
X�J��������
Page � of �

Date� � February ����
To� X�J�
From� Van Snyder
Subject� Comments on SC��	WG
	N����� Class inheritance and dynamic

binding polymorphism in Fortran ����

I am pleased that the basic ideas for class inheritance and dynamic bind

ing are based on Ada
�
 rather than C��� The complication of �friends�
and the upside
down nature of �virtual� are distasteful as compared with the
simplicity of the relation between types and modules� and the type
safety of
class
wide pointers�

A Quibble� I�d rather see

TYPE� INHERIT �� HUMAN

CHARACTER�LEN��� �� FIRST�NAME

END TYPE HUMAN

TYPE� INHERIT�HUMAN� �� MAN

LOGICAL �� BEARDED � 	FALSE	

END TYPE MAN

TYPE� INHERIT�HUMAN� �� WOMAN

END TYPE WOMAN

CLASS�HUMAN� �� OBJ 
 or TYPE�HUMAN�� CLASS �� OBJ


 in either case� OBJ is a �class�wide� object

TYPE�HUMAN� �� OBJ


TYPE�MAN� �� OBJ�

TYPE�WOMAN� �� OBJ�

instead of having an INHERIT statement in the body of the type� The
reason is that INHERIT applies to the TYPE� not its components�

It seems that HUMAN�OBJ�� is simply a TRANSFER function� whereas
MAN�OBJ���false�� is a derived type constructor� In either case� the re

sult shouldn�t have the POINTER attribute� except that if OBJ� has the
POINTER or TARGET attribute� and OBJ� has the POINTER attribute�
then OBJ� �� HUMAN�OBJ�� should be allowed� but OBJ� ��MAN
�OBJ�� �false�� should be prohibited� even if OBJ� has the TARGET or
POINTER attribute and OBJ� has the pointer attribute � we don�t allow
I �� J��� even if J has the target or pointer attribute� If OBJ has the
POINTER attribute� and OBJ� has the TARGET or POINTER attribute



X�J��������
Page � of �

then OBJ ��OBJ� is allowed� MAN�OBJ�� shouldn�t be allowed �also see
remarks below about auto
specialization��

It seems that a class
wide variable� especially an all
classes
wide variable�
without the pointer attribute� might be a di�culty for the compiler� The
compiler might not be able to know how much storage to allow for

CLASS�� �� T�

without reading every module in sight� whereas it would know how much to
allow for

CLASS��� POINTER �� T�

Even

MODULE ONE

CLASS�HUMAN� �� OBJ

			

MODULE TWO

USE ONE

TYPE� INHERIT�HUMAN� �� CHILD

			

is a problem if some modules USE ONE but not TWO� and others use both�
So class
wide objects probably must have the POINTER attribute�

CLASS�� is a problem for dynamic dispatching� If we have compiled
modules A and B separately �or purchased compiled versions thereof� but
received no source text�� and then we have

MODULE C

USE A� ONLY� TA� PA

USE B� ONLY� TB� PB

CLASS�� �� Z

INTERFACE PC

SUBROUTINE PA�X� 
 X is of TYPE�TA�

SUBROUTINE PB�Y� 
 Y is of TYPE�TB�

END INTERFACE

			

CALL PC�Z�

how does one make the run
time decision whether to call PA or PB if TA�
TB� and an ancestor type of the value currently in Z all have the same
CLASS KIND� I don�t think CLASS�� can be make to work� I think all we



X�J��������
Page � of �

can say about CLASS KIND is that every CLASS KIND in an explicitly
rooted class hierarchy is unique� I don�t think we can guarantee uniqueness
in class hierarchies rooted at �� without a world
wide database� or too much
complication�

I�m worried about auto
specialization� If OBJ� is passed to a procedure
that ordinarily takes an argument of type MAN� what value is given to
the BEARDED component� There�s the same problem for assignment� I�d
prefer MAN�OBJ���false�� and WOMAN�OBJ�� to auto
specialization�

Suppose there is

INTERFACE FOO

SUBROUTINE BAR �X�

TYPE�MAN� �� X

END SUBROUTINE BAR

SUBROUTINE BAZ �Y�

TYPE�WOMAN� �� Y

END SUBROUTINE BAZ

END INTERFACE

			

CALL FOO �OBJ
�

Does BAR or BAZ get invoked�
Auto
generalization� on the other hand� is simple �because of single in


heritance�� If objects don�t have the SEQUENCE attribute� and the super

class doesn�t have the same storage layout as the collection of variables in
the sub
class that the sub
class inherited from the super
class� make a copy
of the type of the super
class� Otherwise� just pass the sub
class object�
One might suggest �require�� in the standard that the �elds inherited from
the super
class always come �rst in sub
classes� and always have the same
layout as they would have in the super
class� even without the SEQUENCE
attribute� Then one would never need to make a copy to auto
generalize�

If we have a class
wide pointer to the class HUMAN� and it happens to
point to a MAN� then it should be allowed to invoke a procedure P that
takes a MAN� If its value happens to be of type WOMAN� and there�s no
procedure P �or in a generic named P� that takes WOMAN or HUMAN�
there would be a run
time complaint� if its value happens to be of type
HUMAN� and there�s no generic for HUMAN� there would also be a run

time complaint� One shouldn�t try to create a more specialized object �
just call the most specialized procedure corresponding to the actual type of
object held by a class
wide variable� if any� else announce an error� Maybe
that�s the intent of auto
specialization� but I didn�t get that from N�����



X�J��������
Page � of �

There�s also an important issue that N���� doesn�t address� C�� has
a visibility attribute intermediate between PUBLIC and PRIVATE� namely
PROTECTED� Procedures of a derived class have access to PROTECTED
members of a base class� but other procedures do not� That�s not a problem
in the proposed scheme for F���� if the base and derived types are declared
in the same module� but what if we have

MODULE TWO

USE ONE� ONLY� HUMAN

TYPE� INHERIT�HUMAN� �� CHILD

			

Does a procedure declared in module TWO have access to the private
�elds of HUMAN� �Yes� and �No� are both unacceptable answers� Ada
�

solves this problem by way of �child� units� If we have the following�

MODULE ONE�TWO

TYPE� INHERIT�HUMAN� �� CHILD

			

the answer in TWO should be �No� but the answer in ONE�TWO should
be �Yes�� The e�ect is as though the body of ONE were incorporated into
ONE�TWO by INCLUDE instead of USE� This view� however� doesn�t
allow private TYPEs in ONE to be inaccessible in ONE�TWO� Should
they be� I think so� but I could be convinced otherwise�

A better solution would be to separate module interfaces �speci�cation
parts� and implementations into separate program units� Then� USE refers
to an interface module �or an undistinguished module�� but not to an imple

mentation module� and child units implicitly incorporate the text of their
parent unit�s interface module� but not their parent unit�s implementation
module� So things declared in the implementation module are truly PRI

VATE� even to the extent of being invisible to child units� �I think I�ve
worked out all the details of this � see X�J�	��
��� or
http���gyre	jpl	nasa	gov��vsnyder�fortran�modules	html��

Implementing �child� units into Fortran could be postponed� but one
must give the notion some thought� so as not to �paint Fortran into a cor

ner��


