
 X3J3/97-117

Date: February 9, 1997

To: X3J3

From: William B. Clodius

Subject: Parametric Procedures and Modules

Introduction

Title: Extended Parametric Polymorphism in Fortran

Basic Functionality: Allow Modules and Procedures to be

Parameterized

Rationale: In recent years a variety of languages have provided

means of parameterizing the equivalent of Fortran’s procedures

and modules. The templates of C++ (and the associated Standard

Template Library) are perhaps the best known examples of such a

parameterization capability, but other examples include Ada’s

generics, Eiffel’s parameterized classes, and SML’s functors.

Such capabilities, to be termed parametric polymorphism, provide

a substantial source of flexibility, while retaining static type

checking and permitting a high degree of optimization. The

current parameterized derived types proposal provides some of

these parameterization capabilities, but the language would

benefit by providing these capabilities in as broad an area as

possible.

Page 1

Parameterization in practice has been found to be a particularly

useful complement to object oriented programming capabilities.

Object oriented capabilities provide polymorphism based on the

related structure of different types of objects.

Parameterization provides polymorphism based on the external

signature (interfaces) of different types of objects.

Usage: Parameterized procedures provide the most useful

capabilities of macro substitution in a statically type checked

form. Parameterized modules can be used to good effect to

define implementations of collection “types”, i.e., arrays,

lists, stacks, trees, etc., a capability of importance to the

high performance computing community. For example, a technique

termed “Expression Templates”, has been used to create C++ array

classes with most of the performance and expressibility of

Fortran 90’s array capabilities. Another technique, termed

“traits”, allows C++ templates to be used to define class

(derived type) characteristics similar in their flexibility to

Fortran 90’s intrinsics: DIGITS, EPSILON, HUGE, PRECISION,

SELECT_INTEGER_KIND, etc.

Necessity: Because of their flexibility parameterization

addresses two main needs of the Fortran programing community.

1. Safe “macro” substitution. One of the controversies involving

the standardization of a conditional compilation facility for

Fortran has been the lack of a macro facility in the overall

preferred alternative, CoCo. This lack has been justified by

Page 2

noting that macros in C have proved error prone and is strongly

deprecated in the C++ community. However, macro usage is

deprecated in the C++ community only because templates provide

the capabilities of macros in a significantly safer form.

2. Collection types. While arrays have been, and will continue

to be, the primary data structure of the Fortran user community,

there is an increasing demand for more sophisticated data

structures for special purpose applications, e.g., sparse

arrays, lists of data, etc. While derived types and modules

allow the construction of such structures, it is difficult to

exploit the similarities of such structures in the current

language. As a result there is an unnecessary amount of code

duplication, and no set idioms to for optimizer to recognize and

exploit. Fortran would benefit from something like C++’s

Standard Template Library in addressing these needs.

Possible syntax: No syntax will be provided here, but examples

will be provided by an accompanying paper.

Estimated Impact: There is no doubt that providing this

capability would have a large impact on the language in almost

any form in which it might be provided. If the language were to

be as aggressive about exploiting this capability as has C++

with its Standard Template Library, the impact on the language

would be extremely large.

Critical Issues:

Page 3

There are several points that should to be resolved defining a

parameterization scheme. The following attempts to list those

points roughly in order of increasing complexity and decreasing

priority.

1. Should the syntax be similar to the parameterization of

derived types?

2. The parameterized derived types proposal contains many of the

characteristics of the parameterization schemes that inspired

this proposal. There are two main limitations upon the current

parameterized derived types proposal that this proposal attempts

to address: first the parameterized derived types proposal

allows only parameterization by integers, while this proposal

also allows parameterization by types; second, it is not clear

how to use the parameterized derived types proposal to implement

parameterization of procedures. Extension of the parameterized

derived types proposal to allow parameterization by types

appears to be straight forward. Should the syntax and semantics

of the parameterized derived types proposal be extended to

include parameterization by types in general? Can a means be

identified for the parameterization of procedures that relies

explicitly on parameterized derived types, and should that be

the basis of the parameterization of procedures?

3. There is a tradeoff between the ease of usage of polymorphic

code and ease of interfacing to code generated by other

processors. Interfacing to code generated by other processors is

simplified if the global entities have a straightforward

Page 4

translation to their corresponding names in the “object” code.

While Fortran’s modules have complicated the translations to

“object” code, the translation remain relatively simple compared

to the “name mangling” utilized by C++ systems. Unfortunately,

the simplest form of syntax for the usage of polymorphic code

provides no means of distinguishing different instantiations

except implicitly based on the types of the instantiations.

