer

Suppose you represent a set by storing elements that are its members
in an array
 Then to answer the question �Is X absent from S� one
could write�

B� BLOCK �or a different keyword	 say BEGIN�

DO I � �	 N
Elements
S

IF �X �� S�I�� EXIT B

END DO

� code here to cope with �X is absent from S�

END BLOCK B

Otherwise� one needs a GO TO� or a LOGICAL variable and a re�
dundant test� or some other circumlocution that obscures the author�s
intent
 BLOCK isn�t necessary for this purpose� but it�s better than

B� IF ��true�� THEN

���

EXIT B

� It prevents GOTO�s originating outside the block from landing inside

� It can encapsulate �very local� variables �see section �� on page 	��

� It can extend CASE to express some control strategies more clearly�
thereby removing the need either for GOTO�s� logical variables and
extraneous tests� of gratuitous procedure�i�cation

X�J��������
Page �� of ��

���� Extensions � Regularizations for CASE

I propose several extensions to SELECT CASE

� CASE BLOCKS

� A notation that allows one to specify open or closed ranges is useful
on its own� and enables the following proposal

� REAL CASE ranges would allow eliminating arithmetic�IF without
any need for temporary variables� or extraneous re�evaluations of the
predicate

� Allow
AND
 logical�expression su�x for CASE�

�

������ CASE BLOCKS

If you have BLOCK� you could use it in conjunction with SELECT CASE in
some circumstances to get rid of redundant tests� GO TO�s or otherwise gra�
tuitous procedure�i�cation� by allowing what might be considered improper
nesting�

S�SELECT CASE �E�

CASE ��	��

� Blah	 Blah

BLOCK

�Very local� declarations but no executable statements�

CASE �
	��

� Blah	 Blah

CASE ��	��

� Blah	 Blah

END BLOCK

� Stuff here is done only after E �
	 �	 �	 �	 then

� implicitly either EXIT S or EXIT B	 where B is

� an immediately enclosing BLOCK �� nesting makes

� sense� You�d otherwise need a GO TO	 or redundant

� tests	 or procedure�ification to get to this stuff

� only after the
	� or �	� cases�

CASE ��	��

� etc

END SELECT S

This extension would have no interaction to other parts of the language
�except the necessity to introduce BLOCK�

X�J��������
Page �
 of ��

������ Open or closed ranges of CASE

The CASE branches of the SELECT CASE construct can specify only closed
ranges
 Here�s a syntax to allow closed or open ranges�

SELECT CASE �E�

���

CASE ��lbound� �R�� � �R�� �ubound��

���

END CASE

in which �R�� and �R�� are independently allowed to be
LT
 or �
or
LE
 or ��
 Either ��lbound� �R��� or ��R�� �ubound�� can
be elided� but not both
 The � � refers to the value of E� which is only
computed once
 The present syntax I�J is the same as I �� � �� J

The present syntax CASE �X� remains� meaning X �� E

Here are some examples�

CASE ��
� �
 ��� � half�open range ��	���

CASE �� �lt� �
� ��� � half�open range ��	���

CASE ��
 � �lt� ��� � fully open range ��	���

CASE �� �le� �
� ��� � fully closed range ��	���

CASE ��
 ��� � open semi��infinite� range ��HUGE�E�	���

CASE ���
� �� � closed semi��infinite� range ���	HUGE�E��

A syntax to denote open or closed ranges allows REAL ranges for the
SELECT CASE construct

������ Real CASE ranges

Once CASE can specify both open and closed range boundaries� it�s not
much of a stretch to allow REAL selectors for SELECT case
 The standard
already speci�es the relation between the value c of the E in SELECT CASE
�E� and the values low and high of the expressions L and U in CASE �L� U�
by reference to relational operators� e
g

If the case value range is of the form low � high� a match occurs
if low
LE
 c
LE
 high is true

One could simply replace the two occurrences of �
LE
� by �!R�� and �R���
where �R�� and �R�� are independently ��� �
LT
�� ���� or �
LE
��� as
explained in the argument to allow both open and closed range boundaries

CASE�L�U� is the same as CASE�L �� � �� U�� missing L RL is the
same as �HUGE�E� �� and missing RU U is the same as �� HUGE�E�

X�J��������
Page �� of ��

Presently� when the type of E is INTEGER or CHARACTER �� and the
di�erence between the largest U and the smallest L is small� vendors almost
surely produce an equivalent computed GOTO
 Otherwise� implementors
almost surely transform SELECT CASE �E�

 to equivalent IF

� so REAL
ranges are not a new code�generation problem for vendors

I proposed this four times during standardization of Fortran ��
 There
were three red�herring objections that I demolished�

REAL relationals were a mistake we are not going to repeat�
I can�t conceive of how to do mathematical software without them

REAL DO inductors were a mistake we are not going to repeat�

REAL DO inductors were a mistake� but completely irrelevant to
REAL ranges on CASE selectors

We will not introduce REAL subscripts into Fortran�
It would be a mistake to introduce REAL subscripts into Fortran
 Al�
lowing REAL ranges on CASE selectors has nothing to do with REAL
subscripts
 This objection was apparently based on the incorrect as�
sumption that SELECT CASE must necessarily be translated into
computed�GOTO �but see the discussion above�

The last proposal was during the public comment� at which time ANSI
mandated an explanation for rejecting each proposal
 This one was not
explained

This change would have no e�ect on other parts of the language
 The
regularization would make the semantic content of the SELECT CASE con�
struct easier to understand� All intrinsic types �other than COMPLEX�
which is neither ordered nor discrete� can be used in SELECT CASE

������ CASE�� �AND� �logical�expression�

Sometimes� when using SELECT CASE� one wants to go to the selected
case� and other times one wants the default action
 One cannot� however�
write GOTO ���� inside a CASE branch� in order to transfer control to a
label ���� inside the CASE DEFAULT block

By extending the CASE statement to allow �AND� logical�expression

and de�ning that when logical�expression is
FALSE
 the e�ect is as though
the CASE statement were absent� one could selectively cause control to
transfer to CASE DEFAULT

X�J��������
Page �� of ��

���� GOTO could be tamed

One could make GO TO more palatable by introducing a COME FROM
statement
 Its only purpose is to serve as a target for GO TO statements�
and GO TO statements can only transfer control to COME FROM state�
ments that name the labels on the GO TO statements �which must be
labelled�� and a COME FROM statement can only mention the labels of
GO TO statements that transfer to it
 Thus�

��� GO TO
��

���

��� GO TO
��

���

�� COME FROM ����	 ����

but not

GO TO
��

���

GO TO
��

���

�� CONTINUE � how do we get here�

One could retain compatibility by stipulating in the standard �If� and
only if� a program unit contains a COME FROM statement� then all GO
TO statements must transfer to COME FROM statements
� A processor
that inserts COME FROM wouldn�t be large �see section � on page ��

This has no impact on any other part of the language

�� Exploiting Modern Processor Architectures

The most e�cient implementations of many algorithms in linear algebra�
and other disciplines as well� have di�erent structure depending on charac�
teristics of the processor
 The characteristics of modern processors that most
strongly in"uence the organization of an algorithm are the cache size� the
number of registers� and the size and organization of the pipeline
 Compiler
writers are making progress in detecting structure in algorithms� and ex�
ploiting structure to produce more e�cient programs� but at least at present�
many algorithms require human insight to produce an e�cient implementa�
tion

Two additions to Fortran would allow algorithm authors to develop more
e�cient implementations of algorithms� and yet maintain portability

X�J��������
Page �� of ��

An environmental inquiry intrinsic function that returns the total amount
of data cache� in units of the type of its argument� would be useful to specify
dimensions of intermediate variables� and parameters for �blocking
�

A more complex system� that would allow production of slightly higher
performance portable programs� would include an environmental inquiry
intrinsic function that returns the number of levels of data cache
 In such
case� the environmental inquiry intrinsic function that returns the data cache
size should also take an argument that denotes the cache level� environmental
inquiry intrinsic functions that return the relative speed of the di�erent levels
of the cache� and the amount of data transferred� should be provided as well

Compilers can frequently produce e�cient translations by �loop un�
rolling
� The optimal degree of unrolling depends on the number of registers
and the pipeline characteristics
 The problem that compilers don�t address
adequately is that sections of the program that produce data to be used in
loops that might be fruitfully unrolled� or consume data therefrom� prevent
the program from achieving optimal performance if they are not specialized
in a way that depends on the degree of unrolling
 Failure to so specialize
may sometimes prevent a compiler from unrolling a loop

The important factor to keep in mind is that the compiler�s strategy
for loop unrolling is a complicated function of the loop body� the size of the
register �le� the pipeline characteristics� and the investment of the compiler�s
author
 Thus� the best strategy is to ask the compiler how much it unrolls
a particular loop� not to use inquiry functions that provide the size of the
register �le� details of pipeline characteristics� etc
� and then try to compute
optimal parameters for �blocking� or other problem subdivision strategies

Revealing the degree of unrolling of each loop would allow algorithm au�
thors to specialize parts of algorithms that communicate with those loops

In particular� some intermediate results should be arrays with sizes that de�
pend on the degree of unrolling� and �outer� loops may also depend thereon

The following matrix multiplication example� that computes C � AB�
is too short to illustrate every nuance of the problem� but it does illustrate
a little of the "avor of what is needed
 It does not illustrate how cache�
size information can be exploited� and it�s over�simpli�ed in that it assumes
dimensions are integer multiples of the unrolling degree � a �real� procedure
would need to take care of the surds
 The standard should specify exactly
what of that is done automatically

REAL A�M	K�	 B�K	N�	 C�M	N�

INTEGER	 PARAMETER �� NU � UNROLLAMOUNT�U�

REAL S�NU� � A �register� attribute would help the compiler

X�J��������
Page �� of ��

DO I � �	 M

DO J � �	 N	 NU

S � ���

U� DO L � � 	 K	 NU � This loop is unrolled NU times

S � S � A�I	 L � L � NU � �� � B�L� L � NU � �	 J�

END DO U

C�I	 J� J � NU � �� � S

END DO � J

END DO � I

The statement S � S � A�I	 L � L � NU � �� � B�L � L � NU � �	

J� would be clearer if written S � S � A�I	L� � B�L	J�� but then array
sizes don�t conform
 This is something for more competent language design�
ers to debate

The environmental inquiry intrinsic function UNROLLAMOUNT takes
an argument that is an executable construct label� and returns the degree
to which the compiler unrolled the loop
 The compiler may need to �back
patch� U after completing optimization

�� Character Type Would Bene�t From Regular�

ization

By and large� regularizations reduce surprises caused by irregularities� sim�
plify the language description and therefore the teaching of it� and yet ex�
pand the language in that they allow one to write meaningful sentences that
would otherwise be prohibited

The scalar character type has operations that are nearly identical to ar�
ray operations
 There are three exceptions that prevent a uni�ed discussion�

� One cannot use only a single expression to denote a single character
in a character variable having LENGTH greater than one
 One must
instead use �N�N� to denote the N�th character

� The stride in a character substring selector cannot be stated explicitly�
and it is assumed to be one

� The �dimension� of character substring selection has a subscript set
that starts at one

The discussion of character substring selection could be shortened by
making it identical to array section selection� and referring the reader to
discussion of the latter

X�J��������
Page �� of ��

It would be fairly easy to carry out the above regularizations

Although the following changes might ultimately result in a smaller de�

scription of a more regular language� ubiquitous and extensive changes and
reorganizations of the standard document would be required

To make numeric and character arrays more similar� note that the char�
acter substring selector consists of a subscript in the row major position

That is� even though it is the last subscript� consecutive values nonetheless
refer to consecutive storage units

First add a LENGTH attribute to every type� that speci�es one row�
major dimension� just as is the case for characters� and allow the subscript
and parentheses to be omitted �just as for characters� to denote the section
���
 Considering that it�s just another dimension� however� one might want
instead to keep the � �array�spec� notation� and deprecate LENGTH�
 One
could go so far as to allow several row�major dimensions

Then put a brief discussion of row�major subscripting in the section on
arrays� and delete separate discussion of character string selection

�� LIMITED attribute for types and INTENT �LIM�

ITED�

Ada uses a LIMITED attribute for derived types to un�de�ne assignment
outside of the package �� module� in which the type is de�ned
 Fortran
probably doesn�t need it� because� unlike Ada� Fortran allows one to rede�ne
intrinsic assignment� one could provide a de�ned assignment subroutine that
prints an error message
 On the other hand� a compile�time message would
be better

A LIMITED option for INTENT would also be useful to prevent a proce�
dure from copying an argument� and in particular� from copying an argument
that is a pointer by using pointer assignment
 Copying the data to which
the pointer points using ordinary assignment wouldn�t be prohibited� unless
the pointer points to a derived type that has the LIMITED attribute

This prevents one from using a pointer formal argument in any way other
than to dereference it �including to call a procedure by way of a pointer to
it�� or to associate it as an actual argument to a formal argument with
INTENT�LIMITED�

This makes Pointers to Procedures �see section � on page ��� safe

INTENT�LIMITED� would have no e�ect on other parts of the language

than those described here

The LIMITED word is swiped from Ada
 A di�erent word could be used

X�J��������
Page �� of ��

�� Three Simple Language�size Reductions

���� Combine attribute discussions

People gripe that the standard is too big
 It could be considerably shortened
if separate type and attribute statements were eliminated
 One way is to get
rid of attribute statements entirely� a la ELF
 The �curse of compatibility�
militates against this choice �but see section � on page ��
 Another way is
to allow type and attribute speci�cations in any order before the ����� e
g

�SAVE� REAL �� R�
 I proposed this in ����
 The argument against it was
�I like all my REAL declarations to be the �rst thing in the declaration
�
The counter�argument �This change would not compel you to abandon that
style� seemed to carry little weight
 I still think the simpli�cation of the
standard document is worth it

One will also notice that discussions of attributes and corresponding
statements are not identical
 Is there a special reason for this� Are there
any cases where they con"ict� If so� which description is de�nitive�

���� Contains

Another simpli�cation would be to get rid of CONTAINS
 The only reason
for CONTAINS �other than aesthetics� is that there�s an ambiguity about

INTEGER	 PARAMETER �� I

���

REAL FUNCTION F �I�

Is this an internal function header� or a declaration of a real array named
FUNCTIONF�

�Signi�cant blanks� gets rid of the problem
 Alternately� one could be
required to declare internal functions �and allowed to declare any functions�
by using a syntax for function headers that is more symmetric to other
declarations�

REAL	 FUNCTION	 RECURSIVE	 RESULT�G� �� F�I�

The �curse of compatibility� militates against this choice� too

But a lot of things that appear to be prohibited by the �curse of com�

patibility� aren�t� really �see section � on page ��

X�J��������
Page �� of ��

���� �EQV� � �EQ�

Carlie J
 Coats� Jr
 �coats�ncsc�org or xcc�hilbert�ncsc�org� has re�
minded me that Fortran is unique in having
NEQV
 and
EQV
 operators
di�erent from
NE
 and
EQ
 The language could be simpli�ed by eliminat�
ing the former pair� and de�ning the latter pair to work as expected �like

NEQV
 and
EQV
� for LOGICAL operands

�� Object Oriented Fortran

I understand that OOF probably won�t get into F���� because of the size
of the e�ort
 Maybe X	J	 should �sneak up� on full OOF by putting a
few OOP�like things into F����� and delay others� e
g
 inheritance and late
�dynamic� binding� until later

No matter when OOF gets o� the ground� I think it would be wise to
make it more like the Ada��
 object�type�package system than the C��
one
 The Ada OOP stu� is fairly well done� while there are too many prob�
lems with the way C�� does things � especially the �virtual� mechanism for
late binding �as opposed to using class�wide pointers in Ada��
� and multi�
ple inheritance �which language theorists consider never to be necessary�
 I
recommend J
 G
 P
 Barnes�s book Programming in Ada ��

Because the Ada��
 object system is built on packages� instead of �clas�
ses� there is no need for �friends
�

Ada��
 uses the separation of interface and implementation to control
visibility upon usage or inheritance in the same way that C�� uses public�
private and protected attributes
 There are good additional reasons to sep�
arate interface and implementation �see section �	 on page 	�� in Fortran

�
 INTENT�OUT� for Module Variables

A very small change� that has no e�ect on other parts of the language�
but that could simplify programs� is to allow module variables to have IN�
TENT�out�� interpreted to mean that �using� modules can only read the
variable� not change it

When �if ever� a parameterless function F can be referenced without
��� that is� by F alone �see section �

 on page ���� one could change
between a module variable F having INTENT�out� and a parameterless
module function F without changing the references

X�J��������
Page �	 of ��

�� More Can Be Done With Fortran I�O

We describe here several additional facilities that might be accessed via
Fortran I�O statements
 They have negligible impact on other parts of the
language

Each requires new keywords in OPEN
 Most also require addition of a
CONTROL statement� with keywords that depend on the characteristics of
the unit� as mentioned in the OPEN statement
 For some kinds of I�O units�
additional keywords may be allowed in READ� WRITE and INQUIRE

CONTROL could subsume and therefore deprecate REWIND� END�
FILE and BACKSPACE

The extensions are in six categories�

	Window
 units

Views onto a graphics �canvas� of a speci�ed size
 The I�O library or
system is responsible for changing the view depending on the window
size� stacking order� or scroll�bar manipulations �a la SGI�

	Event
 units
Can be used for noti�cation that a pointing device cursor has entered
one of several speci�ed rectangles� or one of the pointing device�s but�
tons has been depressed or released
 They are associated with a WIN�
DOW unit

	Pipe
 units

Can be used for connections to other processes
 Processes might be
dependent processes on the same system� or independent processes on
di�erent systems
 This could be used in place of MPI or PVM �but the
implementor would be free to build �pipe� units using MPI or PVM�
so that when the next improvement on inter�process communication
comes out �and there have been at least three so far�� codes aren�t
instantly broken

Non�synchronous I�O
Could be supported with minor extensions to READ� WRITE� IN�
QUIRE and CONTROL
 Nothing new should be needed in OPEN or
CLOSE

	Associated Variables

Variables associated to random�access �les are very useful
 This gives
virtual memory� and persistent data
 On some systems �especially
Multics� but who uses that any more��� it comes automatically from

X�J��������
Page �� of ��

the way the memory manager works
 A variable that�s associated with
a �le could be a scalar� an array� or of a derived type
 In the latter two
cases� the upper bound of the last dimension �of the last �eld� could
be � �

Record Length

Using INQUIRE with an I�O list to get the correct value for the record
size always seemed circuitous to me
 I would prefer to put an I�O list
on an OPEN statement to specify the record length
 Something like

OPEN �r	 FILE��bar�	 ACCESS��DIRECT�	 RECL��� �

DerivedTypeVar	 �A�i�	 i � j	 k�

would be easier and clearer than

INQUIRE �IOLENGTH�L� DerivedTypeVar	�A�i�	 i � j	 k�

OPEN �r	 FILE��bar�	 ACCESS��DIRECT�	 RECL�L�

���� Window units

Fortran I�O could be extended to �Windowing� environments by the fol�
lowing changes

� Add keywords to OPEN to specify height and width of canvas and ini�
tial view� and measurement units thereof �all the same� and restricted
to pixels� fractions of the total screen� inches� millimeters� and� maybe�
points�� colors �background� foreground� border� scroll bars�� title

e
g

OPEN�w	 kind��WINDOW�	 sizes�����	���	�	���	 �

units��INCHES�	 colors����
	�	�
	����	 view����	��� �

says �Create a canvas �� inches wide and ��� inches high� and a view
into it that is
 inches wide and � inches high
 Background is white�
foreground is black� borders are salmon�� scroll bars are blue� and the
initial view is at �����
�

� Formatted WRITE puts text on the window at the cursor� and scrolls
if necessary

� UnformattedWRITE must provide an even number of numbers �either
integer or real�
 If only two are provided� a point appears in the
window
 If � n are provided� a curve connecting n points appears

X�J��������
Page �
 of ��

� CONTROL is used to

� Change the color� line style �solid� dash� dot� long and short
dashes�

�� width� smoothness �polygon� Bezier� cubic B spline�

�� closure� �ll color and�or pattern�

 of a line output by an
unformatted WRITE statement
 e
g

CONTROL�w	 linestyle�
	 width�����	 �

smooth��BEZIER�	 color � ��

� Change color and cursor for text output by a formatted WRITE
statement

� Change the title at the top of a window

� Change any of the colors previously speci�ed by OPEN

� Specify a symbol� its size and color� and whether it�s �lled or
open� to appear at each point on a curve

� Delete text at a speci�ed position

� More speculative� CONTROL might place a menu bar at the
top of a window �but maybe this should be done with WRITE
on a di�erent unit � similar to EVENT units �see section ��
�
on page �
�� or by WRITE on the same unit� but with special
keyword�s���

� INQUIRE can be used to

� Recover any parameter from OPEN

� Discover whether the �close� widget has been selected
 Remem�
ber� scroll bars� resizing� exposing� maximizing and minimizing
are all handled by the I�O library or the system� not by the user

� If CONTROL can place a menu bar� INQUIRE could inform the
program whether anything had been selected� and if so� what had
been selected �but maybe this should be done with READ on a
di�erent unit � similar to EVENT units �see section ��
� on page
�
�� or by READ on the same unit� but with special keyword�s���

���� Event units

Event units can be used for noti�cation that a pointing device cursor has
entered one of several speci�ed rectangles� or one of the pointing device�s
buttons has been depressed or released
 They are associated with a WIN�
DOW unit

X�J��������
Page �� of ��

� Keywords in OPEN stipulate the kinds of events to monitor
 e
g

OPEN�e	 kind��EVENT�	 window�w	 events����	��� �

� WRITE adds to the list of rectangles
 A multiple of four numbers
must be written

� REWIND or CONTROL�e�REWIND� erases the list of rectangles

� INQUIRE can be used to discover if a button has been depressed or
released� or if a rectangle entry or exit event has occurred

� READ can be used to return the pointing device coordinates
 One or
two variables �or an array of length one or two� must be speci�ed in
the I�O list
 If just one cell is provided� only X is returned

� CONTROL can be used to change the color and shape of the pointing
device cursor

Maybe all of this could be done directly with WINDOW units� by using
di�erent keywords in READ� WRITE� INQUIRE and CONTROL�

���� Pipe units

Pipe units can be used for connections to other processes
 Processes might
be dependent processes on the same system� or independent processes on
di�erent systems
 This could be used in place of MPI or PVM �but the
implementor would be free to build �pipe� units using MPI or PVM� so
that when the next improvement on inter�process communication comes out
�and there have been at least three so far�� codes aren�t instantly broken

� OPEN starts the asynchronous process� and speci�es how it is to be
connected � formatted or unformatted
 Sequential access is assumed

e
g

OPEN�p	 kind��PIPE�	 command��uncompress ����file�

would run uncompress with stdin redirected from ��le�� and the out�
put piped to unit �p�
 Or

OPEN�p	 kind��PIPE�	 port��other�machine�������

X�J��������
Page �� of ��

would connect unit �p� to port ���� on machine �other
machine�

�port� could be dependent on the kind of network in use

OPEN�p	 kind��PIPE�	 TO�q�

would connect unit �p� to unit �q�� so that data written onto unit
�p� could be read from unit �q�� and vice�versa
 This would be useful
for connecting di�erent processes in a single program � multiple data
computer� e
g
 Cray T	D

� WRITE sends data to the other process�s standard input
 �What
should be done if stdin is redirected in the �command� part��

� READ reads data from the other process�s standard output

� INQUIRE can be used to determine

� Whether input is available from the pipe

� Whether the pipe is ready for output
 Maybe it�s never ready
if stdin has been redirected in the �command�� �See also �Non�
synchronous I�O� in section ��
� on page ��
�

� Whether the process is still active

� Whether the process is signalling

� CONTROL can be used to

� Kill the process

� Initiate a signal to the process

� Wait for I�O transfers �see also �Non�synchronous I�O� in section
��
� on page ��
�

���� Non	synchronous I�O

Non�synchronous I�O could be supported with minor extensions to READ�
WRITE� INQUIRE and CONTROL
 Nothing new should be needed in
OPEN or CLOSE

� Allow a new keyword in the control list for READ and WRITE� say
SYNCHRONOUS � �LOGICAL VARIABLE� �default
TRUE
�

� Allow a new keyword in INQUIRE that returns a LOGICAL value in�
dicating whether I�O is still in progress
 Say� ACTIVE � �LOGICAL
VARIABLE�

X�J��������
Page �� of ��

� Add a keyword in CONTROL to wait for I�O to �nish� say WAIT �
�LOGICAL VALUE� �WAIT�
true
 means wait� else don�t�

Non�synchronous I�O to local devices isn�t really di�erent from non�syn�
chronous I�O to other processes �see section ��
	 on page ���� so the two
should be considered together

Non�synchronous I�O isn�t really di�erent from I�O in a di�erent thread
�see section �� on page ���
 Threads are more general� but the generality
may have a price
 Some systems may support non�synchronous I�O but not
threads� and vice�versa
 It�s probably OK to have both mechanisms

The standard could allow implementors to ignore SYNCHRONOUS in
a READ or WRITE statement� and then always to return
TRUE
 for the
variable associated to ACTIVE� in INQUIRE� and never WAIT in a CON�
TROL statement

���
 Associated variables

Implementing associated variables into Fortran wouldn�t be a large change
in the syntax or semantics
 It might be a bit of work for implementors on
some systems� and no work at all on others

