
X�J�������	
Page � of �

Date� � February ����
To� X�J�
From� Van Snyder
Subject� Extended TYPE and SUBTYPE Notation for Fortran

Introduction

Some of the irregularity in Fortran is caused by the absence of a consistent
and complete type and subtype system	

Some of the present proposals for additions in Fortran 
��� attack this
problem obliquely� or suer themselves from the absence of a complete and
consistent type and subtype system	

We propose here a syntax for type and subtype declaration� based on
present Fortran syntax conventions and interpretations	

We propose for discussion several applications of a more complete and
consistent type and subtype system	 We do not assert that this proposal
provides a complete discussion of the problem	

Much of the problem of types and subtypes has been previously consid�
ered in depth by workers in other but related �elds	 We commend to you
especially the Ada��� and Ada��� standards and rationales� and related text�
books� monographs and articles	 The doctoral dissertation and other work
by Paul Hil�nger at MIT� and work by Luca Cardelli� are also germane	

� Attributing the TYPE statement

Fortran has developed a tradition of using attributes to re�ne the meaning of
declarations	 At present� the only attribute allowed for a type�declaration�

stmt is access�spec	 We propose to allow additional existing attributes� viz�
ALLOCATABLE or POINTER �but not both�� DIMENSION and EXTER�
NAL	

We propose a new attribute for TYPE� viz� INTERFACE� explained
below	

Every object declared to be of a type having attributes enjoys simulta�
neously all the attributes speci�ed for the type	



X�J�������	
Page 
 of �

��� Interaction of POINTER and DIMENSION attributes

If a TYPE has both the POINTER and DIMENSION attributes� an object
of that type is a �pointer to an array�� just as would be an object that had
both attributes speci�ed in its declaration	

If a TYPE has the DIMENSION attribute and an object of the type has
the POINTER attribute� the object is a �pointer to an array�	

If a TYPE has the POINTER attribute� and an object of the type has
the DIMENSION attribute� the object is an �array of pointers	�

If a TYPE has the POINTER and DIMENSION attributes� and an
object of the type has the DIMENSION attribute� the object is a �an array
of pointers to arrays	�

��� Arrays of arrays

If a TYPE has the DIMENSION attribute� and an object of the type has the
DIMENSION attribute� the object is an �array of arrays	� In this case� the
array is stored in row major order	 We propose that the syntax for reference
to an element of an object of the type� say A� should be A�i��j�	 This is a
consistent extension to the notation used to access objects of CHARACTER
type	

��� The EXTERNAL attribute

The external attribute is used to declare that the storage organization of
a type is to be the same as for another processor� perhaps for a dierent
language	 In the document N�
��	alt� for example� we propose using EX�
TERNAL�C� to indicate that a Fortran derived type is to have the same
storage organization as a C language struct	

��� The INTERFACE attribute

If a type�declaration�stmt includes the INTERFACE attribute then the body
of the type declaration is identical in form and meaning to an interface body	
An object of the type is a �procedure valued variable	� It is unlikely one
would wish to store the body of a procedure� so an object of a type bearing
the INTERFACE attribute almost certainly would also be a �pointer to
procedure�� even if it did not enjoy the POINTER attribute	

At present� it appears that the only meaningful declaration is of a single
explicit interface to a procedure	 That is� declaration that a type is an inter�
face to ASSIGNMENT��� or OPERATOR�			� appears not to be valuable	



X�J�������	
Page � of �

Declaration that a type is an interface to a generic collection of procedures
might have value for dynamic polymorphism or dynamic dispatching� a topic
important to object oriented programming	

A procedure may be �assigned� to a variable having the INTERFACE
attribute only if it has identical characteristics to the INTERFACE	

Here is an example	

TYPE� INTERFACE �� TS � omit TS and use S for the type name�

SUBROUTINE S � A� I � � The name S is irrelevant

REAL �� A���

INTEGER I

END SUBROUTINE S

END TYPE TS

TYPE�TS� �� PS

���

PS 	
 SUB� � SUB� characteristics must match TS

���

CALL PS � X������ �

��� Types as attributes

A type� including an intrinsic type� can be an attribute of a type	 This
introduces a new type� even if no additional attributes are speci�ed	 Thus
TYPE� POINTER� TYPE�A� �� B introduces a new type B� objects of which
are pointers to objects of type A	 The type used as an attribute is called the
base type	

This allows pointers to pointers 			 to pointers 				 Since Fortran uses
automatic dereferencing� this is a problem	 If we have a type TB that
resolves to �pointer to pointer to pointer to integer�� X is of type TB and
Y is integer� what do X 	 Y and X 	
 Y mean� If this problem cannot be
resolved� it would be best to prohibit types to have the POINTER attribute	

If parameterized derived types are introduced into Fortran� then a new
type may take generic parameters that specify some or all of the parameters
of the base type	 If some of the parameters of the base type are speci�ed as
constants� and some by parameters of the new type� the eect is similar to
a technique in functional programming known as �partial application	�



X�J�������	
Page � of �

� Subtypes

A subtype declaration introduces a new name that denotes an existing type�
perhaps with restrictions	 If there are no restrictions� then a subtype decla�
ration eectively introduces a synonym for an existing type	

A subtype declaration may declare a subtype of an intrinsic type	
As in WG��N�
�� we propose to use the 	� notation to indicate a

subtype name� with usage consistent to usage in the USE statement	 That
is� the name on the left side of 	� is the new �subtype� name� and the
declaration on the right side of 	� declares the type or subtype from which
the subtype is derived �the base type�	

Although the base type may have attributes� neither the base type ref�
erence nor the new subtype speci�cation may have adjoining attribute spec�
i�cations in the subtype declaration	 For example� one cannot declare a
subtype to be an array of or pointer to the base type	

As for types� a subtype of a generic type or subtype may specialize zero�
some or all of the generic parameters of the base type or subtype	

Subtypes of INTEGER can presently be only imprecisely described� by
using SELECTED INT KIND	 Declaration of subtypes of integer should be
made more precise	 One way is to allow declaration of a KIND parameter
by using an extension of SELECTED INT KIND that takes an argument of
type SEQUENCE �see X�J��������� to denote the lower and upper bound
for values of the subtype	 Another way is to introduce a new type parameter
�not an attribute�� say RANGE� to denote the bounds	 For example

TYPE �� I�� 	
 INTEGER�RANGE	�����

denotes a subtype of integer� for which values of objects of the subtype must
be in the range ����	

Dimension declarations should be extended to allow subtypes of integer�
in addition to objects of subtypes of integer� to be dimensions	 Continu�
ing the previous example REAL� DIMENSION�I��� �� A declares an array
having dimension ����� and that subscripts must be of subtype I�� or a
subtype thereof	 If a compiler performs range checking of values assigned
to objects of a subtype� then when a subscript consists of a variable of the
same subtype as the dimension of the array� the value of the subscript is
known to be within range	 One can continue this argument backward by
induction through assignments from objects of the same subtype� or loop
inductors	 The eect is that in many cases one gets array bounds checking
at no run�time cost � it�s a compile�time �theorem	�


