
 X3J3/97-119

Date: February 8, 1997

To: X3J3

From: William B. Clodius

Subject: Critical Issues for Object Orientation in Fortran

1. Introduction

 In recent months I have been an active, some might

justifiably say too active, participant in the sc22wg5-data

email discussion group. This group was intended to provide a

focus for the development of ideas for object orientation.

Unfortunately, the imminent cutoff date for proposals for

requirements, and the crush to prepare for the February meeting

led to a spate of proposals of features, without first

establishing a consensus about overall goals and requirements

that appear (in retrospect) to be necessary in evaluating such

features.

 This paper attempts to provide a basis for establishing such

a consensus. It identifies what I believe are the most important

issues, posed as a series of questions, and provides information

in accompanying comment sections that I believe will be useful

in reaching a decision on those issues. It is likely that I have

missed some issues and have failed to include some pertinent

information, and I encourage the data subgroup to issue a

Page 1

revised version of this paper with whatever additions they

believe to be useful. Note that in order to minimize prejudicing

analysis of these aspects, I have tried to avoid injecting my

personal opinions in the main text. However, because I am unable

to attend this meeting, and I want participants in the meeting

to be aware of my opinions, I have summarized my opinions in an

appendix.

2. Issues in Object Orientation

 In order to give an overview of the issues, this section

simply divides the issues into four general categories commonly

recognized as important to object oriented programming, i.e.,

polymorphism, dispatch, inheritance, and encapsulation, and

lists the issues in the order in which they will be discussed in

detail latter.

 I. Polymorphism

 A. What are the semantic restrictions on polymorphism that

should be recognized in the language?

 B. What are the sources of polymorphism that should be

recognized in the language?

 C. How should the existence of polymorphic relationships be

identified in the language?

Page 2

 D. What polymorphic relationships should be allowed between

intrinsic and derived types?

 E. What term(s) should be used to identify polymorphic

types? This issue has the related issues

 1. Should the term KIND be extended to allow a more

abstract usage?

 2. Should the intrinsic KIND values be allowed to include

derived types?

 F. Can closed polymorphic relationships (relationships

involving a fixed set of types) be defined?

 G. What should be the semantics of polymorphic objects?

 II. Dynamic Dispatch

 A. Should the language include dynamic dispatch?

 B. Should multiple dispatch be allowed?

 C. Should dispatch only be allowed for “tagged” types?

 D. How should object dispatch be determined by the language?

Page 3

 III. Questions involving inheritance.

 A. How should an inheritance relationship be indicated?

 B. What is the relationship between polymorphism and

inheritance?

 C. Should the language allow overriding of inherited

“methods”? This has the related issues

 1. In procedures that have not been overridden invoke a

method that has been overridden, is the new or the overridden

procedure invoked by default?

 2. Does the language provide a means of overriding the

default for overridden procedures?

 D. Should multiple inheritance be allowed? This has the

related issues

 1. If multiple inheritance is allowed, how are name

conflicts handled?

 2. If only single inheritance is initially defined, should

it be extensible later to multiple inheritance?

 IV. Encapsulation

Page 4

 A. How should inheritance affect encapsulation?

 B. Should encapsulation be made more flexible in general?

3. Comments on Issues in Object Orientation

 This section examine in moderate detail the issues listed in

the previous section.

I. Polymorphism

 Polymorphism (sometimes termed abstraction) is one of the

most important aspects of object oriented languages. In its

essence it means that a variety of different types can be used

in some contexts and still result in valid expressions. This is

usually described in terms of the similarity of the signatures

(the set of procedures and operators having entities of that

type as arguments) of the polymorphic types. Because Fortran’s

intrinsic types, overloaded operators, and elemental operations

already provide some polymorphism, the central questions is: how

to extend it to derived types? This requires answering a number

of questions:

Page 5

 A. What are the semantic restrictions on polymorphism that

should be recognized in the language?

Comments on I.A

 There are a number of polymorphic relationships with subtly

different semantics that are recognized in the literature. Among

them are:

Subtype/Supertype: A is a subtype of supertype B if in any valid

expression containing entities of type B, any of those entities

can be replaced by an entity of type A and still yield a valid

expression.

Equivalence: Type A is equivalent to type B if A is a subtype of

B and B is a subtype of A.

