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I. Introduction

    This paper presents a relatively well developed example syntax 
for parameterization in Fortran. For completeness, 
parameterization of modules, derived types, and procedures are all 
considered, although parameterization of modules and derived types 
are similar in their capabilities. The current proposal is based 
on an extension of Java by Odersky and Wadler, 1997, although 
several other languages have similar facilities, see the 
references at the end. It differs from the current parameterized 
derived types proposal in providing parameterization in terms of 
types in general, and not just indirectly through kind values, and 
in providing a special “signature” construct used to provide an 
abstract definition of the types used in parameterization. Because 
of the importance of abstract types for object orientation, the 
implications of signatures for object oriented Fortran are also 
discussed where appropriate. In addition to the simple examples in 
the main part of the paper, more extensive examples are given in 
an appendix.

II. Type “signature” definition

    The main limitation of the current parameterized derived types 
proposal is its restriction to parameterization by integers. 
General parameterization requires parameterization in terms of 
types, which in turn benefits from a means of specifying the 
characteristics of those types that can be used as parameters.

    Such a specification is most clearly given by a construct that 
defines an abstract type in terms of its name, the names and types 
of its public components, and the names and abstract definitions 
of a set of procedures or operators that have dummy arguments or 
return values with the signature name as their types. For an 
object oriented language, this specification might also indicate 
whether the type is monomorphic or polymorphic or is related to a 
specific type through inheritance. In addition to specifying which 
types can be used as parameters, it also provides a concrete 
syntax for specifying abstract polymorphic “classes”, should 
Fortran become object oriented.

The literature provides several terms for such an abstract 
type definition, but the two most common terms are type interface 
or type signature. Therefore, either the INTERFACE construct 
should be extended so that it can provide an abstract definition 
of data types as well as procedural types, or a new SIGNATURE 



construct should be provided as a means of defining abstract data 
types. Such a definition should include the type signature name, a 
type definition construct specifying public components, and the 
pertinent interface constructs.

Example:

   SIGNATURE :: ordered

      TYPE :: ordered
         PRIVATE
      END TYPE ordered

      INTERFACE OPERATOR (<)
         FUNCTION LESS_THAN(X, Y)
            LOGICAL :: LESS_THAN
            TYPE(ordered), INTENT(IN) :: X, Y
         END FUNCTION LESS_THAN
      END INTERFACE OPERATOR (<)

   END SIGNATURE ordered

The signature of ordered specifies an abstract type with no 
pertinent public components and one defined operation, <. Such a 
type can be useful in defining generic sorting procedures. While 
the above provides an explicit syntax for defining an abstract 
type, it might be useful to specify signatures implicitly by 
example, or default, i.e., if Fortran implements inheritance.

III. Type “signature” association

    The type signature has meaning only when associated with one 
or more specific types. The relationship of the signature to a 
type could be specified in at least three different ways: as a 
separate construct, as part of the signature construct, or as part 
of the derived type construct. Each of these has different uses. 
For completeness all uses are given below although only one use 
has direct application to parameterization.

    A. Association as a separate construct

    Specifying the relationship as a separate construct has two 
applications. First, it can be used to specify that an argument 
for a parameterized construct represents a type with the desired 
signature. Ideally this should have a syntax similar to that of 
the type declaration statement.

Example:

   SIGNATURE(ordered) :: X

might indicate that the argument X represents a type with the 
signature ordered, and all occurrences of X within the module will 



be replaced by the actual argument type, if compatible, upon 
parameterization. Second, should Fortran become object oriented, 
it can be used to indicate that the signature represents a dynamic 
type and type X is intended to be one form of that type.

Example:

   TAGGED(ordered) :: X

    B. Association as part of a signature construct

    Specifying the relationship as part of a signature construct 
could be used to constrain applicability of the signature to a 
fixed ordered set of types. Such a fixed ordered set is similar to 
Fortran’s intrinsic types with their different KINDs. A natural 
syntax is then to use KIND as a keyword in such a specification.