Add a new keyword to OPEN� e
g

OPEN �u	 ASSOCIATED�var	 FILE��foo��

and if �var� is of a parameterized derived type� maybe

OPEN �u	 ASSOCIATED�var	 FILE��foo�� P�	 P�	 ���

Thereafter� accesses to var are accesses to the �le foo

READ� WRITE� REWIND� ENDFILE and CONTROL are not allowed

for unit �u� but CLOSE and INQUIRE make sense

Until CLOSE� foo can�t be otherwise opened� and var can�t be otherwise

associated

�� Threads

In addition to making I�O asynchronous �see section ��
� on page ���� why
not just make anything asynchronous� On systems that support threads�
one could expect something like the following

P� asynchronous

� Asynchronous stuff P �including I�O�

X�J��������
Page �� of ��

end asynchronous p

� Synchronous stuff

Q� asynchronous

� Asynchronous stuff Q

end asynchronous p

� More Synchronous stuff

waitfor �P	 Q� � can�t appear inside P or Q

� but waitfor �P� could appear inside Q

to execute �Asynchronous stu� P� and �Asynchronous stu� Q� in di�er�
ent threads� perhaps on di�erent processors� and piecemeal interleaved with
pieces of each other and �Synchronous stu�s
� On systems that don�t sup�
port threads� the e�ect is as if

X� asynchronous

���

end asynchronous X

were absent

Asynchronous blocks could be nested� and there�s an implicit WAITFOR

of all internal asynchronous blocks at the end of an outer one
 The parts of
an asynchronous block� except for internal asynchronous blocks� are executed
synchronously with respect to each other

There�s an implicit WAITFOR of all asynchronous blocks in a procedure
at every RETURN or STOP

� If the locality of block names is too restrictive� consider using

use SYSTEM
ASYNCHRONOUS	 ONLY � SYNCH	 WAITFOR

type�SYNCH� �� P

asynchronous �DONE � P�

� Asynchronous stuff �including I�O�

end asynchronous

� Synchronous stuff

call WAITFOR �P�

so P could be exported from a module� or in COMMON� or a dummy ar�
gument
 Using a derived type for P instead of a LOGICAL variable avoids
the hazard that somebody might be tempted to write

P � �TRUE�

during execution of an asynchronous block� just to see what kind of hell
breaks loose

X�J��������
Page 	� of ��

SYSTEM ASYNCHRONOUS is a standard intrinsic module that con�
tains private procedures that implement the fork�join mechanism
 SYNCH
is a PRIVATE type
 Furthermore� if LIMITED types are implemented �see
section �	 on page ���� then SYNC should be a LIMITED type� so only the
fork�join mechanism can change or copy P
 Otherwise� a de�ned assignment
subroutine that prints an error message and stops should be provided for
type SYNCH �but a compile�time message would be better�

This is still dangerous because somebody might write

asynchronous �DONE � P�

���

asynchronous �DONE � P�

without an intervening WAITFOR� but maybe it would be enough to de�ne
�asynchronous� to WAITFOR its DONE argument before proceeding

Your choice
 �
Is there di�erence between FORALL I � �	 �� and

FOR I � �	 ��

asynchronous �DONE�P�i��

� blah blah blah

end asynchronous

END FOR

call WAITFOR�P� � waits for all P�s to indicate their

� associated blocks are finished

other than that the asynchronous blocks are started in order� If so� and
asynchronous blocks are de�ned� is FORALL really needed�

Variables that are set in asynchronous blocks do not have de�ned values
outside the asynchronous block until a WAITFOR is executed on the block

One might bene�t from an intrinsic BUSY�P� that returns
TRUE
 if P
hasn�t �nished� and maybe some signalling stu�� but they�re not necessary
and could be postponed without wrecking the basic idea

This should have almost no interaction to other parts of the standard�
and the standard could allow it to be a NO�OP on systems that don�t support
threads

�	 �Very Local� Variables

I�ve found it useful to have �very local� variables
 E
g
� in Ada� I can write

X�J��������
Page 	� of ��

declare

i� integer

begin

�� stuff that uses my own private I	 not one further away

�� that may or may not be expected to retain a value for

�� some later usage�

end

Or in C�� I can write fint i�

 g for the same purpose

This could be accomplished in Fortran simply by relaxing the rules for

statement ordering� to allow type� parameter and attribute declarations in�
side any construct
 Then

BLOCK � or IF �foo� THEN	 etc�

integer I	 J

� Blah	 Blah

END BLOCK

means that I and J have an existence that extends from their declaration to
the end of the construct in which they�re declared

This controls visibility but not necessarily lifetime� so allowing the SAVE
attribute makes sense
 No other attributes should be controversial

�Very local� variables would have no e�ect on anything else in the lan�
guage� and almost no e�ect on the standard � they�re a trivial extension of
�host association
�

�� Is FPP or CoCo Necessary�

A lot of what is proposed for FPP could be done by using IF and CASE
with constant predicates
 This could con"ict with �very local� variables� but
one could �export� what would be �very local� variables �see section �� on
page 	�� by using a PUBLIC statement
 Assume VERSION is a character
PARAMETER
 Then� e
g
�

IF �VERSION �� �INTEGER�� THEN

INTEGER I	 J

PUBLIC

ELSE IF �VERSION �� �REAL�� THEN

REAL I	 J

PUBLIC

END IF

X�J��������
Page 	� of ��

or

SELECT CASE �VERSION�

CASE ��INTEGER��

INTEGER I	 J

PUBLIC

CASE ��REAL�� ���

might appear in a sorting routine

To allow parametric presence of branches of SELECT CASE constructs�

one might want to allow�

SELECT CASE �E�

CASE ���

� Blah	 Blah

IF �Case
�
present� THEN

CASE ���

� Blah	 Blah

END IF

CASE �
�

���

but that�s kind of wordy
 Instead� allow�

SELECT CASE �E�

CASE ���

� Blah	 Blah

CASE ��� �and� Case
�
present

� Blah	 Blah �

CASE �
�

���

The meaning is �If E �� � then if Case � present do !Blah� Blah ��
else go to CASE DEFAULT endif endif�
 If Case � present is
FALSE
 and
constant� the compiler should delete CASE��� and �Blah� Blah �� with the
e�ect that when E �� �� CASE DEFAULT gets executed
 See also section
��
	
� on page ��

�� A SWAP Operator Would Be Useful

Something I�d like to see that is simple and not on your list is a swap
operator
 Thus

X�J��������
Page 		 of ��

A���B � or ��� swaps the contents of A and B�

A���B � or ��� swaps the pointers A and B�

This would be allowed anywhere that both A�B and B�A �or A��B
and B��A� are allowed
 One could also restrict A and B to be of the same
type without losing any important functionality
 This is

� Easy to implement�

� Easy to describe�

� Has negligible interaction with the rest of the language�

� Makes some code more clear �One needn�t wonder �is that temp
 vari�
able ever used someplace else����

� Has frequent use�

� Is more likely to be optimized by a simple compiler

It should be indivisible when applied to scalars� so it could be used for �test
and set� in multiprocessor systems� and it should be indivisible for each
component of composite objects

�� Enumeration Types Would Be Useful

I didn�t see enumerated types on the list for F����
 Has that been explicitly
prohibited� or just overlooked� I don�t see what�s hard about them
 One
could declare their types�

ENUMERATION COLOR �RED	 GREEN	 BLUE�

or TYPE	 ENUMERATION�RED	 GREEN	 BLUE� �� COLOR

and objects of the type�

TYPE �COLOR� PIXEL

and �at least for now� prohibit anything except assignment� test for equality
and argument binding

The standard could specify a representation� e
g
 �� ��

� as in Modula�
�
 Then� other relational operators make sense
 An ORD�� intrinsic could
return the underlying integer representation� and a reference that looks like a
function but has the same name as an enumeration type� taking an integer

X�J��������
Page 	� of ��

argument� could go the other way
 E
g
 ORD�GREEN� returns �� and
COLOR��� is GREEN

It is useful to allow enumeration types to be array index sets� but that
could be postponed without damaging anything� or risking future incompat�
ibility

Later �perhaps never� one might allow user�speci�cation of the represen�
tation� e
g

TYPE	 ENUMERATION�RED	 GREEN���	 BLUE� �� COLOR

means RED is represented by �� GREEN by ��� and BLUE by �	

Literals of the enumerated type behave like integer PARAMETERs� but

can only be used with variables and parameters of the type� and variables
of the type can not be used with other types
 �There is an obscure reason in
Ada for considering enumerated type values to be parameterless functions
�

�� Module Interfaces and Implementations Should
Be Separated

Both Modula and Ada allow separating module interface and implemen�
tation into separate program units
 There are several advantages of this
approach� as compared to having interface and implementation in a single
program unit

� If one changes the implementation but not the interface� one does not
trigger recompilation of dependent modules

� Vendors of software component libraries who do not wish to publish
the source form of the implementation of their product could publish
machine�readable source form of the interface without compromising
their �trade secrets
�

� Several Ada implementors have found that a compiler that reads the
source form of the interface is just as fast as a compiler that reads a
�pre�compiled� form of the interface
 This simpli�es the compiler� and
further reduces the opportunities for �compilation cascades
� �In sys�
tems that keep a pre�compiled form of interface modules� compiling the
interface module� even if it�s not changed� can trigger a �compilation
cascade
��

X�J��������
Page 	
 of ��

� Ada��
 uses the separation of interface and implementation� together
with private speci�cations in the interface module� to provide the ana�
log of C�� public� private and protected visibility control

� One can construct limited mutual dependencies between modules� Im�
plementation modules A and B can each USE the other�s interface
module �but recursive dependence between interface modules is pro�
hibited�

� It provides a natural mechanism for private procedures � just don�t
mention them in the interface module

Fortran could introduce separation of interface and implementation in a
way that is compatible to existing software
 Modules that begin with dis�
tinguished statements� e
g
 INTERFACE MODULE and IMPLEMENTA�
TION MODULE would be just that
 An INTERFACE module contains
an interface�body for every procedure it wishes to publish �but not in an
interface block� so it�s a module procedure�� the full procedure must be de�
clared in the implementation module� with the same characteristics
 An im�
plementation module automatically incorporates its corresponding interface
module
 USE statements refer only to interface modules� or undistinguished
modules� never to implementation modules

This would not be a large change in the standard document� and would
be almost completely independent from all other features of the language

�� Modules Need Initialization Parts

To avoid the need for explicit calls to initialization procedures� or ��rst�
time� "ags and associated tests� modules should have initialization parts

This is a small change to the language� and the standard document� and has
no e�ect on other parts of the language

� Allow executable statements that are not contained in a procedure to
be present in a module �or in an implementation module but not an
interface module � see section �	 on page 	��
 These statements are
called the initialization part of the module

� The initialization part of every module is executed before the main
program

� If module A USEs module B� then the initialization part of module
B is executed before the initialization part of module A
 If there is

X�J��������
Page 	� of ��

a mutual dependence between modules A and B �by way of separate
implementation and interface modules � see section �	 on page 	��� or
there is no USE relationship �even by transitivity of USE�� then the
order of execution is not de�ned

�� Fortran Could Have Referential Invariance

The goals of most software engineers are to write programs that are�

� Small in source form

� Small in executable form

� Fast

� As easy as possible� therefore as cheap as possible� to write

� Clear� therefore as easy and cheap as possible� to understand

� Not fragile when changes are necessary� therefore as cheap as possible
to modify

Because the total cost of �owning� most programs throughout their lifetimes
is most strongly in"uenced by the last goal� most programming methodolo�
gies have focussed on it� at the expense of the others

In ��� David Parnas showed how one can advance the last goal by putting
all references to and manipulations of objects into procedures
 This strategy
has the advantage of being applicable to any language that has procedures�
but the disadvantages�

� One ends up with numerous trivial procedures that have a much higher
overhead of reference than of execution � programs consist largely of
call and return instruction sequences� and spend most of their time
executing them�

� One must write a lot of procedure headers and argument declarations�

� The poor schmo who next reads the program must read numerous
procedures� most of which do nothing profound� and keep in mind
what each one does �see the next bullet��

� The author�s intent is clear in a � bank balance�person� but ambig�
uous in call set bank balance�person	 a�
 Does the latter accom�
plish bank balance�person� � a or a � bank balance�person�� or
something else��

X�J��������
Page 	� of ��

In �	� Ross� and in ��� Geschke and Mitchell� described how one can design
a language so that changes to representation of an object cannot be re"ected
in changes to usages of the object
 Thus� there�s no point to encapsulate
simple references to and manipulations of objects in trivial procedures
 This
approach has the disadvantage that one must design a language to have the
�Referential Invariance� property� but the advantage that it advances all six
goals outlined above�

� Programs are smaller in source form� and therefore easier and cheaper
to write and maintain�

� Programs are smaller in executable form�

� Programs execute faster�

� The author�s intent is not obscured

� One needn�t trust to the diligence of the programmer to construct
programs that are not �fragile� upon changes in object representation
because changes in representation cannot change usages�

Two fortunate factors have conspired to bring Fortran closer to referen�
tial invariance than any other �main stream� language