Matching: Type A matches type B if in any valid expression

containing entities of type B, the expression will remain valid

if all of those entities are replaced by an entities of type A.

Incidental: Types A and B are incidentally polymorphic if in

some some valid expressions containing entities of type B remain

valid after appropriate substitution of entities of type A.

 Incidental polymorphism is not sufficiently well defined to

warrant recognition by the language.

 The differences between the other three relationships are

Page 6

most noticeable when the related types include multi-methods,

i.e., procedures which have more than one argument with

intent(IN) whose type satisfies the relationship. By far the

most important such multi-methods are binary methods

such as Fortran’s binary operators, ==, /=, <=, >=, >, <, +, -,

*, /, **, and //. It is well recognized in the literature that

the general subtype/supertype relationship has trouble

systematically handing binary methods. For example, the equality

comparison operation, A == B is type safe only if A and B have

equivalent or the same types. As matching ensures that binary

methods can only be invoked if the two arguments have the same

type, binary methods are also safe under matching.

 While type equivalence can handle binary methods, if binary

methods are present the number of procedure definitions that are

implicitly required grows in proportion to the square of the

number of equivalent types. This makes equivalence among more

than a few types impractical. I am not aware of any language

that explicitly provides for equivalent types.

 In practice therefore the question becomes should the

language recognize only matching polymorphism, only subtype

polymorphism, or allow both? If it allows both should it be

necessary for the user to indicate which is necessary. Most

object oriented languages in current use apparently recognize

only subtype polymorphism, but they were designed before the

distinction was well recognized and appear to have made that

choice without recognizing its implications. Ada implicitly

allows both, but the restrictions on the allowed arguments to

Page 7

procedures for matching types is stronger than what is strictly

necessary.

Note: In Fortran, the different “KIND”s of each intrinsic type

are in essence equivalent types, i.e., a 32 bit REAL has a type

equivalent to that of a 64 bit REAL, similarly a 32 bit INTEGER

has a type equivalent to that of a 64 bit INTEGER.

Note: In the above I did not discuss covariance a type

relationship that can be thought of as a less type safe version

of matching that works well in practice. TO the best of my

knowledge Eiffel is the only language that uses covariance.

Note: Ada requires that either only one argument (the first) may

be of a tagged (dispatching) type, or all arguments must be of

the same tagged type (=> matching). Slightly more flexibility

can be achieved and still retain matching, if the constraint is

that all arguments that are tagged must have the same type.

Significantly more flexibility can be achieved if the language

allows the specification of detailed matching criteria, e.g.

 SUBROUTINE UPDATE_B(A, NEW_B)

 TAGGED(ATYPE) :: A ! A possible syntax for indicating

 ! that A is a dispatching type

 MATCH(A%B) :: NEW_B ! A possible syntax for indicating

 ! that UPDATE_B can only be called

 ! in contexts where NEW_B is the

 ! same type as the component B

 ! of the type ATYPE

Page 8

 A%B = NEW_B

 END SUBROUTINE UPDATE_B

 B. What are the sources of polymorphism that should be

recognized in the language?

Comments on I.B.:

 There are a number of sources of polymorphism. Among them

are:

Inheritance (see below)

Ad Hoc - The user constructs a type so that its signature

(collection of procedure and operator interfaces) is the same as

that of another type, although the details of their

implementations may differ significantly from one another.

Already provided in Fortran by overloading. (Note a REAL and an

INTEGER type might be considered ad hoc implementations of the

“type” scalar with the operations, +, -, *, ==, >=, <=)

Parametric - Types share a common signature due to their common

definition in terms of a parametric type.

Accidental - Means what it says. A data type MARKSMAN in the

code for a video game with the associated procedures, MOVE,

DRAW, POINT, is probably accidentally polymorphic with the data

type POLYGON, with the associated procedures, MOVE, DRAW, POINT.

Page 9

 C. How should the existence of polymorphic relationships be

identified in the language?

Comments on I.B.

 There are several possible ways for languages to identify

polymorphic relationships: not recognize them, implicitly

recognize them, or provide programmers with a syntax for

indicating the expected relationship (which the compiler can

statically verify), or provide programmers with a syntax for

indicating the expected relationship (which the compiler only

can dynamically verify) connotations of this identification.

