X3J3/97-120
Page 1 of 4

Date: 8 February 1997
To: X3J3

From: Van Snyder
Subject: Extended TYPE and SUBTYPE Notation for Fortran

Introduction

Some of the irregularity in Fortran is caused by the absence of a consistent
and complete type and subtype system.

Some of the present proposals for additions in Fortran 2000 attack this
problem obliquely, or suffer themselves from the absence of a complete and
consistent type and subtype system.

We propose here a syntax for type and subtype declaration, based on
present Fortran syntax conventions and interpretations.

We propose for discussion several applications of a more complete and
consistent type and subtype system. We do not assert that this proposal
provides a complete discussion of the problem.

Much of the problem of types and subtypes has been previously consid-
ered in depth by workers in other but related fields. We commend to you
especially the Ada-83 and Ada-95 standards and rationales, and related text-
books, monographs and articles. The doctoral dissertation and other work
by Paul Hilfinger at MIT, and work by Luca Cardelli, are also germane.

1 Attributing the TYPE statement

Fortran has developed a tradition of using atiributes to refine the meaning of
declarations. At present, the only attribute allowed for a type-declaration-
stmt is access-spec. We propose to allow additional existing attributes, viz.
ALLOCATABLE or POINTER (but not both), DIMENSION and EXTER-
NAL.

We propose a new attribute for TYPE, viz. INTERFACE, explained
below.

Every object declared to be of a type having attributes enjoys simulta-
neously all the attributes specified for the type.

X3J3/97-120
Page 2 of 4

1.1 Interaction of POINTER and DIMENSION attributes

If a TYPE has both the POINTER and DIMENSION attributes, an object
of that type is a “pointer to an array,” just as would be an object that had
both attributes specified in its declaration.

If a TYPE has the DIMENSION attribute and an object of the type has
the POINTER attribute, the object is a “pointer to an array”.

If a TYPE has the POINTER attribute, and an object of the type has
the DIMENSION attribute, the object is an “array of pointers.”

If a TYPE has the POINTER and DIMENSION attributes, and an
object of the type has the DIMENSION attribute, the object is a “an array
of pointers to arrays.”

1.2 Arrays of arrays

If a TYPE has the DIMENSION attribute, and an object of the type has the
DIMENSION attribute, the object is an “array of arrays.” In this case, the
array is stored in row major order. We propose that the syntax for reference
to an element of an object of the type, say A, should be A(i)(j). This is a
consistent extension to the notation used to access objects of CHARACTER

type.

1.3 The EXTERNAL attribute

The external attribute is used to declare that the storage organization of
a type is to be the same as for another processor, perhaps for a different
language. In the document N1237.alt, for example, we propose using EX-
TERNAL(C) to indicate that a Fortran derived type is to have the same
storage organization as a C language struct.

1.4 The INTERFACE attribute

If a type-declaration-stmt includes the INTERFACE attribute then the body
of the type declaration is identical in form and meaning to an interface body.
An object of the type is a “procedure valued variable.” It is unlikely one
would wish to store the body of a procedure, so an object of a type bearing
the INTERFACE attribute almost certainly would also be a “pointer to
procedure,” even if it did not enjoy the POINTER attribute.

At present, it appears that the only meaningful declaration is of a single
explicit interface to a procedure. That is, declaration that a type is an inter-

face to ASSIGNMENT (=) or OPERATOR(...) appears not to be valuable.

X3J3/97-120
Page 3 of 4

Declaration that a type is an interface to a generic collection of procedures
might have value for dynamic polymorphism or dynamic dispatching, a topic
important to object oriented programming.

A procedure may be “assigned” to a variable having the INTERFACE
attribute only if it has identical characteristics to the INTERFACE.

Here is an example.

TYPE, INTERFACE :: TS ! omit TS and use S for the type name?
SUBROUTINE S (A, I) ! The name S is irrelevant
REAL :: A(:)
INTEGER I
END SUBROUTINE S
END TYPE TS
TYPE(TS) :: PS

PS => SUB1 ! SUB1 characteristics must match TS

CALL PS (X(1:5), 3)

1.5 Types as attributes

A type, including an intrinsic type, can be an attribute of a type. This
introduces a new type, even if no additional attributes are specified. Thus
TYPE, POINTER, TYPE(A) :: Bintroduces a new type B, objects of which
are pointers to objects of type A. The type used as an attribute is called the
base type.

This allows pointers to pointers ... to pointers Since Fortran uses
automatic dereferencing, this is a problem. If we have a type TB that
resolves to “pointer to pointer to pointer to integer,” X is of type TB and
Y is integer, what do X = Y and X => Y mean? If this problem cannot be
resolved, it would be best to prohibit types to have the POINTER attribute.

If parameterized derived types are introduced into Fortran, then a new
type may take generic parameters that specify some or all of the parameters
of the base type. If some of the parameters of the base type are specified as
constants, and some by parameters of the new type, the effect is similar to
a technique in functional programming known as “partial application.”

X3J3/97-120
Page 4 of 4

2 Subtypes

A subtype declaration introduces a new name that denotes an existing type,
perhaps with restrictions. If there are no restrictions, then a subtype decla-
ration effectively introduces a synonym for an existing type.

A subtype declaration may declare a subtype of an intrinsic type.

As in WG5/N1237 we propose to use the => notation to indicate a
subtype name, with usage consistent to usage in the USE statement. That
is, the name on the left side of => is the new (subtype) name, and the
declaration on the right side of => declares the type or subtype from which
the subtype is derived (the base type).

Although the base type may have attributes, neither the base type ref-
erence nor the new subtype specification may have adjoining attribute spec-
ifications in the subtype declaration. For example, one cannot declare a
subtype to be an array of or pointer to the base type.

As for types, a subtype of a generic type or subtype may specialize zero,
some or all of the generic parameters of the base type or subtype.

Subtypes of INTEGER can presently be only imprecisely described, by
using SELECTED_INT_KIND. Declaration of subtypes of integer should be
made more precise. One way is to allow declaration of a KIND parameter
by using an extension of SELECTED_INT_KIND that takes an argument of
type SEQUENCE (see X3J3/97-114) to denote the lower and upper bound
for values of the subtype. Another way is to introduce a new type parameter
(not an attribute), say RANGE, to denote the bounds. For example

TYPE :: I10 => INTEGER(RANGE=1:10)

denotes a subtype of integer, for which values of objects of the subtype must
be in the range 1:10.

Dimension declarations should be extended to allow subtypes of integer,
in addition to objects of subtypes of integer, to be dimensions. Continu-
ing the previous example REAL, DIMENSION(I10) :: A declares an array
having dimension 1:10, and that subscripts must be of subtype 110 or a
subtype thereof. If a compiler performs range checking of values assigned
to objects of a subtype, then when a subscript consists of a variable of the
same subtype as the dimension of the array, the value of the subscript is
known to be within range. One can continue this argument backward by
induction through assignments from objects of the same subtype, or loop
inductors. The effect is that in many cases one gets array bounds checking
at no run-time cost —it’s a compile-time “theorem.”

