
 X3J3/97-118r1

Date: April 2, 1997
To: X3J3
From: William B. Clodius
Subject: Example Syntaxes for Parametric Procedures and Modules

I. Introduction

 This paper presents a relatively well developed example syntax
for parameterization in Fortran. For completeness,
parameterization of modules, derived types, and procedures are all
considered, although parameterization of modules and derived types
are similar in their capabilities. The current proposal is based
on an extension of Java by Odersky and Wadler, 1997, although
several other languages have similar facilities, see the
references at the end. It differs from the current parameterized
derived types proposal in providing parameterization in terms of
types in general, and not just indirectly through kind values, and
in providing a special “signature” construct used to provide an
abstract definition of the types used in parameterization. Because
of the importance of abstract types for object orientation, the
implications of signatures for object oriented Fortran are also
discussed where appropriate. In addition to the simple examples in
the main part of the paper, more extensive examples are given in
an appendix.

II. Type “signature” definition

 The main limitation of the current parameterized derived types
proposal is its restriction to parameterization by integers.
General parameterization requires parameterization in terms of
types, which in turn benefits from a means of specifying the
characteristics of those types that can be used as parameters.

 Such a specification is most clearly given by a construct that
defines an abstract type in terms of its name, the names and types
of its public components, and the names and abstract definitions
of a set of procedures or operators that have dummy arguments or
return values with the signature name as their types. For an
object oriented language, this specification might also indicate
whether the type is monomorphic or polymorphic or is related to a
specific type through inheritance. In addition to specifying which
types can be used as parameters, it also provides a concrete
syntax for specifying abstract polymorphic “classes”, should
Fortran become object oriented.

The literature provides several terms for such an abstract
type definition, but the two most common terms are type interface
or type signature. Therefore, either the INTERFACE construct
should be extended so that it can provide an abstract definition
of data types as well as procedural types, or a new SIGNATURE

construct should be provided as a means of defining abstract data
types. Such a definition should include the type signature name, a
type definition construct specifying public components, and the
pertinent interface constructs.

Example:

 SIGNATURE :: ordered

 TYPE :: ordered
 PRIVATE
 END TYPE ordered

 INTERFACE OPERATOR (<)
 FUNCTION LESS_THAN(X, Y)
 LOGICAL :: LESS_THAN
 TYPE(ordered), INTENT(IN) :: X, Y
 END FUNCTION LESS_THAN
 END INTERFACE OPERATOR (<)

 END SIGNATURE ordered

The signature of ordered specifies an abstract type with no
pertinent public components and one defined operation, <. Such a
type can be useful in defining generic sorting procedures. While
the above provides an explicit syntax for defining an abstract
type, it might be useful to specify signatures implicitly by
example, or default, i.e., if Fortran implements inheritance.

III. Type “signature” association

 The type signature has meaning only when associated with one
or more specific types. The relationship of the signature to a
type could be specified in at least three different ways: as a
separate construct, as part of the signature construct, or as part
of the derived type construct. Each of these has different uses.
For completeness all uses are given below although only one use
has direct application to parameterization.

 A. Association as a separate construct

 Specifying the relationship as a separate construct has two
applications. First, it can be used to specify that an argument
for a parameterized construct represents a type with the desired
signature. Ideally this should have a syntax similar to that of
the type declaration statement.

Example:

 SIGNATURE(ordered) :: X

might indicate that the argument X represents a type with the
signature ordered, and all occurrences of X within the module will

be replaced by the actual argument type, if compatible, upon
parameterization. Second, should Fortran become object oriented,
it can be used to indicate that the signature represents a dynamic
type and type X is intended to be one form of that type.

Example:

 TAGGED(ordered) :: X

 B. Association as part of a signature construct

 Specifying the relationship as part of a signature construct
could be used to constrain applicability of the signature to a
fixed ordered set of types. Such a fixed ordered set is similar to
Fortran’s intrinsic types with their different KINDs. A natural
syntax is then to use KIND as a keyword in such a specification.

Example:

 SIGNATURE :: intrinsic_ordered

 KIND :: CHARACTER, INTEGER(KIND=1), INTEGER(KIND=2), &
 INTEGER(KIND=4), REAL(KIND=4), REAL(KIND=8)
 TYPE :: intrinsic_ordered
 PRIVATE
 END TYPE intrinsic_ordered

 INTERFACE OPERATOR (<)
 FUNCTION LESS_THAN(X, Y)
 LOGICAL :: LESS_THAN
 TYPE(intrinsic_ordered), INTENT(IN) :: X, Y
 END FUNCTION LESS_THAN
 END INTERFACE OPERATOR (<)

 END SIGNATURE intrinsic_ordered

which defines an abstract type with six representations, all of
them intrinsic types. Any reference to TYPE(intrinsic_ordered(
KIND=1)), would then refer to the default character type, TYPE(
intrinsic_ordered(KIND=2)), would refer to the intrinsic INTEGER
with kind value 1 (usually, but not always, a BYTE), etc. It
appears to be straight forward to provide the capabilities of the
intrinsic kind selectors for user defined type signatures.

 C. Association as part of the derived type construct

 Specifying the relationship as part of the derived type
construct could be used to provide an independent specification of
a type facilitating independent compilation

Example:

 TYPE ORDERED_SET
 IMPLEMENTS ordered
 PRIVATE
 INTEGER, ALLOCATABLE :: Component
 END TYPE ORDERED_SET

IV. A syntax for parameterizing derived types

 A. Type definition statement

 A straightforward syntax for parameterizing derived types,
based on the current parameterized derived types proposal, would
be to add an optional list of module parameter names in parens
following the type-name in the type-definition statement.

Example:

 TYPE matrix(sig, dim)

 Unlike the current parameterized derived types proposal, the
dummy arguments can be type signatures as well as integer values.
The actual type should be indicated by an explicit SIGNATURE or
INTEGER declaration in the derived type definition.

Example:

 TYPE matrix(sig, dim)
 SIGNATURE(number) :: sig
 INTEGER :: dim
 TYPE(sig) :: element(dim, dim)
 END TYPE matrix

Note number in this case is a previously defined signature that
might be compatible not only with type REAL, as in the example in
the parameterized derived types proposal, but also with type
COMPLEX, or special derived types such as the interval arithmetic
proposal.

 B. Entity declaration

 1. Simple declaration syntax

 The obvious syntax for parameterized derived type
instantiation would follow that of the parameterized intrinsic
types. The type parameter values would therefore be specified in
parens after the type name, in either keyword or positional form.

Integer arguments for a kind type parameter shall be an integer
initialization expression. The expression for a non-kind type
parameter may be either a specification expression or assumed. The
most straightforward syntax for signature parameters restricts the
arguments to type specifiers. The resulting syntax is fairly

straightforward

Examples:

 TYPE(matrix(REAL, 1000)) :: a
 TYPE(matrix(sig=COMPLEX(KIND=4), dim=1000)) :: b
 TYPE(matrix(TYPE(INTERVAL), 1000)) :: c

 2. Sophisticated declaration syntax

 The concept of type in other languages includes such concepts
as arrays and pointers. Further, the addition of the elemental
attribute in Fortran 95 means that if an entity of a given type
will satisfy a signature then an array or pointer of that type
will often satisfy that signature. A full generalization of this
parameterization capability would allow the specification of
selected attribute specifiers as well as the type specifiers. This
generality could be achieved by letting the signature arguments be
a type specifier followed by the pertinent attribute specifiers.
Such a combination must be either textually separated, i.e., by
parens or an appropriate constructor, e.g. SIGNATURE

Examples:

 TYPE(matrix((REAL, DIMENSION(2,2)), 1000)) :: d
 TYPE(matrix(sig=SIGNATURE(COMPLEX(KIND=4), POINTER(2,2)), &
 dim=1000)) :: e

V. A syntax for parameterizing modules

 A. Module definition statement

 Because module parameterization and type parameterization are
similar in effect it is not clear that the language requires both,
but for completeness both will be discussed. Much of the syntax
and semantics of parameterized modules follows from that of the
parameterized derived types. A parameterized module can be
specified by adding an optional list of module parameter names in
parens following the module-name in the module-definition
statement.