There are also several possible aspects of the relationship that

are of interest to the language and its implementation.

 1. The semantics of the relationship: Matching vs.

subtype/supertype. Need not be indicated if the relationship is

implicit.

 2. The source of the relationship. Need not be specified if

due to inheritance or parametric polymorphism. Must be specified

if ad hoc.

 3. Whether the relationship results in dispatching or is

statically resolved.

Finally should the recognition be considered a fundamental

Page 10

aspect of the type of an entity, or an attribute of the entity.

Note Fortran uses KIND for ad hoc equivalent relationships that

are resolved statically, and indicated syntactically as an

aspect of the type.

 D. What polymorphic relationships should be allowed between

intrinsic and derived types?

Comments on I.D.

 This is actually several questions.

 Should users be allowed to indicate that certain derived

types implement new KINDs of intrinsic types?

 Should users be allowed to group the intrinsic types into

additional categories, or should the language recognize the most

intuitive categories?

 Obvious additional categories include

 Object - only assignment (and perhaps equality) are

recognized.

 Ordered - has assignment and the operations ==, <=, >=, >,

<, /=

Page 11

 Number - has assignment and the operations +, -, *, ==, /=

 Scalar - has assignment and the operations +, -, *, ==, <=,

>=, >, <, /=

 Should dynamic dispatch be allowed for relationships

including intrinsic types?

Note - such relationships are special cases of ad hoc

polymorphism and their definition should use the same notation.

 E. What term(s) should be used to identify polymorphic

types? This issue has the related issues

 1. Should the term KIND be extended to allow a more

abstract usage (i.e., not have an integer value)?

 2. Should the intrinsic KIND values be allowed to include

derived types?

Comments on I.E.

 Fortran currently uses the term KIND to identify different

intrinsic types that are polymorphic with respect to one

another. The current specification of KIND as an integer value

is prone to portability problems and is difficult to extend to

derived types. Alternatives include CATEGORY, CLASS, FAMILY,

GENUS, MATCH, SUBTYPE, TYPE_SET, and DISPATCH_TYPE. Extending

Page 12

the usage of KIND implies complicating its definition and usage.

Adding other keywords has its own disadvantages. A sophisticated

polymorphic scheme may need more than one keyword.

 F. Can closed polymorphic relationships (relationships

involving a fixed set of types) be defined?

Comments on I.F.

 Such restrictions clarify the semantics implied by the

relationship and potentially yield useful optimizations, but do

complicate the language.

 G. What should be the semantics of polymorphic objects?

Comments on I.G.

There are a variety of commonly used semantics for polymorphic

objects: as references, as values by default, or “pure

functional” access.

Reference semantics implies that except when a special keyword

is used (typically the keyword NEW), any use of assignment

between two objects actually results in a pointer assignment.

Reference semantics minimizes the amount of copying and

temporaries, but has the danger that the user can accidentally

modify objects, i.e.

Page 13

 A = B ! => A points at B

 CALL MODIFY_B(B) ! the value associated with A is

 ! implicitly modified

Values by default implies, any use of assignment between two

objects must behave as though all data in the object on the

right hand side of the assignment is copied to the left hand

side. Pointer assignment must be specifically invoked to avoid

this behavior. Values by default semantics minimizes the danger

of unintentionally modifying an object, but has the potential of

increasing the amount of copying and temporaries generated by

the code. The user will find it awkward that the vast majority

of time he will want to override the default in order to use

reference semantics.

Pure functional access implies that no object may be modified by

a modification of another object. This retains the safety of

values by default, and usually should have close to the

efficiency of reference semantics. However, there will be cases

where compile time analysis is unable to ensure safety. For such

cases, objects will have to have run time tags and that whenever

they are modified there is the potential for a cascade of

copyings that can result in difficult to understand losses of

performance.

Question I.5. Should the language include “dynamic dispatch” for

polymorphic objects?

Page 14

Comment on Question I.5. Dispatch occurs when procedure to

be invoked depends not only on the procedure’s name but also on

the type of at least one of the arguments to the procedure. In

principle a complete inter-procedural analysis can eliminate the

need for dynamic dispatch, but in practice such an analysis is

impractical for all but small codes. Dynamic dispatch is then

required if the amount of local information is insufficient to

determine the specific type of entities. Fortran’s KIND values

currently define static dispatch for polymorphic objects.