Example:

   SIGNATURE :: intrinsic_ordered

      KIND :: CHARACTER, INTEGER(KIND=1), INTEGER(KIND=2), &
         INTEGER(KIND=4), REAL(KIND=4), REAL(KIND=8) 
      TYPE :: intrinsic_ordered
         PRIVATE
      END TYPE intrinsic_ordered

      INTERFACE OPERATOR (<)
         FUNCTION LESS_THAN(X, Y)
            LOGICAL :: LESS_THAN
            TYPE(intrinsic_ordered), INTENT(IN) :: X, Y
         END FUNCTION LESS_THAN
      END INTERFACE OPERATOR (<)

   END SIGNATURE intrinsic_ordered

which defines an abstract type with six representations, all of 
them intrinsic types. Any reference to TYPE( intrinsic_ordered( 
KIND=1)), would then refer to the default character type, TYPE( 
intrinsic_ordered( KIND=2)), would refer to the intrinsic INTEGER 
with kind value 1 (usually, but not always, a BYTE), etc. It 
appears to be straight forward to provide the capabilities of the 
intrinsic kind selectors for user defined type signatures.

    C. Association as part of the derived type construct

    Specifying the relationship as part of the derived type 
construct could be used to provide an independent specification of 
a type facilitating independent compilation

Example:



   TYPE ORDERED_SET
      IMPLEMENTS ordered
      PRIVATE
      INTEGER, ALLOCATABLE :: Component
   END TYPE ORDERED_SET

IV. A syntax for parameterizing derived types

    A. Type definition statement

    A straightforward syntax for parameterizing derived types, 
based on the current parameterized derived types proposal, would 
be to add an optional list of module parameter names in parens 
following the type-name in the type-definition statement.

Example:

   TYPE matrix(sig, dim)

    Unlike the current parameterized derived types proposal, the 
dummy arguments can be type signatures as well as integer values. 
The actual type should be indicated by an explicit SIGNATURE or 
INTEGER declaration in the derived type definition.

Example:

   TYPE matrix(sig, dim)
      SIGNATURE(number) :: sig
      INTEGER :: dim
      TYPE(sig) :: element( dim, dim)
   END TYPE matrix

Note number in this case is a previously defined signature that 
might be compatible not only with type REAL, as in the example in 
the parameterized derived types proposal, but also with type 
COMPLEX, or special derived types such as the interval arithmetic 
proposal.

    B. Entity declaration

    1. Simple declaration syntax

    The obvious syntax for parameterized derived type 
instantiation would follow that of the parameterized intrinsic 
types. The type parameter values would therefore be specified in 
parens after the type name, in either keyword or positional form.

Integer arguments for a kind type parameter shall be an integer 
initialization expression. The expression for a non-kind type 
parameter may be either a specification expression or assumed. The 
most straightforward syntax for signature parameters restricts the 
arguments to type specifiers. The resulting syntax is fairly 



straightforward

Examples:

   TYPE(matrix(REAL, 1000)) :: a
   TYPE(matrix(sig=COMPLEX(KIND=4), dim=1000)) :: b
   TYPE(matrix(TYPE(INTERVAL), 1000)) :: c

    2. Sophisticated declaration syntax

    The concept of type in other languages includes such concepts 
as arrays and pointers. Further, the addition of the elemental 
attribute in Fortran 95 means that if an entity of a given type 
will satisfy a signature then an array or pointer of that type 
will often satisfy that signature. A full generalization of this 
parameterization capability would allow the specification of 
selected attribute specifiers as well as the type specifiers. This 
generality could be achieved by letting the signature arguments be 
a type specifier followed by the pertinent attribute specifiers. 
Such a combination must be either textually separated, i.e., by 
parens or an appropriate constructor, e.g. SIGNATURE

Examples:

   TYPE(matrix((REAL, DIMENSION(2,2)), 1000)) :: d
   TYPE(matrix(sig=SIGNATURE(COMPLEX(KIND=4), POINTER(2,2)), &
      dim=1000)) :: e

V. A syntax for parameterizing modules

    A. Module definition statement

    Because module parameterization and type parameterization are 
similar in effect it is not clear that the language requires both, 
but for completeness both will be discussed. Much of the syntax 
and semantics of parameterized modules follows from that of the 
parameterized derived types. A parameterized module can be 
specified by adding an optional list of module parameter names in 
parens following the module-name in the module-definition 
statement.

Example:

   MODULE matrix(sig, dim)

    B. Module declaration

    The restrictions on the parameters are essentially identical 
to those discussed above for parameterized derived types. The 
instantiation of a module could be either on its use

Example:



   USE matrix(REAL, 1000)

or in the definition of a new module

Example:

   MODULE complex_matrix = matrix(COMPLEX(KIND=4), 1000)

Both instantiation syntaxes for parameterized modules are liable 
to be less frequently used then the instantiation syntax for 
parameterized derived types. Therefore there is likely to be 
generated less duplicate code generated by unsophisticated 
implementations for parameterized modules than for types. The 
second form of a module declaration, by providing a specific name 
for the module, is less likely to require significant name 
mangling which can complicate interfacing to code from other 
processors.

VI. A syntax for parameterizing procedures

    A. Parameterized procedure definition

    The most obvious syntax for parameterized procedures is to 
allow functions to return procedures as values or provide a 
special construct, e.g. FUNCTOR. Issues in choosing a new 
procedure type include: Would users have trouble understanding a 
function returning functions? Should the returned procedure be 
defined statically? Would users expect that a function could be 
used dynamically? Should access to global variables be restricted 
for such procedures? Would such restrictions be expected of 
functions?

Examples:

   ! Find the element with a maximum value in the one dimensional
   ! array a of type sig which can be ordered using the relational
   ! operator, <.
   FUNCTION max_element( sig )
      SIGNATURE(ordered) :: sig
      FUNCTION max_element( a)
         TYPE(sig) :: a(:)
         TYPE(sig) :: max_a
         TYPE(sig) :: max_element(2)
         INTEGER :: size_a, i
         size_a = SIZE(a)
         max_element = a(1)
         DO i=2, SIZE(a)
            IF ( max_element < a(i)  ) max_element = a(i)
         END DO
      END FUNCTION max_element
   END FUNCTION max_element

   FUNCTOR max element( sig )



      SIGNATURE(ordered) :: sig
      FUNCTION max_element( a) 
         TYPE(sig) :: a(:)
         TYPE(sig) :: max_a
         TYPE(sig) :: max_element(2)
         INTEGER :: size_a, i
         size_a = SIZE(a)
         max_element = a(1)
         DO i=2, SIZE(a)
            IF ( max_element < a(i)  ) max_element = a(i)
         END DO
      END FUNCTION max_element
   END FUNCTOR max_element

   ! Valid is .TRUE. if c represents a digit in radix r.
   ! Count returns the number of times radix has been executed
   FUNCTION radix(r)
      INTEGER, INTENT(IN) :: r
      INTEGER :: n = 0
      SUBROUTINE radix(c, valid, count)
         CHARACTER, INTENT(IN) :: c
         LOGICAL, INTENT(OUT) :: valid
         INTEGER, INTENT(OUT) :: count
         n = n + 1
         count = n
         SELECT CASE (c)
            CASE (‘0’:’9’)
               valid = ( IACHAR(c) - IACHAR(‘0’) ) < r
            CASE (‘a’:’z’)
               valid = ( 10 + IACHAR(c) - IACHAR(‘a’) ) < r
            CASE (‘A’:’Z’)
               valid = ( 10 + IACHAR(c) - IACHAR(‘A’) ) < r
            CASE DEFAULT
               valid = .FALSE.
         END SELECT
      END SUBROUTINE radix
   END FUNCTION radix