� Array element selectors and function argument lists are both bracketed
by ��

� Pointers are dereferenced automatically

The barriers to referential invariance in Fortran are

� Although one could replace an array reference A�I� by a function in�
vocation in contexts where the value of A�I� is to be produced �called a
right�hand context� one cannot replace A�I� by a procedure invocation
when A�I� is to absorb a value� for example on the left side of �
 This
is called a left�hand context
 This can be overcome by introducing
Updaters into Fortran �see section �

� on page 	��

This would be of signi�cant importance when programming for mul�
tiprocessor architectures� especially those that use message passing
instead of shared memory
 Without referential invariance� for every
reference to a distributed array� one would need explicitly to invoke
a message�passing procedure
 With referential invariance� one could
write X�I	J� � Y�J	I�� even if one or both of X and Y are distributed

X�J��������
Page 	� of ��

The message�passing details would be hidden in the function for Y
and�or the updater for X
 On shared�memory� or single�processor ma�
chines� X and Y could be changed to arrays without any changes to
usages

� One can replace neither a right�hand context nor a left�hand context
for a scalar by a procedure invocation
 This can be overcome by a
minor revision of the rules governing the appearance of a function
name with no argument list �see section �

 on page ���

� One can replace neither a right�hand context nor a left�hand context
for a �eld of a derived type by a procedure invocation
 This can be
overcome by at least two mechanisms �see section �

� on page ���

� One cannot use an array section selector� e
g
 	������ as an actual
argument
 This can be overcome by creating an intrinsic �rst�class
type for array�section selectors �see section �

	 on page ���

� One cannot change the representation between a derived type and a
scalar or array without changing the references
 This probably never
happens
 If it does� one could write a function and updater to �hide�
the �other� representation

These are all minor changes� orthogonal to the rest of the language� and
to each other� and have no impact on existing programs

Once the concept of updaters is introduced into Fortran� several intrinsic
updaters make sense �see section �

� on page ���

�
�� Updaters

I would like to see something like this in Fortran sooner rather than later

I tried in ����� but was told �it�s too late for such major changes
� Now�
it seems every time I propose it again �for F�
� and now for F������ the
answer is still the same
 Or is it really too late for F�����

Suppose you needed to change the representation of a thing called R from
an array to a pair of procedures � one to reference R and one to update it

If you used a function named R� the references would still look the same �
�R�I��
 But what about those places where array elements got updated�
They originally were �R�I� � X� or READ or

 You�d need to change
them to something like

CALL Store
R �R	 I	 X�

X�J��������
Page 	� of ��

and worse for the READ
 Ick

To avoid this problem� the current wisdom is that �R� should be encap�

sulated in a pair of procedures� e
g
�

REAL FUNCTION Get
R�I�

INTEGER I

GET
R � R�I� � assume R is a module variable

END FUNCTION Get
R

and

SUBROUTINE Store
R�I	 V�

INTEGER I

REAL V

R�I� � V � assume R is a module variable

END SUBROUTINE Store
R

Wouldn�t it be nicer not to have these procedures when R is so simple�
to be able to write X�R�I� and R�I��X� and not worry about the possibility
that these references might change if it ever becomes necessary to change
the representation of R� The ability to change the representation of R� but
leave usages intact� has been called �referential invariance
�

To move Fortran toward referential invariance� one needs to be able to
interpret R�I� as some kind of a procedure invocation� both when it appears
where a value gets referenced � that�s easy� use a function � and when it�s
updated � on the left side of an assignment operator� in an I�O list in
a READ statement� associated to a formal argument of OUT or INOUT
intent� associated to a keyword in an I�O control part that produces a
value� e
g
 IOSTAT� or used as an internal �le
 There�s also the problem
that names that have no punctuation near them might need to be changed
to procedures � R is a scalar� or a whole array reference �see section �

on page ���
 I don�t think you want this for DO inductors� but it may be
simpler to allow than prevent

The languages Mesa and POP��� and perhaps others� included the no�
tion that a procedure reference can appear where a value gets updated

POP�� called this kind of procedure an �updater
� Think of an updater as
complementary to a function� A function uses its arguments to ��nd� the
correct value to return� while an updater uses its arguments to �stash� the
function value �a SAVE variable is a good place�
 An updater�function pair
will usually be such that if one invokes the updater with certain values of
its arguments� to store a certain value� and then invokes the corresponding

X�J��������
Page �� of ��

function with the same arguments� the value �saved� by the updater comes
back � just like for an array � but that�s not necessary
 A good example
is a stack� in which a function reference pops the stack and returns the top
element� and an updater reference pushes the stack

An updater is di�erent from a �left�hand function� as described by Aho
et
 al
� which runs before the value is created� and produces a pointer to the
place the value is to be stored
 An example in which a left�hand function
cannot be used� but an updater works� is the case of sparse storage of a
vector �see �An Example Where Updater Works and Left�hand Function
Doesn�t� on page �����

I call a function�updater pair an �accessor
� This isn�t really a radical
idea� Array and record �eld references� and storing into them� are just
accessors that the compiler knows how to write
 Why not let users write
other varieties of accessors�

Adding updaters into Fortran now or soon� however much they are re�
stricted� sets Fortran along a course toward referential invariance
 Accessors
that can appear without argument lists �see section �

 on page ���� or that
take section arguments �see section �

	 on page ���� would move Fortran
even closer to referential invariance
 One could� however� postpone these
two re�nements � not having all the details of elemental functions worked
out didn�t kill array syntax in F��

I prefer a combined declaration� which would allow function and updater
to share variables� especially SAVE variables
 It would also emphasize that
they must have exactly the same calling sequence
 Here�s a trial balloon�
continuing the example above�

REAL FUNCTION R�I�

INTEGER I

REAL S�MAX�S�

SAVE S

� ���

R � S�I�

RETURN

UPDATER U � this is a new statement

S�I� � U � This is a new interpretation
 U is the name of

� the value being sent �into� the updater� E�g�

� when one writes �R��� � B������	 the compiler

� calls the entry U with I � �	 and a �hidden

� argument� equal to B����� that is referenced

� internally by writing �U�� The equivalent of a

� function result clause is not needed	 because U

� is never explicitly used to invoke the updater

� R is used for this purpose� One could use

X�J��������
Page �� of ��

S�I� � R

� but this might cause some confusion about whether

� to use the value to be stored	 or execute the

� �function� side if the accessor has no arguments�

� In that case	 one could put a RESULT�RR� clause

� on the FUNCTION header	 and use

S�I� � RR

� This is an unimportant detail that the committee

� could probably debate endlessly�

RETURN

END

Writing �UPDATER U� instead of only �UPDATER� is just user�pro�
vided name�mangling that preserves uniqueness of external names� in exactly
the same way INTERFACE does for generics � remember� the compiler must
invoke di�erent procedure entry points for value�producing and value�ab�
sorbing contexts

This example is far too trivial to encapsulate
 The importance of ref�
erential invariance is that one could initially write the program with R an
array� and use X�R�I� and R�I��X for all references� without fear that if
one later needs a less trivial representation� all the usages must change� One
can write an accessor after the need arises without changing the usages�

Ponder the e�ciency� clarity� and robustness in the face of change� of
programs written using this feature
 The �rst two are well known hallmarks
of Fortran
 Using �procedural abstraction� instead of just �abstraction� to
provide the third subverts the �rst two#

It would be easy to write up a description of the declaration and usage
of accessors by extending discussions of functions

So far� I�ve described only accessors that are referenced by using the
same syntax as arrays
 It�s also necessary to reference accessors using the
same syntax as for derived type members �see section �

� on page ���

������ An Example Where Updater Works and Left�hand Func�

tion Doesn�t

Consider the problem of storing a sparse vector

The idea is that storage is allocated only for values di�erent from a

distinguished value� say C �usually ��

If SA is a sparse array� and SA�i� �� C� no storage is allocated for it

Setting SA�i� � C does nothing if SA�i� �� C already
 If SA�i� �� C� the
storage for SA�i� is reclaimed
 Finally� referring to SA�i� yields C if no space
is allocated
 The hard part of this exercise centers around the meaning of

X�J��������
Page �� of ��

the statement SA�i� � X� since the value of X must be known in order to
perform the correct action

A left�hand function as described in numerous textbooks� e
g
 by Aho
et
 al
� would require executing the function SA�i� to compute a pointer�
and then storing X where the pointer points
 The above de�nition of sparse
storage is incompatible with the notion that SA�i� can compute the correct
pointer without knowing the value of X

�
�� Intrinsic Updaters

No matter whether user�de�ned updaters are added into Fortran� there are
some intrinsic updaters that make sense
 Consider the following equivalent
examples�

AIMAG�X� � ��� X � CMPLX�REAL�X�	 ����

REAL�X� �
�� X � CMPLX�
��	 AIMAG�X��

ABS�X� � ��� X � SIGN����	 X�

ABS�X� � ��� PHI � ATAN��AIMAG�X�	 REAL�X��

X � ��� � CMPLX�COS�PHI�	 SIN�PHI��

FRACTION�X� � ��� X � SET EXPONENT����	 EXPONENT�X��

EXPONENT�X� � � X � SET EXPONENT�FRACTION�X�	 ��

Which column do you �nd clearer�
A complex number C can be considered to be a derived type with ��elds�

C$REAL and C$AIMAG
 Isn�t AIMAG�C� clearer than C$AIMAG�

Given this clarity and symmetry� perhaps it�s a little more understandable
why I and others advocated function�like syntax for derived�type �elds

�
�� Make the Array Section Selector a First�Class Type

An array can take a subscript of the form I�J�K
 Thus if one has an array R
and uses a section subscript with it� one can�t change R into an accessor

To solve that problem� make the subscript triplet type explicit and �rst�
class
 Since the type has more general application than use as a subscript
triplet� a more general name may be preferred
 Since the subscript triplet
denotes a �regularly spaced sequence of integers� �see ISO�IEC �
	�������

X�J��������
Page �	 of ��

������ and the word SEQUENCE is already used in Fortran� the name SE�
QUENCE is a possible choice �choose your own type name if you don�t
like SEQUENCE�
 I�J�K is a constructor for the type� where I� J and K
are arbitrary integer�valued expressions
 Intrinsic accessors� say BOUND��
BOUND� and STRIDE� could examine and change ��elds� of variables� and
examine �elds of constants or parameters

Variables and expressions of this type could be accessor formal and actual
arguments� so you could write

X � R�
����

or

R�
���� � X

to refer to

FUNCTION R �S�

SEQUENCE S

���

UPDATER U � for R

���

END FUNCTION R

They could also be used for subscripts� or for the control part of explicit
or implied DO� e
g

sequence RANGE

RANGE �
� ��� �

���

do I � RANGE � this only works with significant blanks�

���

end do

and parameters of type SEQUENCE could be used for array bound declara�
tions �only if they have no STRIDE part or unit STRIDE part�� or in CASE
selectors

If S is of type SEQUENCE and J is of type INTEGER �or can be coerced
thereto� then J � S is prohibited� but S � J means S � J�J��
 This allows
an INTEGER to be passed to a dummy argument of type SEQUENCE and
INTENT�IN�

One could postpone making SEQUENCE type explicit and �rst�class�
which would compromise but does not demolishing the usefulness of acces�
sors

X�J��������
Page �� of ��

�
�� Function References that Look Like Derived Type Field
References

At present in Fortran� one can replace neither a right�hand context nor a
left�hand context for a �eld of a derived type by a procedure invocation�
except by changing the syntax
 There are at least two ways that Fortran
might be changed to allow the syntax of derived type �eld reference and
update to be the same as function and updater invocation

� Allow functions and updaters to be members of derived types� that
is� to be declared within the boundaries of TYPE

 END TYPE
statements
 Thus� if one declares a type T containing a function or
updater F� and declares a variable R of type T� R$F is a reference to
the function F that is a member of type T� and R is passed into F as
a �hidden argument�� as in C��
 This approach requires either that
procedure members of derived types have unique names� or some form
of �name mangling
� One also requires some distinguished syntax or
semantic interpretation to access R
 C�� uses this��
 I would prefer
using the type name

� De�ne the meaning of R$F� when the type of R has no F �eld� to
be �Invoke a function or updater F� that has an argument of the type
of R� with R as its argument� i
e
 F�R�
 Use the generic mechanism
if necessary
� The de�nition must be extended slightly to include
the case that F ought to have additional arguments� e
g
 R$F�	��
�Invoke the function F with R as its �rst argument� and remaining
parenthesized expressions as subsequent arguments
� E
g
 F�R�	�

This requires neither name mangling� nor a special syntax or semantic
interpretation to access R

If F is a function that takes an argument of the type of R� and R has
no �eld named F� and G is a function or updater that takes the result
type of F� and the result type of F is not a derived type having a �eld
named G� then RFG is interpreted to be G�F�R��

Similarly� if R is of a derived type that has a �eld named F� then F�R�
is to be interpreted R$F

�
�
 Replacing a Scalar or Whole	array By Procedures

Fortran presently prohibits referencing a function that has no arguments
without appending �� to its name