My preference is to have dynamic dispatch, with an explicit

notation used to indicate the arguments upon which the dispatch

is based.

 II. Dynamic Dispatch

 Dynamic dispatch occurs if the local information is

insufficient to statically determine the detailed types of all

the entities that are nominally arguments to a procedure. In

such a case the processor must provide a means of determining at

run time the detailed types of the arguments so that the

appropriate procedure can be invoked (the last part is sometime

stated “so that the appropriate message can be dispatched”).

Dynamic dispatch can be though of as dynamically resolved

polymorphism.

Page 15

Note: I have a minor quibble with this definition, as it is

based on an implementation technique and not the underlying

semantics. It is possible that with sufficient global analysis a

compiler will statically determine the procedure to be invoked

although there may be insufficient for the programmer to

determine that dynamic dispatch is not used.

Note: This category involves more knowledge of the

implementation details then the other categories and would

greatly benefit from input from a compiler writer.

 A. Should the language include dynamic dispatch?

Comments on II.A.

 The main tradeoffs here seem to be between a simpler

language definition and increased flexibility in its usage.

 B. Should multiple dispatch be allowed?

Comments on II.B.

 Multiple dispatch occurs when the specific procedure to be

invoked can only be determined by determining the types of more

than one of the arguments to the procedure to be invoked.

Multiple dynamic dispatch increases the language’s flexibility,

but, if utilized, requires a great deal of additional coding on

Page 16

the user’s part, and also increases the dispatch cost. It is

needed if multi-methods are allowed and the matching constraint

is not enforced.

 CLOS and a few other functional object oriented languages

implement this by requiring the processor to automatically

determine the appropriate dispatching. Most other object

oriented languages always dispatch nominally on the type of a

single object. However, C++ and a few other object oriented

languages allow the programmer to directly access the run time

type information in order to resolve the dispatching for the

compiler. It is almost universally claimed that multi-methods of

this form tend to be brittle and break encapsulation, but I have

no direct experience with this capability.

Note: Fortran’s overloaded procedures provide a form of multiple

(static) dispatch.

 C. Should dispatch only be allowed for “tagged” types?

Comments on II.C.

 As I understand it tagging involves attaching type

information to an object so that this information is available

for dispatching and run time type inference. It is usually

simplest to encode this information as an integer, so that the

storage cost of tagging is typically four bytes per object.

Page 17

 D. How should object dispatch be determined by the

language?

Comments on II.D.

 There are at least two possible means of determining

dispatch for an object: either the object of a given type should

be dispatching throughout its existence, or there should be a

syntactic keyword to distinguish between contexts where the

object is non-polymorphic and contexts where it is polymorphic.

This appears to be solely a tradeoff between linguistic

complexity and efficiency.

 III. Questions involving inheritance.

 Inheritance is the definition of a new type (or object) as

an extension of another type (or object)

 A. How should an inheritance relationship be indicated?

Comments on III.A.

 This is a question of syntax that is influenced by the

answers to several questions.

Page 18

 Should it be possible to rename or override components

on inheritance? If so then it is syntactically convenient to

have the keyword indicate the start of a special statement or

appear at the end of a statement with a syntax similar to the

USE statement.

 Should it be necessary to indicate for a type that it

can be inherited, but does not inherit?

 B. What is the relationship between polymorphism and

inheritance?

Comment on III.B.

 There are several possible relationships between

polymorphism and inheritance.

Dynamic (or static) polymorphic relationships are always

specified by means independent of any inheritance relationship.

Dynamic (or static) polymorphic relationships can be specified

by means independent of any inheritance relationship.

Dynamic (or static) polymorphic relationships are always created

by an inheritance relationship.

Dynamic (or static) polymorphic relationships are optionally

created by an inheritance relationship.

Page 19

Dynamic (or static) polymorphic relationships are only created

by an inheritance relationship.

Identifying specific polymorphic “types” with an inheritance

relationship, appears to allows optimizations otherwise

unavailable, i.e., knowledge that a type relationship involves

an inheritance hierarchy allows the compiler to make optimizing

assumptions about the layout of the type structure. but if

required in general reduces the flexibility of the language.

Allowing polymorphic relationships to be specified by a means

independent of any inheritance relationship increases the

flexibility of the typing system.