Example:

 MODULE matrix(sig, dim)

 B. Module declaration

 The restrictions on the parameters are essentially identical
to those discussed above for parameterized derived types. The
instantiation of a module could be either on its use

Example:

 USE matrix(REAL, 1000)

or in the definition of a new module

Example:

 MODULE complex_matrix = matrix(COMPLEX(KIND=4), 1000)

Both instantiation syntaxes for parameterized modules are liable
to be less frequently used then the instantiation syntax for
parameterized derived types. Therefore there is likely to be
generated less duplicate code generated by unsophisticated
implementations for parameterized modules than for types. The
second form of a module declaration, by providing a specific name
for the module, is less likely to require significant name
mangling which can complicate interfacing to code from other
processors.

VI. A syntax for parameterizing procedures

 A. Parameterized procedure definition

 The most obvious syntax for parameterized procedures is to
allow functions to return procedures as values or provide a
special construct, e.g. FUNCTOR. Issues in choosing a new
procedure type include: Would users have trouble understanding a
function returning functions? Should the returned procedure be
defined statically? Would users expect that a function could be
used dynamically? Should access to global variables be restricted
for such procedures? Would such restrictions be expected of
functions?

Examples:

 ! Find the element with a maximum value in the one dimensional
 ! array a of type sig which can be ordered using the relational
 ! operator, <.
 FUNCTION max_element(sig)
 SIGNATURE(ordered) :: sig
 FUNCTION max_element(a)
 TYPE(sig) :: a(:)
 TYPE(sig) :: max_a
 TYPE(sig) :: max_element(2)
 INTEGER :: size_a, i
 size_a = SIZE(a)
 max_element = a(1)
 DO i=2, SIZE(a)
 IF (max_element < a(i)) max_element = a(i)
 END DO
 END FUNCTION max_element
 END FUNCTION max_element

 FUNCTOR max element(sig)

 SIGNATURE(ordered) :: sig
 FUNCTION max_element(a)
 TYPE(sig) :: a(:)
 TYPE(sig) :: max_a
 TYPE(sig) :: max_element(2)
 INTEGER :: size_a, i
 size_a = SIZE(a)
 max_element = a(1)
 DO i=2, SIZE(a)
 IF (max_element < a(i)) max_element = a(i)
 END DO
 END FUNCTION max_element
 END FUNCTOR max_element

 ! Valid is .TRUE. if c represents a digit in radix r.
 ! Count returns the number of times radix has been executed
 FUNCTION radix(r)
 INTEGER, INTENT(IN) :: r
 INTEGER :: n = 0
 SUBROUTINE radix(c, valid, count)
 CHARACTER, INTENT(IN) :: c
 LOGICAL, INTENT(OUT) :: valid
 INTEGER, INTENT(OUT) :: count
 n = n + 1
 count = n
 SELECT CASE (c)
 CASE (‘0’:’9’)
 valid = (IACHAR(c) - IACHAR(‘0’)) < r
 CASE (‘a’:’z’)
 valid = (10 + IACHAR(c) - IACHAR(‘a’)) < r
 CASE (‘A’:’Z’)
 valid = (10 + IACHAR(c) - IACHAR(‘A’)) < r
 CASE DEFAULT
 valid = .FALSE.
 END SELECT
 END SUBROUTINE radix
 END FUNCTION radix

 FUNCTOR radix(r)
 INTEGER, INTENT(IN) :: r
 INTEGER :: n = 0
 SUBROUTINE radix(c, valid, count)
 CHARACTER, INTENT(IN) :: c
 LOGICAL, INTENT(OUT) :: valid
 INTEGER, INTENT(OUT) :: count
 n = n + 1
 count = n
 SELECT CASE (c)
 CASE (‘0’:’9’)
 valid = (IACHAR(c) - IACHAR(‘0’)) < r
 CASE (‘a’:’z’)
 valid = (10 + IACHAR(c) - IACHAR(‘a’)) < r
 CASE (‘A’:’Z’)
 valid = (10 + IACHAR(c) - IACHAR(‘A’)) < r

 CASE DEFAULT
 valid = .FALSE.
 END SELECT
 END SUBROUTINE radix
 END FUNCTOR radix

 B. Procedure Declaration

 The arguments to parameterized procedures should be restricted
to initialization expressions and signatures. The current
procedure pointer proposal introduces a syntax for procedure
pointers

Example:

 ABSTRACT INTERFACE

 SUBROUTINE sub(x,y)
 REAL :: x,y
 END SUBROUTINE

 FUNCTION fun(x) RESULT(f)
 REAL :: x,f
 END FUNCTION

 END INTERFACE

 PROCEDURE(fun), POINTER :: a => NULL(), b, c

that could be readily extended to such declarations.

Examples:

 ABSTRACT INTERFACE

 SUBROUTINE sub2(c, valid, count)
 CHARACTER, INTENT(IN) :: c
 LOGICAL, INTENT(OUT) :: valid
 INTEGER, INTENT(OUT) :: count
 END SUBROUTINE

 FUNCTION fun2(x) RESULT(f)
 LOGICAL :: f
 REAL :: x(:)
 END FUNCTION

 END INTERFACE

 PROCEDURE(sub2) :: radix_hex = radix(16)
 PROCEDURE(fun2) :: max_real = max_element(REAL)

which could then be used as

 CALL radix hex(char, valid, count)

 WRITE(*,*) char,‘ is a hexadecimal character? ‘,valid, &
 ‘ determined on call ‘,count,‘ of radix’

 WRITE(*,*) max_real(a),‘ is the maximum element of array a.’

References

Gerald Baumgartner and Vincent F. Russo, “Signatures: A Language
Extension for Improving Type Abstraction and Subtype Polymorphism
in C++,” Software--Practice & Experience, 25 (8), pp. 863-889,
August 1995. (Implemented in GNU C++)

Mark Day, Robert Gruber, Barbara Liskov, and Andrew C. Myers,
“Subtypes vs. Where Clauses: Constraining Parametric
Polymorphism,” OOPSLA’95 Conference Proceedings, Pages 156-158,
ACM Press, October 1995. (Discusses the implementation in Theta)

M. P. Jones, “A system of constructor classes: overloading and
implicit higher-order polymorphism,” Proc. Functional Programming
Languages and Computer Architecture, pages 52-61, ACM Press, June
1993. (Discusses the basis of polymorphism in the functional
language Haskell.)

Andrew C. Myers, Joseph A. Bank, and Barbara Liskov,
“Parameterized Types for Java,” Proceedings 24th ACM SIGPLAN-
SIGACT Symposium on Principle of Programming Languages®, Paris,
France, January 15-17, 1997, Pages 132-145, ACM Press. (Based on
Theta’s implementation discussed by Day et.al.)

Martin Odersky and Philip Wadler, “Pizza into Java: Translating
theory into practice,” Proceedings 24th ACM SIGPLAN-SIGACT
Symposium on Principle of Programming Languages®, Paris, France,
January 15-17, 1997, Pages 146-159, ACM Press.

Appendix A: Additional Examples

The following gives additional examples of parameterization in the
syntax suggested by the main part of this paper. The examples are
intended to both illustrate the syntax and the power of
parameterization.

1. Generic Stack data type module

This and the following example are based on the Ada code given in
Sebesta, p. 420 -421, and 426, which defines a module (package)
which implements a generic stack data type. The first

implementation uses parameterized modules, the second
parameterized types. Both examples are provided to illustrate how
comparable their capabilities are, and the differences in syntax
of the two implementations. A close Fortran equivalent of the
above would be

 MODULE generic_stack(sig, max_size)
 PUBLIC

 SIGNATURE :: element_type
! Element_type has no built-in operations
 TYPE element_type
 PRIVATE
 END TYPE element_type
 END SIGNATURE element_type

 SIGNATURE(element_type) :: sig
 INTEGER :: max_size ! A generic parameter for stack size