X�J��������
Page �
 of ��

The only context in which a function is allowed to appear without ��
appended is when it appears as an actual argument

To move Fortran toward referential invariance� the standard should spec�
ify that when a function or accessor �see section �

� on page 	�� that takes
no arguments has an explicit interface� it may be invoked without appending
�� to its name
 This would allow one to change a scalar variable� or to change
an array that is referenced as a whole� to an accessor� without changing the
references
 Similarly� �� may be appended to a scalar variable reference

This would allow one to change an accessor or function� that is referenced
with �� appended� to a scalar variable� without changing the references

If one wishes to change an array to an accessor� one must de�ne a generic
pair of accessors� one with no arguments� to handle the case that the array
originally had been referenced as a whole� with no subscripts� and another
with as many section arguments �see section �

	 on page ��� as the original
dimensionality of the array

When a reference to an accessor that takes no arguments appears without
appended �� as an actual argument to a procedure that does not have explicit
interface� the FUNCTION side of the accessor should be run before the
procedure call� the result passed to the procedure� and the UPDATER side
run after the call

When a reference to a function �that does not have a corresponding
updater� appears without appended �� as an actual argument to a procedure
that does not have explicit interface� the address of the function should be
passed to the procedure

If one wishes to pass the address of an accessor that takes no arguments�
or the result of evaluating a function that has no arguments� the interface
of the procedure to which they are passed must be explicit

�
 Subtypes of INTEGER Need Regularization

Fortran has types and subtypes� in much the same spirit as Ada �except for
the relation to strong typing�
 Subtypes of REAL are done well
 Subtypes of
INTEGER are not
 The de�nition of SELECTED INT KIND is the culprit

SELECTED INT KIND should be overloaded to take two arguments� a
lower bound and an upper bound
 Then SELECTED INT KIND����

	
�
could select a hardware type that is an unsigned �� bit integer �but the
standard should be silent whether it does�

SELECTED INT KIND�����	

� could be mapped onto � bit unsigned
integers by compilers willing to add and subtract ��� whenever necessary

X�J��������
Page �� of ��

�but the standard should be silent�

References

�
 Charles M
 Geschke and James G
 Mitchell� On the problem of uniform
references to data structures� IEEE Transactions on Software Engi�
neering SE��� � �June ���
� �������

�
 David Parnas� On the criteria for dividing programs into modules� Com�
munications of the ACM �December �����

	
 D
 T
 Ross� Uniform referents� An essential property for a software en�
gineering language� Software Engineering � ������ ������

Appendix
 Some Concrete Proposals to Change
ISO�IEC ���	
�		�

This appendix proposes concrete changes to ISO�IEC �
	������� with the
intent to illustrate one way to implement proposals outlined above
 Marginal
notes indicate the reason�s� for the proposed change

At �
��� �
�� Accessor
change function�subprogram to accessor�subprogram

Add after �
�� Accessor
� � updater�stmt �

� execution�part � �

Add after �
� Comefrom
is comefrom�stmt

After �
�� add Swap
or exchange�statement

After �
�� add Swap
or pointer�exchange�statement

After �
�� add Very�local
variables

X�J��������
Page �� of ��

��� An IF� DO or BLOCK executable construct� or a block introduced
by a CASE statement in a case�construct� or between a block�stmt
and the �rst case�stmt in a case�block

At ��
��� add after 	result variable�
 Accessor
A function may have an updater part� its invocation receives a value

An updater is complementary to its corresponding function� and has
the same name and argument characteristics
 The variable that re�
ceives the value in an updater is called the received value variable�
and has the same characteristics and name as the result variable of
the corresponding function
 A function and updater� taken together�
are called an accessor

Add the following column to Figure ��� on page �� Very�local
variablesExecutable

Kind of Scoping Unit

 Construct
USE Statement No
ENTRY Statement No
FORMAT Statement Yes
Misc
 Declarations Yes
DATA Statement Yes
Derived�Type De�nition Yes
Interface Block Yes
Statement Function ���
Executable Statement Yes
CONTAINS Statement No

At ��
����� Comefrom
Add �COME FROM� to the �Blanks Optional� column

Add SPECIFICATION MODULE and IMPLEMENTATION MOD� Module
ULE to the �Blank Mandatory� column

Replace ��
����� by Include
The interpretation of char�literal�constant is user de�ned

Replace ��
�� by Sequence
nonnumeric types� Character� Logical and Sequence

After ��
�� add Sequence
������� Sequence type

The sequence type is an intrinsic composite type that denotes a
regularly spaced sequence of integers
 Data entities of the type are

X�J��������
Page �� of ��

represented by values that consist of three integers� the �rst bound�
the second bound� and the stride

The type speci�er for the sequence type is the keyword SEQUENCE

If the keyword SEQUENCE is speci�ed and the kind type parameter
is not speci�ed� the default kind value is the same as that for default
integer� the type of the bounds and stride is default integer� and the
data entity is of type default sequence

A processor must provide a kind of sequence type corresponding to
each kind of integer type provided

Data objects of sequence type are constructed by using the sequence�
constructor

R�	� sequence�constructor is � bound � � � bound �
� � stride �

R�	� bound is scalar�int�expr
R�		 stride is scalar�int�expr

Let Bi and Ti for i � ��	 be the smallest and largest values of integers
of the kind of the �rst bound� second bound and stride
 The kind
type parameter value of the sequence constructor is the kind type
parameter value for the integer type that includes the minimum of Bi�
and the maximum of Ti
 If any sub�object has a kind type parameter
value di�erent from that of the sequence constructor� the sub�object
is converted to the kind type of the sequence constructor

A data object of sequence type denotes a regular sequence of integers
consisting of zero or more values
 The third expression is the increment
between values� and is called the stride

If the �rst or second bound is omitted� the values depend on the use
of the sequence�

� If a sequence constructor is used as a subscript� or an array�spec
for a dummy argument array� an omitted �rst bound is equivalent
to the subscript whose value is the lower bound for the array� and
an omitted second bound is equivalent to the subscript whose
value is the upper bound for the array
 The second bound must
not be omitted in the last dimension of an assumed�size array

� Otherwise� an omitted �rst bound denotes the smallest number
represented by the kind of integer of which the sequence is com�
posed� and an omitted second bound denotes the largest number

X�J��������
Page �� of ��

represented by the kind of integer of which the sequence is com�
posed
 This de�nition would obviously bene�t from precise sub� Note
types of the integer type� e�g� if SELECTED INT KIND�	

����

denotes a KIND of integer for which values must be in the closed
range �	

������ then in a sequence constructor using that kind�
an omitted �rst bound would denote 	

� and an omitted second
bound would denote ����

If the stride is omitted it is assumed to be �
 The stride must not have
the value zero

When the stride is positive� the sequence constructor denotes a regu�
larly spaced sequence of integers beginning with the �rst bound and
proceeding in increments of the stride to the largest integer not greater
than the second bound� the sequence is empty if the �rst bound is
greater than the second

When the stride is negative� the sequence constructor denotes a reg�
ularly spaced sequence of integers beginning with the �rst bound and
proceeding in increments of the stride to the smallest integer not less
than the second bound� the sequence is empty if the �rst bound is less
than the second
 For example� the sequence constructor ������ denotes
the sequence having the four values �� ��
 and 	

The following is more speculative� If consensus on its value cannot be Note
reached� it can be omitted without serious compromise to the overall
proposal�

A sequence is conformable to an array
 Any intrinsic operation de�ned
for arrays may be carried out between an array and a sequence by
considering that the sequence denotes an array of rank one and extent
equal to the length of the denoted sequence� except that an array may
not be assigned to a sequence

At ��
������ ��
�� ���
�� �and elsewhere it presently appears� Sequence
Change �sequence type� to �sequenced type�

At ��
� and ��
�� Limited
change �access�spec� to �access�spec�list�

After ��
� add Limited
Constraint� access�spec�list must not contain both PUBLIC and PRI�

VATE accessibility attributes

X�J��������
Page
� of ��

After ��
�� add Limited
Constraint� If a component of a derived type is of a type declared to

be limited� the derived type must be limited

After ��
�� add Limited
If the derived type is limited then no intrinsic operators are de�ned
for the type� intrinsic assignment is not de�ned for the type� and the
components of the type are private exactly as they would be if the
type de�nition included a PRIVATE statement

After ��
�� add Sequence
or SEQUENCE � kind�selector �

After ��
� add Limited
Constraint� access�spec�list must not contain both PUBLIC and PRI�

VATE accessibility attributes

After ��
�� add Sequence
������� SEQUENCE

The SEQUENCE type speci�er speci�es that all entities whose names
are declared in this statement are of intrinsic type sequence ��
	
�
	�

The kind selector� if present� speci�es the representation method
 If
the kind selector is absent� the kind type parameter is KIND��� and
the entities declared are of type default sequence

At ��
�� Sequence
change ������� to �������

After ��
�� add Limited
or LIMITED

After ��
�� add Limited
If a type is declared with the LIMITED attribute� then no intrinsic
operators are de�ned for the type� and neither intrinsic assignment
nor pointer assignment are de�ned for the type

If a pointer entity is declared with the LIMITED attribute� then
pointer assignment is unavailable for use with that entity

If any other entity is declared with the LIMITED attribute� then nei�
ther intrinsic assignment� nor any intrinsic operators� are available for
use with that entity outside the module

An entity may be limited and private� or limited and public� but it
may not be private and public

X�J��������
Page
� of ��

Replace ��
����� by Limited
or LIMITED

Constraint� The INTENT attribute must not be speci�ed for a dummy
argument that is a dummy procedure

Constraint� Only the INTENT�LIMITED� attribute may be speci�ed
for a dummy argument that is a dummy pointer

After ��
�� add Limited
For a non�pointer dummy argument� the INTENT�LIMITED� at�
tribute speci�es that neither intrinsic assignment nor any intrinsic op�
erators are available for use with the dummy argument� and that when
the dummy argument is used as an actual argument it can only be ar�
gument associated to a dummy argument with INTENT�LIMITED�

For a pointer dummy argument� the INTENT�LIMITED� attribute
speci�es that pointer assignment is not available for use with the
dummy argument� and that when the dummy argument is used as
an actual argument that is associated to a pointer dummy argument�
the associated dummy argument must also have INTENT�LIMITED�

Replace ��
����� by Sequence
R
�	 explicit�shape�spec is sequence�constructor

or upper�bound
R
�� upper�bound is speci�cation�expr

Constraint� The sub�objects of the sequence constructor must be spec�
i�cation expressions

Constraint� The stride of the sequence constructor must have the value
�

Needed�

On ��
�� ��
��� ��
��� ��
�� Sequence
Add �default sequence� before �or�

After ��
�� add Accessor
or updater�reference

Replace ��
�� by Sequence
R��� substring�range is scalar�sequence�expr

Couldn�t we also allow scalar�int�expr� Note

Constraint� The stride part of scalar�sequence�expr must have the
value one

Needed�

After ��
� add Sequence
or scalar�sequence�expr

X�J��������
Page
� of ��

At ��
�� ��
�� �and anywhere else it appears� Sequence
Replace subscript�triplet by scalar�sequence�expr

Delete ��
����� Sequence

Replace ��
����� by Sequence
Constraint� The second bound of sequence�constructor must not be

omitted in the last dimension of an assumed�size array

After ��
�� add Sequence
It is not necessary for the second bound of a subscript of type sequence
to be within the array bounds� so long as all the elements of the de�
noted sequence are within the array bounds
 For example� since the
sequence constructor 	����� denotes the sequence ��	� ���� it may be
used to subscript an array having bounds ����

At ��
�� �and anywhere else it appears� Sequence
replace �subscript triples� by �scalar sequence expressions�

At ��
�� �and anywhere else it appears� Sequence
replace �subscript triple� by �scalar sequence expression�

Delete section ���������� Sequence

Replace ��
����� by Sequence
R��� allocate�shape�spec is scalar�sequence�expr

After ��
�� add Sequence
Constraint� The stride sub�object of the scalar sequence expression

must be �

Needed�

After ��
��� add Sequence

� S S L �

At ��
�� Sequence
add �S� before �and�

At ��
�� Sequence
add �sequence�� after �complex��

X�J��������
Page
	 of ��

After ��
� add Sequence
R�

 sequence�expr is sequence�constructor

or variable

At ��
�� add Sequence
A sequence constant expression is a constant expression whose
type is sequence

After ��
�� add Sequence
R

 sequence�initialization�expr is sequence�expr
Constraint� A sequence�initialization�exprmust be an initialization ex�

pression

After ��
�� add Sequence

 sequence integer	 real	 sequence

After ��
�� add Sequence
j sequence INT�expr�KIND�KIND�variable���INT�expr�KIND�KIND�variable���� j

After ��
� add Swap
������� Exchange statement

Two variables may be exchanged by an exchange statement

R�

 exchange�statement is variable�	 ��� variable��

Constraint� variable�	 and variable�� must not be assumed�size arrays

Constraint� variable�	 � variable�� and variable�� � variable�	 must
both be permitted