 C. Should the language allow overriding of inherited

“methods”?

Comments on III.C.

 Most object oriented languages allow overriding of inherited

“methods”. This is a useful capability, but complicates, for the

user, the interactions of the inheritance tree because the

degree of similarity of classes defined along the inheritance

path is reduced by overriding.

 The natural way to implement method overriding in Fortran is

via renaming, etc. upon USE of a module containing the “type” to

be inherited. In fact it appears to be very awkward to attempt

Page 20

to prevent the user from overriding upon use of a module.

Therefore any implementation of inheritance in Fortran requires

careful definition of its interaction with the USE statement.

The importance of this interaction is reduced but not eliminated

if module code can be accessed by means other than USE, e.g.,

the child units of Ada. Should additional syntax be added to

allow overriding type components? This has the related issues

 1. In procedures that have not been overridden invoke a

method that has been overridden, is the new or the overridden

procedure invoked by default?

Comments on III.C.1.

 Either case can be surprising to the user

 2. Does the language provide a means of overriding the

default for overridden procedures?

Comments on III.C.2.

 This increases the number of aspects of inheritance that

have to be learned.

 D. Should multiple inheritance be allowed?

Page 21

Comments on III.D.

 Some languages restrict inheritance to a single line of

ancestors, others allow multiple inheritance lines. Multiple

inheritance is almost necessary if the inheritance hierarchy is

tightly linked to the type hierarchy. Its usage is problematic

in the absence of this constraint.

 1. If multiple inheritance is allowed, how are name

conflicts handled?

Comments on III.D.1.

 The most detailed work on this problem appears to be that

for Cecil. Cecil does not allow any default resolution of name

and method conflicts, requires the compiler to recognize any

conflicts and provides the programmer with constructs to resolve

such conflicts.

 2. If only single inheritance is initially defined, should

it be extensible later to multiple inheritance?

 IV. Encapsulation

 Fortran has the minimal encapsulation capabilities required

of an object oriented language. However most object oriented

Page 22

languages provide additional capabilities beyond those provided

by Fortran.

 A. How should inheritance affect encapsulation?

Comments on IV.A.

 Entities defined along the inheritance path benefit from

having less restricted to a module than other entities. Object

oriented languages have therefore commonly provided an

additional level of accessibility between public and private

either specified explicitly, e.g., C++’s protected, or

implicitly, e.g., Ada’s distinction between private entities

defined in the “specification package” and private entities

defined in the “body package,” and its associated child

packages.

 B. Should encapsulation be made more flexible in general?

Comments on IV.A.

 A number of additional levels (or modes) of encapsulation

have been provided by a number of languages. The include

READ_ONLY (sometimes known as INTENT(IN)), WRITE_ONLY

(sometimes known as INTENT(OUT)), ONCE (functions that calculate

their values once and afterwards always return the same values

(useful for initialization)). Also some languages provide fine

tuning of the encapsulation of the equivalent of Fortran’s

Page 23

derived types by letting some components be marked PRIVATE, some

PUBLIC, some READ_ONLY.

Appendix: The author’s opinions on the issues.

I. Polymorphism

 A. What are the semantic restrictions on polymorphism that

should be recognized in the language?

I would strongly encourage some form of the matching

relationship simply because of the large importance of binary

methods.

 B. What are the sources of polymorphism that should be

recognized in the language?

I say all three, Inheritance, Ad hoc, and parametric.

 C. How should the existence of polymorphic relationships be

Page 24

identified in the language?

Relationship Identification

Matching & Inheritance Implicit by default. A special

 notation for recognizing

 sophisticated forms of matching

 might be desirable

Subtype & Inheritance Implicit as a special case of

 matching if all methods are

 unary, not recognized otherwise

Matching & Parameterization See Matching & Inheritance

Subtype & Parameterization Not recognized

Matching & Ad hoc Must have an explicit notation

Subtype & Ad hoc Not recognized?

Dispatching/non-dispatching Non dispatching by default.

 dispatching should have a special

 notation. Probably best made a

 fundamental aspect of the type

 D. What polymorphic relationships should be allowed between

intrinsic and derived types?