! The duplication on stacktype in the signature might not
! be necessary
 TYPE stacktype
 TYPE(sig) :: list(max_size)
 INTEGER :: topsub=0
 END TYPE stacktype

 SIGNATURE :: stacktype

 TYPE stacktype
 TYPE(sig) :: list(max_size)
 INTEGER :: topsub=0
 END TYPE stacktype

 INTERFACE
 FUNCTION empty (stk)
 LOGICAL :: empty
 TYPE(stacktype), INTENT(IN) :: stk
 END FUNCTION empty
 SUBROUTINE push (stk, element)
 TYPE(stacktype), INTENT(IN OUT) :: stk
 TYPE(element_type), INTENT(IN) :: element
 END SUBROUTINE push
 SUBROUTINE pop (stk)
 TYPE(stacktype), INTENT(IN OUT) :: stk
 END SUBROUTINE pop
 FUNCTION top (stk)
 TYPE(ELEMENT_TYPE) :: top
 TYPE(stacktype), INTENT(IN) :: stk
 END FUNCTION top
 END INTERFACE
 END SIGNATURE

 CONTAINS

 FUNCTION empty (stk)
 LOGICAL :: empty
 TYPE(stacktype), INTENT(IN) :: stk
 empty = (stk%topsub == 0)
 END FUNCTION empty

 SUBROUTINE push (stk, element)
 TYPE(stacktype), INTENT(IN OUT) :: stk
 TYPE(element_type), INTENT(IN) :: element
 IF (stk%topsub >= max_size) THEN
 WRITE(*,*) “ERROR - Stack overflow”
 ELSE
 stk%topsub = stk%topsub + 1
 stk%list(stk%topsub) = element
 END IF
 END SUBROUTINE push

 SUBROUTINE pop (stk))
 TYPE(stacktype), INTENT(IN OUT) :: stk
 IF (stk%topsub == 0) THEN
 WRITE (*,*) “ERROR - Stack underflow”
 ELSE
 stk%topsub = stk%topsub - 1
 END IF
 END SUBROUTINE pop

 FUNCTION top (stk)
 TYPE(ELEMENT_TYPE) :: top
 TYPE(stacktype), INTENT(IN) :: stk
 IF (stk%topsub == 0) THEN
 write (*,*) “ERROR - Stack is empty”
 ELSE
 top = stk%list(stk%topsub)
 END IF
 END FUNCTION top
 END MODULE generic_stack

which could be instantiated with the statements

 USE generic_stack(max_size=100,sig=INTEGER), $
 generic_stack => integer_stack

or

 MODULE STACK_OF_REAL_VECTORS = $
 generic_stack(max_size=100,sig=(REAL,DIMENSION(10)))

2. Generic Stack data type

This example implements a stack data type using parameterized
derived types. In the following, the entity declaration form,
TYPE(stacktype(sig, max_size)) ..., is used although it is wordier
than that, TYPE(stacktype) ..., used in the parameterized module

syntax. The wordier form is used to maintain similarity with the
current proposed parameterized derived type syntax, although the
simpler entity declaration syntax of the parameterized modules,
appears to be also usable with parameterized types.

 MODULE generic_stack
 PUBLIC

 SIGNATURE :: element_type
! Element_type has no built-in operations
 TYPE element_type
 PRIVATE
 END TYPE element_type
 END SIGNATURE element_type

 TYPE stacktype(sig, max_size)
 SIGNATURE(element_type) :: sig
 INTEGER :: max_size ! A generic parameter for stack size
 TYPE(sig) :: list(max_size)
 INTEGER :: topsub=0
 END TYPE stacktype

 SIGNATURE :: stacktype

 TYPE stacktype(sig, max_size)
 SIGNATURE(element_type) :: sig
 INTEGER :: max_size
 TYPE(sig) :: list(max_size)
 INTEGER :: topsub=0
 END TYPE stacktype