Constraint� variable�	 and variable�� must be of the same type

An exchange statement variable�� ��� variable�� has the same
e�ect as

temp � variable��

variable�� � variable��

variable�� � temp

where temp has the same type� type parameters and shape as variable�
	 and variable��

X�J��������
Page
� of ��

If variable�	 and variable�� are scalars of type integer� real� logical�
or character with length �� then the exchange operation is indivisible

Otherwise� if assignment would be intrinsic� the exchange operation is
component�by�component indivisible

After ��
�� add Swap
������� Pointer exchange

Two pointers may be exchanged by the pointer exchange statement

R�

 pointer�exchange�statement is pointer�object�	 ���
pointer�object��

Constraint� Both pointer objects must have the POINTER attribute

Constraint� Both pointer objects must have the same type� type pa�
rameters and rank

Constraint� Neither pointer object may be an array section with a
vector subscript

A pointer exchange statement

pointer�object�� ��� pointer�object��

has the same e�ect as

temp �� pointer�object��

pointer�object�� �� pointer�object��

pointer�object�� �� temp

in which temp has the POINTER attribute� and the same type� type
parameters and rank as pointer�object�	 and pointer�object��

Pointer exchange for a pointer component of a structure may also take
place by execution of a derived type exchange statement ��

�
��

Pointer exchange is indivisible

After ��
�� add Block
��� Explicit BLOCK Construct

Lines ��
����� are incorrect for EXIT� as implemented for Fortran ��

X�J��������
Page

 of ��

Replace ��
����� by Exit
A statement that refers to the construct�name of a construct in which
it is contained belongs to that construct
 Otherwise� an EXIT or
CYCLE statement belongs to the innermost DO construct in which it
appears� and any other statement belongs to the innermost construct
in which it appears

Replace ��
����� by CASE
BLOCKR��� case�construct is select�case�stmt

� case�block �

end�select�stmt

After ��
�� add CASE
BLOCKR�

 case�block is block�stmt

case�block

end�block�stmt
case�group�exec�constructs

or case�stmt
block

R�

 case�group�exec�constructs is � executable�construct �

After ��
� add Real CASE
or scalar�real�expr

Replace ��
� by CASE
and

R��	 case�selector is � case�value�range�list �

�
AND
 scalar�logical�expr
�

After ��
� add CASE
and

If a scalar�logical�expr is present after a case�selector� and it is a scalar�
logical�initialization�expr that has the value false� the case�stmt and
following block� if any� are considered to be absent

After ��
�� add CASE
rangeor case�value case�relational

or case�relational case�value
or case�value case�relational

case�relational case�value

Replace ��
����� by Sequence

X�J��������
Page
� of ��

or scalar�sequence�initializa�
tion�expr

or scalar�logical�initialization�
expr

R��
 case�value is scalar�char�initialization�
expr

or scalar�real�initialization�
expr

Real CASE

R�

 case�relational is
LT
 CASE
rangeor �

or
LE

or ��
Constraint� For a given case�construct� if case�expr is of integer

type� then any case�value may be a scalar�sequence�
initialization�expr� otherwise� each case�value must be of
the same type as case�expr
 For character type� length dif�
ferences are allowed� but the kind type parameters must
be the same

Replace ��
�� by CASE
rangeConstraint� If case�expr is of type logical� the only form of case�value�

range allowed is a case�value

Replace ��
����� by CASE
rangeExecution of the SELECT CASE statement causes the case expression

to be evaluated
 The resulting value is called the case discriminant�
denoted by c below
 If the case�selector includes the optional scalar� CASE
and

logical�expr� the scalar�logical�expr is called the case condition
 For
a case value range list� a match occurs if the case condition has the
value true� or is absent� and c matches any of the case value ranges in
the list� as follows�

�
 If the case value range contains a single value v� a match occurs CASE
rangefor type logical if the expression c
EQV
 v is true� else a match

occurs if the expression c
EQ
 v is true

�
 If the case value range is of the form low case�relational case�
relational high� a match occurs if the expression low case�rela�
tional c
AND
 c case�relational high is true

	
 If the case value range is of the form low case�relational � a match
occurs if the expression low case�relational c is true

X�J��������
Page
� of ��

�
 If the case value range is of the form case�relational high� a
match occurs if the expression c case�relational high is true

 If no other selector matches and a DEFAULT selector is present�
it matches the case discriminant

If no other selector matches and the DEFAULT selector is absent�
there is no match

The forms low �� � high and low � high are equivalent to low �� �
�� high and low �� �� high� respectively

If a CASE statement matches the case discriminant� execution of the CASE
BLOCKconstruct is completed in two steps�

�
 The block following the CASE statement containing the matching unchanged
selector� if any� is executed

�
 If the CASE statement is contained within any case�blocks within CASE
BLOCKthe same case�construct� case�group�executable�constructs� if any�

are executed in order from innermost to outermost

At ��
� Real CASE
replace �An integer� by �A�

After ��
� add Real CASE
REAL N

Replace ��
� by CASE
rangeCASE � �� ���

Replace ��
� by CASE
rangeCASE �� �� �

After ���
�� add Sequence
or ��� do�variable �

scalar�sequence�expr

Constraint� In �xed source form� a scalar�sequence�expr that consists
only of a variable of SEQUENCE type may be used only
if the optional comma is present

After ���
�� add Accessor
This is not necessary until updaters are included in Fortran� and up� Note
daters that have no arguments can be referenced by their name alone�
without parentheses�

Constraint� The do�variable must not be an updater reference

X�J��������
Page
� of ��

After ���
�� add Sequence
If loop�control is scalar�sequence�expr then m�� m� and m�� are taken
from the �rst bound� second bound and stride of the sequence type
value

After ���
�� add Block
����� Explicit BLOCK Construct

The Explicit BLOCK Construct provides the boundaries for a block

R�

 block�construct is block�stmt

block
end�block�stmt

R�

 block�stmt is � block�construct�name� �
BLOCK

R�

 end�block�stmt is END BLOCK
� block�construct�name �

Constraint� If the block�stmt of a block�construct is identi�ed by a
block�construct�name� the corresponding end�block�stmt
must specify the same block�construct�name
 If the block�
stmt of the block�construct is not identi�ed by a block�
construct�name� the corresponding end�block�stmt must
not specify a block�construct�name

����� EXIT Statement EXIT

R�	
 exit�stmt is EXIT �construct�name�

Constraint� If an exit�stmt refers to a construct�name it must be within
the range of that construct� otherwise� it must be within
the range of at least one do�construct

An EXIT statement belongs to a particular construct
 If the EXIT
statement refers to a construct�name it belongs to that construct� oth�
erwise it belongs to the innermost DO construct in which it appears

Execution of an EXIT statement terminates execution of the construct
to which it belongs

After ���
�� add Comefrom
����� COME FROM statement
R�

 comefrom�stmt is COME FROM � label�list �

The COME FROM statement serves as a target for GO TO state�
ments
 If� and only if� a program unit contains a COME FROM
statement� then all GO TO� ASSIGN and arithmetic IF statements must
be labeled� each GO TO or arithmetic IF statement can only transfer

X�J��������
Page
� of ��

control to a COME FROM statement containing the label of the GO
TO or arithmetic IF statement in its label�list� and each ASSIGN statement can

only mention the label of a COME FROM statement containing the label of the ASSIGN

statement in its label�list

Move lines ���
����� to be after ���
� WRITE �
PRINT

Replace ���
� by WRITE �
PRINTA scalar integer expression that has the value �� identi�es the same

external units as an asterisk

For purposes of output� a scalar integer expression that has the value
�� identi�es an external unit to which error messages may be written�
if such a unit exists� otherwise it has the same e�ect as unit number
��
 For purposes of input� it identi�es a unit that is always positioned
at the end�of��le

A scalar integer expression that has a value less than or equal to �	
identi�es an external unit that neither stores nor displays data written
to it� and for purposes of input is always positioned at the end�of��le

The above speci�cation allows one to �turn o�� output to units having Note
magnitude greater than � simply by negating the unit number�

Unit numbers �� and �� are preconnected for formatted sequential ac�
cess

Otherwise� a scalar integer expression that identi�es an external �le
unit must be zero or positive

At ���
�� and ���
�� Sequence
Change �character constants and complex constants� to �character�
complex and sequence constants�

After ���
�� ���
�� add Sequence
When the next e�ective item is of type sequence� the input form con�
sists of two or three numeric input �elds separated by colons
 The
�rst numeric input �eld is the �rst bound of the sequence� the second
is the second bound of the sequence� and the third� if present� is the
stride of the sequence
 If the third is absent� the stride is �
 Blanks
or the end of record may appear either before or after the separating
colon�s�

After ���
�� add Sequence

X�J��������
Page �� of ��

Sequence constants consist of three numeric output �elds� separated
by colons

Replace ���
�� by Module
The sequence of execution�part statements speci�es the actions of the
main program during program execution
 Execution of an executable
program �R���� begins with execution of the initialization parts of
modules ���
	�� if any� and continues with execution of the �rst exe�
cutable construct of the main program

Replace ���
����� by Module
R���� module is undistinguished�module

or speci�cation�module

or implementation�module

R��

 undistinguished�module is module�stmt
� speci�cation�part �
� module�initialization�part �
� module�subprogram�part �
end�module�stmt

R��

 speci�cation�module is SPECIFICATION
module�stmt

� speci�cation�part �
� contains�stmt
� interface�body �

 �

end�module�stmt

R��

 implementation�module is IMPLEMENTATION
module�stmt

� speci�cation�part �
� module�initialization�part �
� module�subprogram�part �
end�module�stmt

R��

 module�initialization�part is � executable�construct �

If an interface�body appears in a speci�cation module� the procedure
is a module�subprogram
 The corresponding implementation module
must declare the full subprogram� with identical characteristics

At ���
��� ���
��� ���
�� ���
��� ���
��� ���
�� Module
replace all occurrences of �module� by �undistinguished module or
speci�cation module�

X�J��������
Page �� of ��

At the end of ���
�� add Module
An implementation module must have the same name as the corre�
sponding speci�cation module

Replace ���
����� by Module
A speci�cation module is host to the corresponding implementation
module
 Entities in the speci�cation module are therefore accessible
in the implementation module through host association
 A speci�ca�
tion module is host to any interface bodies it contains
 Entities in the
speci�cation module are therefore accessible in the interface bodies
through host association
 An undistinguished module or implementa�
tion module is host to any module procedures ���
�
�
�� it contains

Entities in the module are therefore accessible in module procedures
through host association

������ Module initialization part

The initialization parts of all modules in a program are executed before
the main program
 If an undistinguished module or implementation
module contains a USE statement ���
	
�� ��
	
��� the initialization
part of the module accessed by the USE statement is executed before
the initialization part of the module containing the USE statement�
except that if two or more implementation modules mutually depend
on each other�s speci�cation modules� the order of execution of their
initialization parts is unde�ned
 If there is no USE relation between
two modules� the relative order of execution of their initialization parts
is unde�ned

������ Implementation module internal procedures

A procedure that is declared in an implementation module but not in
an interface body in the corresponding speci�cation module is an in�
ternal procedure of the implementation module
 The implementation
module is the host of its internal procedures

������ Module reference

Replace ���
� by Module
������ The USE statement and use association

After ���
�� add Module
The only entities of an implementation module that are made accessi�
ble by a USE statement are the module procedures that are declared
in the corresponding speci�cation module

X�J��������
Page �� of ��

At ���
����� ��� ��� ���
�� ��� ���
�� ��� �� Module
Replace ���
	
	� by ���
	

�

Replace ���
����� by Accessor
The de�nition of a procedure speci�es it to be a function� an updater
or a subroutine
 A reference to a function either appears explicitly as
a primary within an expression� or is implied by a de�ned operation
within an expression
 A reference to an updater appears explicitly
in a value�receiving context
 A reference to a subroutine is a CALL
statement or a de�ned assignment operator ��

�
	�

At ���
�� Very�local
variablesReplace �or a derived�type de�nition� by �an executable construct� or

a derived�type de�nition�

A debate is needed to determine the lifetime of a variable declared in Note
an executable construct� with and without the SAVE attribute� My
preference is that a variable declared without the SAVE attribute has a
lifetime from the instant control enters the block� until the instant con�
trol leaves the block� while a variable declared with the SAVE attribute
has the same lifetime as the program�

Replace ���
����� by Accessor
The characteristics of a procedure are the classi�cation of the
procedure as a function� updater or subroutine� the characteristics of
its arguments� the characteristics of its result value if it is a function�
and the characteristics of its received value if it is an updater

Add after ���
�� Accessor
������ Characteristics of updater received value

The characteristics of the value received by an updater are identical
to the characteristics of the result value of the corresponding function