   FUNCTOR radix(r)
      INTEGER, INTENT(IN) :: r
      INTEGER :: n = 0
      SUBROUTINE radix(c, valid, count)
         CHARACTER, INTENT(IN) :: c
         LOGICAL, INTENT(OUT) :: valid
         INTEGER, INTENT(OUT) :: count
         n = n + 1
         count = n
         SELECT CASE (c)
            CASE (‘0’:’9’)
               valid = ( IACHAR(c) - IACHAR(‘0’) ) < r
            CASE (‘a’:’z’)
               valid = ( 10 + IACHAR(c) - IACHAR(‘a’) ) < r
            CASE (‘A’:’Z’)
               valid = ( 10 + IACHAR(c) - IACHAR(‘A’) ) < r



            CASE DEFAULT
               valid = .FALSE.
         END SELECT
      END SUBROUTINE radix
   END FUNCTOR radix

    B. Procedure Declaration

    The arguments to parameterized procedures should be restricted 
to initialization expressions and signatures. The current 
procedure pointer proposal introduces a syntax for procedure 
pointers

Example:

   ABSTRACT INTERFACE

      SUBROUTINE sub(x,y)
         REAL :: x,y
      END SUBROUTINE

      FUNCTION fun(x) RESULT(f)
         REAL :: x,f
      END FUNCTION

   END INTERFACE

   PROCEDURE(fun), POINTER :: a => NULL(), b, c

that could be readily extended to such declarations.

Examples:

   ABSTRACT INTERFACE

      SUBROUTINE sub2(c, valid, count)
         CHARACTER, INTENT(IN) :: c
         LOGICAL, INTENT(OUT) :: valid
         INTEGER, INTENT(OUT) :: count
      END SUBROUTINE

      FUNCTION fun2(x) RESULT(f)
         LOGICAL :: f
         REAL :: x(:)
      END FUNCTION

   END INTERFACE

   PROCEDURE(sub2) :: radix_hex = radix(16)
   PROCEDURE(fun2) :: max_real = max_element(REAL)

which could then be used as

      CALL radix hex( char, valid, count)



      WRITE(*,*) char,‘ is a hexadecimal character? ‘,valid, &
         ‘ determined on call ‘,count,‘ of radix’

      WRITE(*,*) max_real(a),‘ is the maximum element of array a.’
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Appendix A: Additional Examples

The following gives additional examples of parameterization in the 
syntax suggested by the main part of this paper. The examples are 
intended to both illustrate the syntax and the power of 
parameterization.

1. Generic Stack data type module

This and the following example are based on the Ada code given in 
Sebesta, p. 420 -421, and 426, which defines a module (package) 
which implements a generic stack data type. The first 



implementation uses parameterized modules, the second 
parameterized types. Both examples are provided to illustrate how 
comparable their capabilities are, and the differences in syntax 
of the two implementations. A close Fortran equivalent of the 
above would be

   MODULE generic_stack(sig, max_size)
      PUBLIC

      SIGNATURE :: element_type 
! Element_type has no built-in operations
         TYPE element_type
            PRIVATE 
         END TYPE element_type
      END SIGNATURE element_type

      SIGNATURE(element_type) :: sig
      INTEGER :: max_size ! A generic parameter for stack size

! The duplication on stacktype in the signature might not
! be necessary
      TYPE stacktype
         TYPE(sig) :: list(max_size)
         INTEGER :: topsub=0
      END TYPE stacktype

      SIGNATURE :: stacktype

         TYPE stacktype
            TYPE(sig) :: list(max_size)
            INTEGER :: topsub=0
         END TYPE stacktype
  
         INTERFACE
            FUNCTION empty (stk)
               LOGICAL :: empty
               TYPE(stacktype), INTENT(IN) :: stk
            END FUNCTION empty
            SUBROUTINE push (stk, element)
               TYPE(stacktype), INTENT(IN OUT) :: stk
               TYPE(element_type), INTENT(IN) :: element
            END SUBROUTINE push
            SUBROUTINE pop (stk)
               TYPE(stacktype), INTENT(IN OUT) :: stk
            END SUBROUTINE pop
            FUNCTION top (stk)
               TYPE(ELEMENT_TYPE) :: top
               TYPE(stacktype), INTENT(IN) :: stk
            END FUNCTION top
         END INTERFACE
      END SIGNATURE 

   CONTAINS



      FUNCTION empty (stk)
         LOGICAL :: empty
         TYPE(stacktype), INTENT(IN) :: stk
         empty = (stk%topsub == 0)
      END FUNCTION empty

      SUBROUTINE push (stk, element)
         TYPE(stacktype), INTENT(IN OUT) :: stk
         TYPE(element_type), INTENT(IN) :: element
         IF (stk%topsub >= max_size) THEN
            WRITE(*,*) “ERROR - Stack overflow”
         ELSE
            stk%topsub = stk%topsub + 1
            stk%list(stk%topsub) = element
         END IF
      END SUBROUTINE push

      SUBROUTINE pop (stk))
         TYPE(stacktype), INTENT(IN OUT) :: stk
         IF (stk%topsub == 0) THEN
            WRITE (*,*) “ERROR - Stack underflow”
         ELSE
            stk%topsub = stk%topsub - 1
         END IF
      END SUBROUTINE pop

      FUNCTION top (stk)
         TYPE(ELEMENT_TYPE) :: top
         TYPE(stacktype), INTENT(IN) :: stk
         IF (stk%topsub == 0) THEN
            write (*,*) “ERROR - Stack is empty”
         ELSE
            top = stk%list(stk%topsub)
         END IF
      END FUNCTION top
   END MODULE generic_stack

which could be instantiated with the statements

   USE generic_stack(max_size=100,sig=INTEGER), $
         generic_stack => integer_stack

or

   MODULE STACK_OF_REAL_VECTORS = $ 
      generic_stack(max_size=100,sig=(REAL,DIMENSION(10)))

2. Generic Stack data type

This example implements a stack data type using parameterized 
derived types. In the following, the entity declaration form, 
TYPE(stacktype(sig, max_size)) ..., is used although it is wordier 
than that, TYPE(stacktype) ..., used in the parameterized module 



syntax. The wordier form is used to maintain similarity with the 
current proposed parameterized derived type syntax, although the 
simpler entity declaration syntax of the parameterized modules, 
appears to be also usable with parameterized types.

   MODULE generic_stack
      PUBLIC

      SIGNATURE :: element_type 
! Element_type has no built-in operations
         TYPE element_type
            PRIVATE 
         END TYPE element_type
      END SIGNATURE element_type

      TYPE stacktype(sig, max_size)
         SIGNATURE(element_type) :: sig
         INTEGER :: max_size ! A generic parameter for stack size
         TYPE(sig) :: list(max_size)
         INTEGER :: topsub=0
      END TYPE stacktype

      SIGNATURE :: stacktype

         TYPE stacktype(sig, max_size)
            SIGNATURE(element_type) :: sig
            INTEGER :: max_size
            TYPE(sig) :: list(max_size)
            INTEGER :: topsub=0
         END TYPE stacktype
  
         INTERFACE
            FUNCTION empty (stk)
               LOGICAL :: empty
               TYPE(stacktype), INTENT(IN) :: stk
            END FUNCTION empty
            SUBROUTINE push (stk, element)
               TYPE(stacktype), INTENT(IN OUT) :: stk
               TYPE(element_type), INTENT(IN) :: element
            END SUBROUTINE push
            SUBROUTINE pop (stk)
               TYPE(stacktype), INTENT(IN OUT) :: stk
            END SUBROUTINE pop
            FUNCTION top (stk)
               TYPE(ELEMENT_TYPE) :: top
               TYPE(stacktype), INTENT(IN) :: stk
            END FUNCTION top
         END INTERFACE
      END SIGNATURE 

