X3J3/97-122
Page 1 of 4

Date: 4 February 1997

To: X3J3

From: Van Snyder

Subject: Comments on SC22/WG5/N1188: Class inheritance and dynamic
binding polymorphism in Fortran 2000

I am pleased that the basic ideas for class inheritance and dynamic bind-
ing are based on Ada-95 rather than C++. The complication of “friends”
and the upside-down nature of “virtual” are distasteful as compared with the
simplicity of the relation between types and modules, and the type-safety of
class-wide pointers.

A Quibble: I'd rather see

TYPE, INHERIT :: HUMAN
CHARACTER(LEN=4) :: FIRST_NAME

END TYPE HUMAN

TYPE, INHERIT(HUMAN) :: MAN
LOGICAL :: BEARDED = .FALSE.

END TYPE MAN

TYPE, INHERIT(HUMAN) :: WOMAN

END TYPE WOMAN

CLASS(HUMAN) :: OBJ ! or TYPE(HUMAN), CLASS :: 0BJ
! in either case, 0OBJ is a ''class-wide" object

TYPE(HUMAN) :: 0BJ1

TYPE (MAN) :: OBJ2

TYPE(WOMAN) :: 0BJ3

instead of having an INHERIT statement in the body of the type. The
reason is that INHERIT applies to the TYPE, not its components.

It seems that HUMAN(OBJ2) is simply a TRANSFER function, whereas
MAN(OBJ1,.false.) is a derived type constructor. In either case, the re-
sult shouldn’t have the POINTER attribute, except that if OBJ2 has the
POINTER or TARGET attribute, and OBJ1 has the POINTER, attribute,
then OBJ1 => HUMAN(OBJ2) should be allowed, but OBJ2 =>MAN
(OBJ1, .false.) should be prohibited, even if OBJ1 has the TARGET or
POINTER attribute and OBJ2 has the pointer attribute — we don’t allow
I => J+3, even if J has the target or pointer attribute. If OBJ has the
POINTER attribute, and OBJ2 has the TARGET or POINTER attribute

X3J3/97-122
Page 2 of 4

then OBJ =>0BJ2 is allowed. MAN(OBJ1) shouldn’t be allowed (also see
remarks below about auto-specialization).

It seems that a class-wide variable, especially an all-classes-wide variable,
without the pointer attribute, might be a difficulty for the compiler. The
compiler might not be able to know how much storage to allow for

CLASS() :: T3

without reading every module in sight, whereas it would know how much to
allow for

CLASS(), POINTER :: T3
Even

MODULE ONE
CLASS(HUMAN) :: OBJ
MODULE TWO
USE ONE
TYPE, INHERIT(HUMAN) :: CHILD

is a problem if some modules USE ONE but not TWO, and others use both.
So class-wide objects probably must have the POINTER attribute.

CLASS() is a problem for dynamic dispatching. If we have compiled
modules A and B separately (or purchased compiled versions thereof, but
received no source text), and then we have

MODULE C

USE A, ONLY: TA, PA

USE B, ONLY: TB, PB

CLASS() :: Z

INTERFACE PC
SUBROUTINE PA(X) ! X is of TYPE(TA)
SUBROUTINE PB(Y) ! Y is of TYPE(TB)

END INTERFACE

CALL PC(Z)
how does one make the run-time decision whether to call PA or PB if TA,
TB, and an ancestor type of the value currently in 7 all have the same

CLASS_KIND? I don’t think CLASS() can be make to work. I think all we

X3J3/97-122
Page 3 of 4

can say about CLASS_KIND is that every CLASS_KIND in an explicitly
rooted class hierarchy is unique. I don’t think we can guarantee uniqueness
in class hierarchies rooted at () without a world-wide database, or too much
complication.

I'm worried about auto-specialization. If OBJ1 is passed to a procedure
that ordinarily takes an argument of type MAN, what value is given to
the BEARDED component? There’s the same problem for assignment. I'd
prefer MAN(OBJ1,.false.) and WOMAN(OBJ1) to auto-specialization.

Suppose there is

INTERFACE FOO
SUBROUTINE BAR (X)
TYPE(MAN) :: X
END SUBROUTINE BAR
SUBROUTINE BAZ (Y)
TYPE(WOMAN) :: Y
END SUBROUTINE BAZ
END INTERFACE

CALL FOO (0BJ1)

Does BAR or BAZ get invoked?

Auto-generalization, on the other hand, is simple (because of single in-
heritance): If objects don’t have the SEQUENCE attribute, and the super-
class doesn’t have the same storage layout as the collection of variables in
the sub-class that the sub-class inherited from the super-class, make a copy
of the type of the super-class. Otherwise, just pass the sub-class object.
One might suggest (require?) in the standard that the fields inherited from
the super-class always come first in sub-classes, and always have the same
layout as they would have in the super-class, even without the SEQUENCE
attribute. Then one would never need to make a copy to auto-generalize.

If we have a class-wide pointer to the class HUMAN, and it happens to
point to a MAN, then it should be allowed to invoke a procedure P that
takes a MAN. If its value happens to be of type WOMAN, and there’s no
procedure P (or in a generic named P) that takes WOMAN or HUMAN,
there would be a run-time complaint; if its value happens to be of type
HUMAN, and there’s no generic for HUMAN, there would also be a run-
time complaint. One shouldn’t try to create a more specialized object —
just call the most specialized procedure corresponding to the actual type of
object held by a class-wide variable, if any, else announce an error. Maybe
that’s the intent of auto-specialization, but I didn’t get that from N1188.

X3J3/97-122
Page 4 of 4

There’s also an important issue that N1188 doesn’t address. C++ has
a visibility attribute intermediate between PUBLIC and PRIVATE, namely
PROTECTED. Procedures of a derived class have access to PROTECTED
members of a base class, but other procedures do not. That’s not a problem
in the proposed scheme for F2000 if the base and derived types are declared
in the same module, but what if we have

MODULE TWO
USE ONE, ONLY: HUMAN
TYPE, INHERIT(HUMAN) :: CHILD

Does a procedure declared in module TWO have access to the private
fields of HUMAN? “Yes” and “No” are both unacceptable answers. Ada-95
solves this problem by way of “child” units. If we have the following,

MODULE ONEYTWO
TYPE, INHERIT(HUMAN) :: CHILD

the answer in TWO should be “No” but the answer in ONE%TWO should
be “Yes”. The effect is as though the body of ONE were incorporated into
ONE%TWO by INCLUDE instead of USE. This view, however, doesn’t
allow private TYPEs in ONE to be inaccessible in ONE%TWO. Should
they be? I think so, but I could be convinced otherwise.

A better solution would be to separate module interfaces (specification
parts) and implementations into separate program units. Then, USE refers
to an interface module (or an undistinguished module), but not to an imple-
mentation module, and child units implicitly incorporate the text of their
parent unit’s interface module, but not their parent unit’s implementation
module. So things declared in the implementation module are truly PRI-
VATE, even to the extent of being invisible to child units. (I think I've
worked out all the details of this — see X3J3/97-114 or
http://gyre.jpl.nasa.gov/~vsnyder/fortran/modules.html.)

Implementing ”child” units into Fortran could be postponed, but one
must give the notion some thought, so as not to ”paint Fortran into a cor-

ner.”