Add after ���
� Sequence
�f� A dummy argument of type sequence

�	� The procedure is an accessor
 Accessor

Add after ���
�� Accessor
updater�stmt

Add after ���
�� Accessor
R

 updater�reference is function�reference

R

 accessor�reference is function�reference

X�J��������
Page �	 of ��

At ���
��� add Accessor
�� an updater reference� after �subroutine reference�

Add after ���
�� Accessor
������ Evaluation of actual arguments

When a function� updater or subroutine is invoked� actual argument
expressions are evaluated� then the arguments are associated� and then
the procedure is executed

If the actual argument expression is an accessor reference� and the
procedure has implicit interface� or the procedure has explicit interface
and the corresponding dummy argument has INTENT�INOUT�� the
function part of the accessor is invoked before the procedure is invoked�
and the updater part is invoked after the procedure returns

If the actual argument expression is an accessor reference� the proce�
dure interface is explicit� and the actual argument corresponds to a
dummy argument having INTENT�IN�� the function part of the ac�
cessor is invoked before the procedure is invoked� but the updater part
of the accessor is not invoked after the procedure returns

If the actual argument expression is an accessor reference� the pro�
cedure interface is explicit� and the actual argument corresponds to a
dummy argument having INTENT�OUT�� the function part of the ac�
cessor is not invoked before the procedure is invoked� but the updater
part of the accessor is invoked after the procedure returns

At ���
�� change Accessor
������ to ������

At ���
����� Accessor
Delete �When

 invoked
�

At ���
�� change Accessor
������ to ������

Add after ���
�� Accessor
������ Updater reference

An updater is invoked by an updater�reference in the contexts implied
by items ���� ���� �	�� ���� ���� ���� and ��
� in Section ��
�
�� after the
value�s� to be stored is �are� produced
 In a masked array assignment�
the entire array is received by the updater� after the selected elements
have been changed

X�J��������
Page �� of ��

������ Elemental intrinsic updater reference

A reference to an elemental intrinsic updater is an elemental refer�
ence if one or more actual arguments are arrays and all array argu�
ments have the same shape
 The received value must have the same
shape as the array arguments and each element of the received value
is received by invoking the updater using the scalar arguments and
corresponding elements of the array arguments
 For example� if X and
Y are complex arrays of shape �m�n��

REAL�X� � �Y�

has the same e�ect as

DO i � �	 m

DO j � �	 n

X�i	j� � CMPLX�REAL�Y�i	j��	 AIMAG�X�i	j���

END DO

END DO

At ���
�� change Accessor
������ to ������

At ���
����� Accessor
Delete �When

 invoked
�

At ���
� change Accessor
������ to ������

At ���
�� change Accessor
Function to Accessor

Replace ���
�� by Accessor
An accessor subprogram is a subprogram that has a FUNCTION
statement as its �rst statement and contains an UPDATER statement

A function subprogram is a subprogram that has a FUNCTION
statement as its �rst statement and does not contain an UPDATER
statement

At ���
�� change Accessor
function�subprogram to accessor�subprogram

X�J��������
Page �
 of ��

Add after ���
�� Accessor
� � updater�stmt �
� execution�part � �

Add after ���
�� Accessor
R��

 updater�stmt is UPDATER

Implementors can use the same name for function and updater by plac� Note
ing a jump to the updater�s entry a �xed distance before the function�s
entry� Alternatively� the standard can require the programmer to in�
vent a unique name for the updater� viz��

R��

 updater�stmt is UPDATER updater�name

and changing ��	�	���

Program units� common blocks� and external procedures are global en�
tities of an executable program� A function and its corresponding up�
dater are separate external procedures����

At ���
�� change Accessor
�module function� to �module accessor�

At ���
���� �� change Accessor
�function� to �accessor�

After ���
� add Accessor
The result value of the function is produced by assigning a value to the
result variable
 The received value of an updater is referenced by using
the received value variable
 The result variable and the received value
variable have the same name and characteristics
 The function result
variable and updater received value variable are collectively called the
accessor variable

At ���
� change Accessor
�result of the function� to �result of the function or value received by
the updater�

At ���
�� �� � change Accessor
�function subprogram� to �accessor subprogram�

At ���
�� ��� �� change Accessor
�result variable� to �accessor variable�

At ���
�� ��� �� change Accessor
�function result� to �accessor value�

X�J��������
Page �� of ��

At ���
�� change Accessor
�function body� to �accessor body�

After ���
�� add Accessor
To illustrate the use of an accessor� consider starting development of
a program using�

INTEGER	 PARAMETER �� R
SIZE � ���

REAL	 SAVE	 DIMENSION���R
SIZE� �� R

Then� if requirements change so that one wants� say� subscript check�
ing� or the ability to increase the size of R gracefully as the data grow�
replace the declaration or R by the following� without changing any of
the usages

REAL FUNCTION R�I�

INTEGER I

INTEGER	 PARAMETER

 R�SIZE � ���

REAL	 SAVE	 DIMENSION��
R�SIZE�

 R�VALUE

LOGICAL	 SAVE	 DIMENSION��
R�SIZE�

 HAS�VALUE � �FALSE�

CALL TEST�I

IF ��NOT� HAS�VALUE�I�� THEN

WRITE��	���X	A	I�	A��� �

� �R��	I	�� HAS NOT BEEN GIVEN A VALUE�

STOP

END IF

R � R�VALUE�I�

RETURN

UPDATER

CALL TEST�I � One could instead make R�VALUE

� and HAS�VALUE allocatable	 and

� make new ones twice as big

� whenever I � R�SIZE�

HAS�VALUE�I� � �TRUE�

R�VALUE�I� � R

RETURN

CONTAINS

SUBROUTINE TEST�I

IF �I �LT� � �OR� I �GT� R�SIZE� THEN

WRITE��	 ���X	 A	 I���� �

� �SUBSCRIPT FOR R OUT�OF�RANGE
 �	 I

STOP

END IF

X�J��������
Page �� of ��

END SUBROUTINE TEST�I

END FUNCTION R

Examples of uses of R� either as a variable or an accessor� include

DO I � �	 ���

R�I� � I�I � The UPDATER for the R accessor

END DO

���

WRITE ��	�� R���� � The FUNCTION for the R accessor

One cannot completely carry through the conversion of the represen� Note
tation of R from an array to an accessor� if R is accessed using a
whole�array reference� or with a array section selector� These usages
require making the type of array section selectors explicit and �rst class
�so variables of the type are allowed
� and allowing one to write a pair
of accessors� say R SELECT�I
 �I is of type SEQUENCE� and R ALL�
and coupling them into a generic pair by using an interface block named
R� One must then be allowed to access R by writing R alone� not R�
�

After ���
�� add Accessor
�The keyword RECURSIVE must be present if the accessor directly
or indirectly invokes itself
�

At ���
�� change Accessor
�function� to �function and its associated updater�

At ���
�� change Accessor
�result variable of the function� to �accessor variable�

At ���
��� �� change Accessor
�function name� to �accessor name�

At ���
�� Accessor
Delete �function�

After ���
�� add Accessor
At the initiation of execution of the updater� the value of the accessor
variable is the value received by the updater
 If the accessor variable
has been declared to be a pointer� the shape and association status

X�J��������
Page �� of ��

of the accessor variable are determined by the shape and association
status of the value received by the updater

It is not permitted to transfer control between the execution�part of Needed�
the function and the execution�part of the corresponding updater

At ���
�� change Accessor
�a function� to �a function� updater�

At the end of ���
�� add Accessor
�A function and its corresponding updater have separate instances
�

After���
�� add Accessor
�������� UPDATER statement

When the updater part of an accessor is invoked� execution of the
updater begins at the �rst executable�stmt following the UPDATER
statement

At ���
�� change Accessor
�������� to ��������

After ���
� add Accessor
The following constraint is proposed in consideration of the apparent Note
sentiment eventually to eliminate ENTRY entirely�

Constraint� An accessor subprogram that contains an UPDATER
statement must not contain an ENTRY statement

At ���
�� change Accessor
�������� to ��������

At ���
�� change Accessor
�������� to ��������

At ���
�� change Accessor
�������� to ��������

At ���
� change Accessor
�������� to ���������

After ���
�� add ATAN�
ATAN�Y� X� Arctangent

Set line ������ in small type

X�J��������
Page �� of ��

After ���
�� add MaxAbsVal
MAXABSVAL �ARRAY� DIM� MASK� Maximum absolute value in

an array

Optional DIM� MASK

After ���
�� add MinAbsVal
MINABSVAL �ARRAY� DIM� MASK� Minimum absolute value in

an array

Optional DIM� MASK

After ���
� add MaxAbsLoc
MAXABSLOC �ARRAY� MASK� Location of a maximum ab�

solute value in an array

Optional MASK

After ���
�� add MinAbsLoc
MINABSLOC �ARRAY� MASK� Location of a minimum ab�

solute value in an array

Optional MASK

After ���
�� add Sequence
BOUND��SEQ� Inquire or update the �rst

bound of a sequence

BOUND��SEQ� Inquire or update the second
bound of a sequence

STRIDE�SEQ� Inquire or update the stride
of a sequence

After ���
�� add Intrinsic
Updater����� Intrinsic updaters

The following intrinsic functions have updater parts� and are therefore
intrinsic accessors

ABS�A� Change the absolute value of A to the absolute value of the
received value
 A may be of any INTEGER� REAL or COM�
PLEX type

AIMAG�Z� Change the imaginary part of Z to the received value

Z must be of a COMPLEX type

EXPONENT�X� Change the exponent part of X� when represented
as a model number� to the received value
 X must be of a REAL
type

X�J��������
Page �� of ��

FRACTION�X� Change the fractional part of X� when represented
as a model number� to the received value
 X must be of a REAL
type

REAL�Z� Change the real part of Z to the received value
 Z must
be of a COMPLEX type

After ���
�� add IO Message
IO MESSAGE �IOS� UNIT� Print a message appropri�

ate to the error indicated
by IOS� where IOS was set
by IOSTAT�IOS during ex�
ecution of an input�output
statement on unit UNIT

After ���
� add ATAN�
ATAN�Y�X� ATAN�Y�X� default real

Set line ���
�� in small type ATAN�

After ���
�� add ATAN�
DATAN�Y�X� ATAN�Y�X� double precision real

Set line ���
�� in small type ATAN�

Copy ���
������ changing all instances of ATAN� to ATAN� ATAN�

Set ���
����� in small type� ATAN�

Increase following section numbers in Chapter ��� ATAN�

At ���
�� change Intrinsic
Updater�function� to �accessor�

After ���
�� add Intrinsic
UpdaterWhen A is of an INTEGER or REAL type� and ABS is used as an

updater� ABS�A� � B has the same e�ect as A � SIGN�B	A�

When A is of a COMPLEX type� and ABS is used as an updater�
ABS�A� � B has the same e�ect as

X�J��������
Page �� of ��

temp � ATAN��AIMAG�A�	 REAL�A��

A � ABS�REAL�B�� � CMPLX�COS�temp�	 SIN�temp��

At ���
� change Intrinsic
Updater�function� to �accessor�

After ���
� add Intrinsic
UpdaterWhen AIMAG�Z� is used as an updater� AIMAG�Z� � X has the same

e�ect as Z � CMPLX�REAL�Z�	 X�

After ���
� add Sequence
�������� BOUND��SEQ�
Description
 Return or update the �rst bound sub�object of a se�
quence

Class
 Accessor

Arguments

SEQ Must be of sequence type

Accessor Type� Type Parameter� and Shape
 The accessor value
is a scalar of type integer� with the same kind type parameter as SEQ

Accessor Value
 When BOUND� is invoked in a value�producing
context� the result has a value equal to the �rst bound of SEQ
 When
BOUND� is invoked in a value�receiving context� SEQ has INTENT
�OUT� and the �rst bound of SEQ is updated to be equal to the value
received

Examples
 The function reference BOUND��	������ produces the
value 	
 The updater reference BOUND��SEQ��	 changes the �rst
bound of SEQ to 	

BOUND	 could be changed to an inquiry function if accessors are not Note
included in the present revision of Fortran�

�������� BOUND��SEQ�

Description
 Return or update the second bound sub�object of a
sequence

Class
 Accessor

Arguments

SEQ Must be of sequence type

Accessor Type� Type Parameter� and Shape
 The accessor value
is a scalar of type integer� with the same kind type parameter as SEQ

Accessor Value
 When BOUND� is invoked in a value�producing
context� the result has a value equal to the second bound of SEQ

X�J��������
Page �� of ��

When BOUND� is invoked in a value�receiving context� SEQ has IN�
TENT�OUT� and the second bound of SEQ is updated to be equal to
the value received

Examples
 The function reference BOUND��
������ produces the
value ��
 The updater reference BOUND��SEQ���� changes the second
bound of SEQ to ��

BOUND� could be changed to an inquiry function if accessors are not Note
included in the present revision of Fortran�

At ���
�� change Intrinsic
Updater�function� to �accessor�

After ���
�� add Intrinsic
UpdaterWhen EXPONENT�X� is used as an updater� EXPONENT�X� � I has

the same e�ect as X � SET EXPONENT�FRACTION�X�	 I�

At ���
�� change Intrinsic
Updater�function� to �accessor�

After ���
� add Intrinsic
UpdaterWhen FRACTION�X� is used as an updater� FRACTION�X� � Y has

the same e�ect as X � SET EXPONENT�Y	 EXPONENT�X��

After ���
�� add IO Message
������xx IO MESSAGE �IOS� UNIT� Is UNIT

needed�Description
 Print a message appropriate to the error indicated by
IOS� where IOS was set by IOSTAT�IOS during execution of an in�
put�output statement on unit UNIT

Class
 Subroutine

Arguments

IOS must be a scalar of type integer
 It is an IN�

TENT�IN� argument having a value produced
by IOSTAT�IOS during execution of an in�
put�output statement on unit UNIT

UNIT must be a scalar of type integer
 It is an IN�
TENT�IN� argument giving the unit number on
which an input�output statement was executed�
that resulted in the value of IOS

Example

Execution of the statement
READ���	IOSTAT�IOS����

X�J��������
Page �	 of ��

when unit �� is positioned at the end of �le� followed by execution of
the statement
CALL IO MESSAGE �IOS	 ���

might produce the message End�of�file occurred on unit ���

After ���
�� add MaxAbsLoc
������xx MAXABSLOC�ARRAY� MASK�

Optional Argument
 MASK
Description
 Determine the location of the �rst element of AR�
RAY having the maximum absolute value of the elements identi�ed
by MASK

Class
 Transformational Function

Arguments

ARRAY must be of type integer or real
 It must not be

a scalar

MASK �optional� must be of type logical and must be con�

formable with ARRAY
 If MASK is absent the
e�ect is as though it were present� conformable
with ARRAY� and every element a true value

Result Type� Type Parameter� and Shape
 The result is of type
default integer� it is an array of rank one and of size equal to the rank
of ARRAY

Result Value�
The result is a rank�one array whose element values are the values of
the subscripts of an element of ARRAY� corresponding to a true ele�
ment of MASK� whose value equals the maximum absolute value of all
such elements of ARRAY
 The ith subscript returned lies in the range
� to ei� where ei is the extent of the i

th dimension of ARRAY
 If more
than one such element has the maximum absolute value� the element
whose subscripts are returned is the �rst such element� taken in array
element order
 If there are no such elements �that is� if ARRAY has
size zero or every element of MASK has the value false�� the value of
the result is processor dependent

An element of the result is unde�ned if the processor cannot represent
the value as a default integer

Examples

Case �i
� The value of MAXABSLOC����� ��� �� ���� is

�� � ��

X�J��������
Page �� of ��

Case �ii
� If A has the value
� �
 � �	
	 � �� �
�
 �� ��

�

MAXABSLOC�A� MASK � A
LT
 �� has the
value �� 	� 	 ��
 Note that this is true even if
A has a declared lower bound other than �

������xx MAXABSVAL�ARRAY� DIM� MASK� MaxAbsVal
Optional Argument
 DIM� MASK
Description
 Determine the maximum absolute value of the ele�
ments of ARRAY along dimension DIM corresponding to true values
of MASK

Class
 Transformational Function

Arguments

ARRAY must be of type integer or real
 It must not be

a scalar

DIM �optional� must be of type integer with a value in the range

�
LE
 DIM
LE
n� where n is the rank of AR�
RAY
 The corresponding actual argument must
not be an optional dummy argument

MASK �optional� must be of type logical and must be con�
formable with ARRAY
 If MASK is absent the
e�ect is as though it were present� conformable
with ARRAY� and every element a true value

Result Type� Type Parameter� and Shape
 The result is of the
same type and kind type parameter as ARRAY
 It is scalar if DIM is
absent or ARRAY has rank one� otherwise� the result is an array of
rank n � � and of shape �d�� d��

� dDIM��� dDIM���

� dn� where
�d�� d��

� dn� is the shape of ARRAY

Result Value

Case �i
 The result of MAXABSVAL�ARRAY� has a
value equal to the maximum absolute value of
all the elements of ARRAY or has the value
of the negative number of the largest magni�
tude supported by the processor for numbers of
the type and kind type parameter of ARRAY
if ARRAY has size zero

X�J��������
Page �
 of ��

Case �ii
 The result of MAXABSVAL �ARRAY�
MASK�MASK� has a value equal to the
maximum absolute value of all the elements
of ARRAY corresponding to true elements of
MASK or has the value of the negative number
of the largest magnitude supported by the
processor for numbers of the type and kind
type parameter of ARRAY if there are no true
elements

Case �iii
 If ARRAY has rank one� MAXABSVAL �AR�
RAY� DIM �� MASK�� has a value equal to that
of MAXABSVAL�ARRAY �� MASK�MASK��

Otherwise� the value of element �s�� s��

� sDIM��� sDIM���

� sn� of MAXABS�
VAL �ARRAY� DIM �� MASK�� is equal to
MAXABSVAL�ARRAY�s� � s��

� sDIM��� ��
sDIM���

� sn� �� MASK � MASK�s�� s��

�
sDIM��� �� sDIM���

� sn���

Examples

Case �i
� The value of MAXABSVAL����� ��� 	��� is 	

Case �ii
� MAXABSVAL�C� MASK � C
LT
 �
�� �nds
the maximum absolute value of all the negative
elements of C

Case �iii
� If B is the array
� 	 �

� �� �

�

MAXABSVAL�B� DIM��� is �� �� �� � �� and
MAXABSVAL �B� DIM��� is ��
� � ��

After ���
�� add MinAbsLoc
������xx MINABSLOC�ARRAY� MASK�
Optional Argument
 MASK
Description
 Determine the location of the �rst element of AR�
RAY having the minimum absolute value of the elements identi�ed
by MASK

Class
 Transformational Function

Arguments

ARRAY must be of type integer or real
 It must not be

a scalar

X�J��������
Page �� of ��

MASK �optional� must be of type logical and must be con�
formable with ARRAY
 If MASK is absent the
e�ect is as though it were present� conformable
with ARRAY� and every element a true value

Result Type� Type Parameter� and Shape
 The result is of type
default integer� it is an array of rank one and of size equal to the rank
of ARRAY

Result Value

The result is a rank�one array whose element values are the values of
the subscripts of an element of ARRAY� corresponding to a true ele�
ment of MASK� whose value equals the minimum absolute value of all
such elements of ARRAY
 The ith subscript returned lies in the range
� to ei� where ei is the extent of the i

th dimension of ARRAY
 If more
than one such element has the minimum absolute value� the element
whose subscripts are returned is the �rst such element� taken in array
element order
 If there are no such elements �that is� if ARRAY has
size zero or every element of MASK has the value false�� the value of
the result is processor dependent

An element of the result is unde�ned if the processor cannot represent
the value as a default integer

Examples

Case �i
� The value of MINABSLOC����� ��� �� ���� is

�� � ��

Case �ii
� If A has the value
� �
 � �	
	 � �� �
�
 �� ��

�

MINABSLOC�A� MASK � A
LT
 �� has the
value �� �� � ��
 Note that this is true even if
A has a declared lower bound other than �

������xx MINABSVAL�ARRAY� DIM� MASK� MinAbsVal
Optional Argument
 DIM� MASK
Description
 Determine the minimum absolute value of the ele�
ments of ARRAY along dimension DIM corresponding to true values
of MASK

Class
 Transformational Function

Arguments

ARRAY must be of type integer or real
 It must not be

a scalar

X�J��������
Page �� of ��

DIM �optional� must be of type integer with a value in the range
�
LE
 DIM
LE
 n� where n is the rank of AR�
RAY
 The corresponding actual argument must
not be an optional dummy argument

MASK �optional� must be of type logical and must be con�
formable with ARRAY
 If MASK is absent the
e�ect is as though it were present� conformable
with ARRAY� and every element a true value

Result Type� Type Parameter� and Shape
 The result is of the
same type and kind type parameter as ARRAY
 It is scalar if DIM is
absent or ARRAY has rank one� otherwise� the result is an array of
rank n � � and of shape �d�� d��

� dDIM��� dDIM���

� dn� where
�d�� d��

� dn� is the shape of ARRAY

Result Value

Case �i
� The result of MINABSVAL�ARRAY� has a

value equal to the minimum absolute value of
all the elements of ARRAY or has the value of
the positive number of the largest magnitude
supported by the processor for numbers of the
type and kind type parameter of ARRAY if AR�
RAY has size zero

Case �ii
� The result of MINABSVAL �ARRAY� MASK�
MASK� has a value equal to the minimum abso�
lute value of all the elements of ARRAY corre�
sponding to true elements of MASK or has the
value of the positive number of the largest mag�
nitude supported by the processor for numbers
of the type and kind type parameter of ARRAY
if there are no true elements

Case �iii
� If ARRAY has rank one� MINABSVAL �AR�
RAY� DIM �� MASK�� has a value equal to that
of MINABSVAL �ARRAY �� MASK�MASK��

Otherwise� the value of element �s�� s��

�
sDIM��� sDIM���

� sn� of MINABSVAL �AR�
RAY� DIM �� MASK�� is equal to MINABS�
VAL�ARRAY�s�� s��

� sDIM��� �� sDIM���

� sn� �� MASK � MASK�s�� s��

� sDIM���
�� sDIM���

� sn���

Examples

X�J��������
Page �� of ��

Case �i
� The value of MINABSVAL����� ��� 	��� is �

Case �ii
� MINABSVAL�C� MASK � C
LT
 �
�� �nds
the minimum absolute value of all the negative
elements of C

Case �iii
� If B is the array
� 	 �

� �� �

�

MINABSVAL�B�DIM��� is �� �� 	�
 �� and
MINABSVAL�B� DIM��� is �� �� � ��

At ���
�� change Intrinsic
Updater�function� to �accessor�

After ���
�� add Intrinsic
UpdaterWhen Z is of a COMPLEX type and REAL�Z� is used as an updater�

REAL�Z� � X has the same e�ect as Z � CMPLX�X	 AIMAG�Z��

After ���
� add Sequence
�������� STRIDE�SEQ�

Description
 Return or update the stride sub�object of a sequence

Class
 Accessor

Arguments

SEQ Must be of sequence type

Accessor Type� Type Parameter� and Shape
 The accessor value
is a scalar of type integer� with the same kind type parameter as SEQ

Accessor Value
 When STRIDE is invoked in a value�producing con�
text� the result has a value equal to the stride of SEQ
 When STRIDE
is invoked in a value�receiving context� SEQ has INTENT�OUT� and
the stride of SEQ is updated to be equal to the value received

Examples
 The function reference STRIDE�
������ produces the
value �
 The updater reference STRIDE�SEQ��� changes the stride
of SEQ to �

STRIDE could be changed to an inquiry function if accessors are not Note
included in the present revision of Fortran�

After ���
�� add Sequence

�	� A nonpointer scalar object of type default sequence occupies three
consecutive numeric storage units

At ���
��� ��� ��� ��� �� and ��� Sequence
Increase the item numbers

X�J��������
Page �� of ��

After ���
�� add
 Include
C���� Including source text �����

It must be possible to specify a mapping between the char�literal�
constant on an include line and the text to be included
 In many
cases� a speci�cation to the processor that char�literal�constant is to be
interpreted to be a �le name will be adequate
 Otherwise� the following
scheme is one method to provide a mapping from char�literal�constant
to the text to be included

A �le called a master include �le speci�es how the char�literal�constant
on an include line is mapped to the text to be included
 The master
include �le contains four kinds of commands� and may contain text to
be included

Let L be the char�literal�constant from an include line� and C� and C�

be char�literal�constants

INCLUDE	F �C�	C��

If C� is equal to L� then the contents of the �le named by C� are
to be used in place of the include line� else subsequent commands
are examined

INCLUDE	P �C�	C��

If the �lename constructed by C���L��C� exists� then its contents
replace the include line� else subsequent commands are examined

INCLUDE	T �C��

Text following the INCLUDE	T command� up to but not includ�
ing the next INCLUDE	�FPT� or END INCLUDE command� is asso�
ciated with this command
 If C� is equal to L� the associated
text replaces the include line� else it is skipped� and subsequent
commands are examined

END INCLUDE

If END INCLUDE is present� it indicates the end of the master
include �le

The processor should rewind the master include �le when its end is
reached� not after each include line is processed
 In this way� if one
provides speci�cations in the master include �le in the same order
as they appear in program units� the processor need read the master
include �le only once per program unit

After ���
�� add Limited

X�J��������
Page �� of ��

INTENT�LIMITED� is provided to prevent creating a copy of a point�
er to a procedure� thereby preventing a procedure from being executed�
by way of a pointer� after its host environment has ceased to exist

At ���
� change EXIT
�there is no requirement for the user� to �the user is allowed� but not
explicitly required��

After ���
� add CASE
and

The form � case�value�range�list � �
AND
 scalar�logical�expr � allows
one to transfer control to the CASE DEFAULT block under conditions
that would not otherwise be allowed