   CONTAINS

      FUNCTION empty (stk)
         LOGICAL :: empty



         TYPE(stacktype(sig, max_size)), INTENT(IN) :: stk
         empty = (stk%topsub == 0)
      END FUNCTION empty

      SUBROUTINE push (stk, element)
         TYPE(stacktype(sig, max_size)), INTENT(IN OUT) :: stk
         TYPE(element_type), INTENT(IN) :: element
         IF (stk%topsub >= max_size) THEN
            WRITE(*,*) “ERROR - Stack overflow”
         ELSE
            stk%topsub = stk%topsub + 1
            stk%list(stk%topsub) = element
         END IF
      END SUBROUTINE push

      SUBROUTINE pop (stk))
         TYPE(stacktype(sig, max_size)), INTENT(IN OUT) :: stk
         IF (stk%topsub == 0) THEN
            WRITE (*,*) “ERROR - Stack underflow”
         ELSE
            stk%topsub = stk%topsub - 1
         END IF
      END SUBROUTINE pop

      FUNCTION top (stk)
         TYPE(ELEMENT_TYPE) :: top
         TYPE(stacktype(sig, max_size)), INTENT(IN) :: stk
         IF (stk%topsub == 0) THEN
            write (*,*) “ERROR - Stack is empty”
         ELSE
            top = stk%list(stk%topsub)
         END IF
      END FUNCTION top
   END MODULE generic_stack

which could be instantiated with the statements

   TYPE(generic_stack(max_size=100,sig=INTEGER)) :: &
      STACK_OF_INTEGERS

   TYPE(generic_stack(max_size=100,sig=(REAL,DIMENSION(10))) :: &
      STACK_OF_REAL_VECTORS

A possible problem with this instantiation syntax is that it 
requires name mangling and hence complicates interfacing to non-
Fortran code. This might not be a problem with a more fully 
developed C language interface, or it could be addressed by 
allowing an alternate type declaration syntax

   TYPE INTEGER_STACK= generic_stack(max_size=100,sig=INTEGER)

   TYPE(INTEGER_STACK) :: STACK_OF_INTEGERS



   TYPE REAL_VECTOR_STACK = & 
      generic_stack(max_size=100,sig=(REAL,DIMENSION(10))
   TYPE(REAL_VECTOR_STACK) :: STACK_OF_REAL_VECTORS

3. A generic sorting procedure

The following example is is based on the Ada code given in 
Sebesta, p. 355, and implements a generic sorting procedure for 
the elements of a vector

   FUNCTOR generic_sort( sig )
      SIGNATURE(ordered) :: sig
      SUBROUTINE generic_sort(list)
         TYPE(sig), INTENT(IN OUT) :: list(:)
         TYPE(sig) :: temp
         INTEGER :: list_size
         intrinsic :: shape
         list_size = shape(list)
         DO index_1= 1, list_size-1
            DO index_2 = index_1+1, list_size
               IF (LIST(index_2) < list(index_1)) THEN
                  temp := list(index_1)
                  list(index_1) = list(index_1)
                  list(index_2) = temp
               END IF
            END DO
         END DO
      END SUBROUTINE generic_sort
   END FUNCTOR generic_sort

which could be instantiated by 

   ABSTRACT INTERFACE

      SUBROUTINE sub3(list)
         INTEGER, INTENT(IN OUT) :: list(:)
      END SUBROUTINE

   END INTERFACE

   PROCEDURE(sub3) :: integer_sort = generic_sort(INTEGER)