Implementations of languages that use this style of usage must

use name mangling to distinguish different (public)

instantiations of polymorphic code. As an example of this

problem, assume the user has defined a module, EXAMPLE, with a

single parameter which the user wants to instantiate with the

value, X. In order to instantiate and use this module with this

value there are two natural approaches, make instantiation

automatic upon use, (which is essentially what C++ does) e.g.,

 use EXAMPLE(X)

or require that instantiation have an explicit new identifier

associated with it before use, i.e.,

 module NEW_EXAMPLE = EXAMPLE(X)

(which is essentially what Ada requires). Should the syntax for

usage of polymorphic code follow the C++ or the Ada model?

4. Although parameterization principally involves the types of

objects, it also often involves the “size” of objects, typically

expressed in terms of integer parameters. For arrays Fortran now

Page 5

requires that the types of objects to be statically determined,

but the size of objects are dynamically determined for assumed

shape arrays. Should similar capabilities be provided for

collection “types’ defined through parameterization, i.e.,

provide a syntax that statically defines the types of elements

of a collection, but lets the sizes be determined at run time

from a descriptor? Should this capability be extended to

parameterized derived types?

5. Parameterization principally involves the “types” of

entities, where the term “types” in this context has a more

general meaning that Fortran’s data types. Typically the types

must be consistent under textual substitution. In this Fortran

may be more flexible than most languages that include

parameterization. For example, unlike most languages with

parameterization, Fortran does not make a clear a distinction

between the types of arrays, pointers, and scalars. Similarly,

while Fortran makes a distinction between functions and arrays,

there is no syntactic distinction between functions and arrays

with INTENT(IN). Fortran could therefore significantly increase

the flexibility of its parameterization scheme by relaxing this

distinction allowing arrays and functions to be treated as

equivalent types in parameterization. It is possible, however,

that there may be dangers or inefficiencies in such a

flexibility. Should the language take advantage of this

additional flexibility?

6. A parameterization scheme needs to define how such “types”

can be specified. There are two general categories of such

Page 6

specifications minimal or detailed:

 6.a If only minimal separate specification of the types of

the entities is allowed, then the allowed types under

substitution must be inferred by a global analysis. This form of

specification tends to result in implementations that are

effectively sophisticated macro schemes where relatively little

in the way of precompilation is done and type checking is

usually done after the appropriate substitutions are performed.

This has a detrimental effect on compilation times and code

documentation, but allows flexibility in code development.

 6.b. If a detailed separate specification of the important

characteristics of the types of the entities is required, then

immediate checking of the consistency of the specification

section with the code section is possible. Such consistency

checks provide the basis for implementations with more extensive

precompilation and type checking before actual instantiation is

performed. This has beneficial effects on compilation time and

code documentation, but users can find it awkward to maintain

consistency between the specification part and the main code

body.

Which alternative should the language standard choose, no syntax

to be provided for the detailed separate specification of the

types of the entities, a required syntax for detailed separate

specification of the types of the entities, or an optional

syntax for detailed separate specification of the types of the

entities?

Page 7

7. Most languages in effect interpret parameterization as a form

of macro substitution, and all types must be statically

resolved. Some languages either allow (or require) the

interpretation of parameterization as dynamic polymorphic

procedures (similar to the dynamic polymorphism of class

inheritance). The first interpretation generally results in

efficient, but bloated, object code, the second tends to result

in smaller, but inefficient, object code. Given Fortran’s user

community the first interpretation must be allowed by the

language, but if dynamic polymorphism is allowed in other

contexts would it be useful to provide an optional syntax with

the second interpretation?

8. Parameterized modules are typically used to defined

implementations for collection data “types”, i.e., arrays,

lists, stacks, trees, etc. One of these “types”, arrays, is

already an important aspect of Fortran, but, unlike most other

languages, the syntax does not represent arrays as types

separate from their components and provides a variety of

elemental operations for it. It should be possible and desirable

to define elemental operations for collection data “types”

defined using parameterized modules. Is it possible and

desirable to not syntactically represent collection data “types”

defined through parameterized modules as separate types from

their components?

9. As noted earlier, the work on traits for C++, indicates that

with parameterization the characteristics of parameterized types

Page 8

can be specified in a manner similar to what is currently done

with Fortran’s intrinsic types and in distinguish the various

KINDs of Fortran’s intrinsic types. The steps necessary to

include this capability in Fortran should be identified for

regularity of the language. Should the resulting capability for

derived types then be used to describe Fortran’s intrinsic

types?

10. With parameterization it becomes much more useful to think

about syntactic components such as modules and derived type

constructs as types in themselves, in the same sense that

procedures are objects with types. Should the language in the

standard reflect that approach?

References:

Scott W. Haney, “Beating the Abstraction Penalty in C++ Using

Expression Templates,” Computers in Physics, Vol. 10, No. 6,

Nov/Dec 1996, pp. 552-557

Nathan C. Myers, “Traits: a new and useful template technique,”

C++ Report, Vol. 7 No. 5, June 1995 issue.

T. Veldhuizen, "Expression Templates," C++ Report, Vol. 7 No. 5,

June 1995, pp. 26-31.

Page 9