 INTERFACE
 FUNCTION empty (stk)
 LOGICAL :: empty
 TYPE(stacktype), INTENT(IN) :: stk
 END FUNCTION empty
 SUBROUTINE push (stk, element)
 TYPE(stacktype), INTENT(IN OUT) :: stk
 TYPE(element_type), INTENT(IN) :: element
 END SUBROUTINE push
 SUBROUTINE pop (stk)
 TYPE(stacktype), INTENT(IN OUT) :: stk
 END SUBROUTINE pop
 FUNCTION top (stk)
 TYPE(ELEMENT_TYPE) :: top
 TYPE(stacktype), INTENT(IN) :: stk
 END FUNCTION top
 END INTERFACE
 END SIGNATURE

 CONTAINS

 FUNCTION empty (stk)
 LOGICAL :: empty

 TYPE(stacktype(sig, max_size)), INTENT(IN) :: stk
 empty = (stk%topsub == 0)
 END FUNCTION empty

 SUBROUTINE push (stk, element)
 TYPE(stacktype(sig, max_size)), INTENT(IN OUT) :: stk
 TYPE(element_type), INTENT(IN) :: element
 IF (stk%topsub >= max_size) THEN
 WRITE(*,*) “ERROR - Stack overflow”
 ELSE
 stk%topsub = stk%topsub + 1
 stk%list(stk%topsub) = element
 END IF
 END SUBROUTINE push

 SUBROUTINE pop (stk))
 TYPE(stacktype(sig, max_size)), INTENT(IN OUT) :: stk
 IF (stk%topsub == 0) THEN
 WRITE (*,*) “ERROR - Stack underflow”
 ELSE
 stk%topsub = stk%topsub - 1
 END IF
 END SUBROUTINE pop

 FUNCTION top (stk)
 TYPE(ELEMENT_TYPE) :: top
 TYPE(stacktype(sig, max_size)), INTENT(IN) :: stk
 IF (stk%topsub == 0) THEN
 write (*,*) “ERROR - Stack is empty”
 ELSE
 top = stk%list(stk%topsub)
 END IF
 END FUNCTION top
 END MODULE generic_stack

which could be instantiated with the statements

 TYPE(generic_stack(max_size=100,sig=INTEGER)) :: &
 STACK_OF_INTEGERS

 TYPE(generic_stack(max_size=100,sig=(REAL,DIMENSION(10))) :: &
 STACK_OF_REAL_VECTORS

A possible problem with this instantiation syntax is that it
requires name mangling and hence complicates interfacing to non-
Fortran code. This might not be a problem with a more fully
developed C language interface, or it could be addressed by
allowing an alternate type declaration syntax

 TYPE INTEGER_STACK= generic_stack(max_size=100,sig=INTEGER)

 TYPE(INTEGER_STACK) :: STACK_OF_INTEGERS

 TYPE REAL_VECTOR_STACK = &
 generic_stack(max_size=100,sig=(REAL,DIMENSION(10))
 TYPE(REAL_VECTOR_STACK) :: STACK_OF_REAL_VECTORS

3. A generic sorting procedure

The following example is is based on the Ada code given in
Sebesta, p. 355, and implements a generic sorting procedure for
the elements of a vector

 FUNCTOR generic_sort(sig)
 SIGNATURE(ordered) :: sig
 SUBROUTINE generic_sort(list)
 TYPE(sig), INTENT(IN OUT) :: list(:)
 TYPE(sig) :: temp
 INTEGER :: list_size
 intrinsic :: shape
 list_size = shape(list)
 DO index_1= 1, list_size-1
 DO index_2 = index_1+1, list_size
 IF (LIST(index_2) < list(index_1)) THEN
 temp := list(index_1)
 list(index_1) = list(index_1)
 list(index_2) = temp
 END IF
 END DO
 END DO
 END SUBROUTINE generic_sort
 END FUNCTOR generic_sort

which could be instantiated by

 ABSTRACT INTERFACE

 SUBROUTINE sub3(list)
 INTEGER, INTENT(IN OUT) :: list(:)
 END SUBROUTINE

 END INTERFACE

 PROCEDURE(sub3) :: integer_sort = generic_sort(INTEGER)

4. A generic vector to scalar procedure

 Fortran 90’s SUM and PRODUCT can be thought of as functions
which take an array as their arguments and return a scalar that is
the result of recursively applying a binary function with its
first argument that is the first element of the array and the
second argument the result of applying the function to the rest of
the array. It is sometimes useful to define other functions which
take an array as their arguments and return a scalar that is the
result of such a recursive application of a binary function. The

following, based on the ML function “reduce” of Ullman, pp. 104-
105, defines a FUNCTOR generalizing this capability

 FUNCTOR vector_to_scalar(binary_function)
 SIGNATURE sig
 TYPE sig
 PRIVATE
 END TYPE sig
 FUNCTION binary_function(a, b)
 TYPE(sig), INTENT(IN) :: a, b
 TYPE(sig) :: binary_function
 END FUNCTION binary_function
 END SIGNATURE sig
 FUNCTION binary_function(a, b) ! Redundant
 TYPE(sig), INTENT(IN) :: a, b
 TYPE(sig) :: binary_function
 END FUNCTION binary_function
 FUNCTION vector_to_scalar(a) RESULT (scalar)
 TYPE(sig) :: a(:), scalar
 IF (SIZE(a) == 1) THEN
 scalar = a
 ELSE
 scalar = binary_function(a(1), &
 vector_to_scalar(a(2:)))
 END IF
 RETURN
 END
 END FUNCTION vector_to_scalar
 END FUNCTOR vector_to_scalar

which could be instantiated by

 ABSTRACT INTERFACE

 FUNCTION func4(list)
 TYPE(interval), INTENT(IN) :: list(:)
 TYPE(interval) :: func4
 END SUBROUTINE

 END INTERFACE

 PROCEDURE(func4) :: sum_interval = !
 vector_to_scalar(plus_interval)

5. A compositional function

 It is often useful to define a function that is the result of
applying two functions in succession to a value, e.g., H(x) =
F(G(X)), this can be provided by hand coding in detail this
function in Fortran 90, but it can be useful to have a shorthand
for this definition. The following FUNCTOR, based on the ML
function “comp” of Ullman, pp. 108-110, provides such a shorthand

 FUNCTOR composition(f, g)
 SIGNATURE sig1
 TYPE sig1
 PRIVATE
 END TYPE sig1

 END SIGNATURE sig1
 SIGNATURE sig2
 TYPE sig2
 PRIVATE
 END TYPE sig2

 END SIGNATURE sig2
 SIGNATURE sig3
 TYPE sig3
 PRIVATE
 END TYPE sig3

 END SIGNATURE sig3
 INTERFACE
 FUNCTION f(x)
 TYPE(sig1) :: x
 TYPE(sig2) :: f
 END FUNCTION f
 FUNCTION g(y)
 TYPE(sig3) :: y
 TYPE(sig1) :: g
 END FUNCTION g
 END INTERFACE
 FUNCTION composition (z)
 TYPE(sig3) :: z
 TYPE(sig2) :: composition
 composition = f(g(z))
 END FUNCTION composition
 END FUNCTOR composition

which could be instantiated as

 ABSTRACT INTERFACE

 FUNCTION func5(z)
 REAL, INTENT(IN) :: z
 REAL :: func5
 END SUBROUTINE

 END INTERFACE

 PROCEDURE(func5) :: coscos = composition(cos, cos)

 PROCEDURE(func5) :: sincos = composition(sin, cos)

 PROCEDURE(func5) :: expcos = composition(exp, cos)

instead of hand coding

 FUNCTION coscos(x)
 REAL :: x, coscos

 coscos = cos(cos(x))
 END FUNCTION coscos

 FUNCTION sincos(x)
 REAL :: x, sincos
 sincos = sin(cos(x))
 END FUNCTION sincos

 FUNCTION expcos(x)
 REAL :: x, expcos
 coscos = exp(cos(x))
 END FUNCTION expcos

References

Robert W. Sebesta, “Concepts of Programming Languages, Third Ed.,”
Addison-Wesley, Reading, Mass., 1996.

Jeffrey D. Ullman, “Elements of ML Programming,” Prentice-Hall,
Englewood Cliffs, New Jersey, 1994.