4.  A generic vector to scalar procedure

     Fortran 90’s SUM and PRODUCT can be thought of as functions 
which take an array as their arguments and return a scalar that is 
the result of recursively applying a binary function with its 
first argument that is the first element of the array and the 
second argument the result of applying the function to the rest of 
the array. It is sometimes useful to define other functions which 
take an array as their arguments and return a scalar that is the 
result of such a recursive application of a binary function. The 



following, based on the ML function “reduce” of Ullman, pp. 104-
105, defines a FUNCTOR generalizing this capability 

   FUNCTOR vector_to_scalar( binary_function)
      SIGNATURE sig
         TYPE sig
            PRIVATE
         END TYPE sig
         FUNCTION binary_function( a, b)
            TYPE(sig), INTENT(IN) :: a, b
            TYPE(sig) :: binary_function
         END FUNCTION binary_function
      END SIGNATURE sig
      FUNCTION binary_function( a, b) ! Redundant
         TYPE(sig), INTENT(IN) :: a, b
         TYPE(sig) :: binary_function
      END FUNCTION binary_function
      FUNCTION vector_to_scalar( a) RESULT (scalar)
         TYPE(sig) :: a(:), scalar
         IF ( SIZE(a) == 1 ) THEN
            scalar = a
         ELSE
            scalar = binary_function( a(1), &
                        vector_to_scalar(a(2:)) )
         END IF
         RETURN
         END
      END FUNCTION vector_to_scalar
   END FUNCTOR vector_to_scalar

which could be instantiated by 

   ABSTRACT INTERFACE

      FUNCTION func4(list)
         TYPE(interval), INTENT(IN) :: list(:)
         TYPE(interval) :: func4
      END SUBROUTINE

   END INTERFACE

   PROCEDURE(func4) :: sum_interval = !
      vector_to_scalar(plus_interval)

5. A compositional function

    It is often useful to define a function that is the result of 
applying two functions in succession to a value, e.g., H(x) = 
F(G(X)), this can be provided by hand coding in detail this 
function in Fortran 90, but it can be useful to have a shorthand 
for this definition. The following FUNCTOR, based on the ML 
function “comp” of Ullman, pp. 108-110, provides such a shorthand



   FUNCTOR composition( f, g)
      SIGNATURE sig1
         TYPE sig1
            PRIVATE
         END TYPE sig1

 END SIGNATURE sig1
      SIGNATURE sig2
         TYPE sig2
            PRIVATE
         END TYPE sig2

 END SIGNATURE sig2
      SIGNATURE sig3
         TYPE sig3
            PRIVATE
         END TYPE sig3

 END SIGNATURE sig3
      INTERFACE
         FUNCTION f(x)
            TYPE(sig1) :: x
            TYPE(sig2) :: f
         END FUNCTION f
         FUNCTION g(y)
            TYPE(sig3) :: y
            TYPE(sig1) :: g
         END FUNCTION g
      END INTERFACE
      FUNCTION composition (z)
         TYPE(sig3) :: z
         TYPE(sig2) :: composition
         composition = f( g( z ) )
      END FUNCTION composition
   END FUNCTOR composition

which could be instantiated as

   ABSTRACT INTERFACE

      FUNCTION func5(z)
         REAL, INTENT(IN) :: z
         REAL :: func5
      END SUBROUTINE

   END INTERFACE

   PROCEDURE(func5) :: coscos = composition(cos, cos)

   PROCEDURE(func5) :: sincos = composition(sin, cos)

   PROCEDURE(func5) :: expcos = composition(exp, cos)

instead of hand coding

   FUNCTION coscos(x)
      REAL :: x, coscos



      coscos = cos( cos(x))
   END FUNCTION coscos

   FUNCTION sincos(x)
      REAL :: x, sincos
      sincos = sin( cos(x))
   END FUNCTION sincos

   FUNCTION expcos(x)
      REAL :: x, expcos
      coscos = exp( cos(x))
   END FUNCTION expcos
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