Page 25

 I strongly believe that it would be useful for the users to

be able to declare that a given derived type implements a form

of intrinsic type. Such a capability reduces the need for the

language to explicitly deal with issues such as large integers,

extended precision arithmetic, and would provide a structure for

dealing with special cases such as interval arithmetic.

 I believe that dynamic dispatch should be allowed for

relationships including intrinsic types if and only if the

syntax for invoking dispatch is sufficiently obvious that any

reasonable user will not invoke it by accident.

 While I believe the other capabilities listed here are

useful, I do not consider them to be critical.

 E. What term(s) should be used to identify polymorphic

types?

 My (weak) preference is to extend the usage of the term KIND

as this has the potential of reducing its portability problems

as well providing a basis for identifying other forms of

polymorphism. However this will make the text in the standard

more awkward.

 F. Can closed polymorphic relationships (relationships

involving a fixed set of types) be defined?

Page 26

 I do not have strong feelings on this point.

 G. What should be the semantics of polymorphic objects?

 I slightly lean towards functional semantics.

 II. Dynamic Dispatch

 A. Should the language include dynamic dispatch?

 I would say yes.

 B. Should multiple dispatch be allowed?

 I would say no. If matching is made part of Fortran’s

semantics, the no would be a strong one, if matching were not my

preference would be to have a syntax that can be readily

extended to multiple dispatch, but to begin with a single

dispatch language. In the short term I do not consider the gain

in flexibility to be worth the increase in language and

processor complexity.

 C. Should dispatch only be allowed for “tagged” types?

Page 27

 This is aspect of object orientation with which I have

little familiarity. I am aware that Ada 95 uses the keyword

tagged to identify polymorphic types. I know that a strongly

typed object oriented language requires maintaining information

with the object and tagging implies the presence of this

information. I also believe that an object oriented Fortran

should be strongly typed. It is not clear to me whether tagging

is a generic term for maintaining this information, a special

means of maintaining this information that is of interest to the

compiler writer but should not be required by the standard, or

has sufficient advantages that it should be implicitly or

explicitly required by the standard. I hope Malcolm Cohen has

sufficient information on this to allow adequate discussion of

this topic.

 D. How should object dispatch be determined by the

language?

 My belief is that in this case the increase in linguistic

complexity is small, and the potential performance gains are

sufficiently large that non-dispatching (non-polymorphic)

objects should be allowed.

 III. Questions involving inheritance.

 A. How should an inheritance relationship be indicated?

Page 28

 While not critical for F2000 I would prefer a syntax that

can be extended to allow renaming or overriding of components on

inheritance. I am concerned that requiring an indication that a

type can be inherited, but does not inherit may have problems

similar to C++’s virtual and friends.

 B. What is the relationship between polymorphism and

inheritance?

My preference is to allow polymorphic relationships to be

specified independent of any inheritance hierarchy, but that it

be possible to indicate that the actual relationship satisfies

additional structural constraints, i.e., lies within an

inheritance hierarchy.

 C. Should the language allow overriding of inherited

“methods”?

No preference at this time.

 1. In procedures that have not been overridden invoke a

method that has been overridden, is the new or the overridden

procedure invoked by default?

No preference at this time.

Page 29

 2. Does the language provide a means of overriding the

default for overridden procedures?

No preference at this time.

 D. Should multiple inheritance be allowed?

My preference is to not tie polymorphism strongly to

inheritance. As this makes multiple inheritance much less useful

(while not simultaneously reducing its problems) I would not at

this time include multiple inheritance.

 1. If multiple inheritance is allowed, how are name

conflicts handled?

 Use Cecil's methods if necessary.

 2. If only single inheritance is initially defined, should

it be extensible later to multiple inheritance?

 I see no reason to rule it out for the future and would

encourage the choice of a syntax that could be extended later to

allow multiple inheritance. This mostly implies a syntax that

can be extended to allow renaming and overriding of components.

Page 30

 IV. Encapsulation

 A. How should inheritance affect encapsulation?

 An intermediate level of encapsulation should be provided,

preferably along the lines of Ada’s distinction between private

entities defined in the “specification package” and private

entities defined in the “body package,” and its associated child

packages.

 B. Should encapsulation be made more flexible in general?

 I would appreciate having READ_ONLY module entities, and

more selective encapsulation of the components of derived types,

but neither capability is high on my list of priorities.

Page 31

