
X�J��������
Page � of ��

Date� � February ����
To� X�J�
From� Van Snyder
Subject� Alternative to N���� and ����	

This report proposes revisions to ISO�IEC JTC��SC���WG� N����
also known as X�J������	
� Sections or sub�sections having the same title
as sections or sub�sections in N���� are proposed replacements�

N���� o�ers dangerous additional functionality in addition to provid�
ing for interoperability of Fortran and C� In particular POINTER is an
attribute in Fortran instead of a type and the only operation de�ned is
pointer assignment �dereferencing is automatic�� This allows optimizations
that are prohibited to C compilers by the possibility of undisciplined use of
pointers� O�ering C ADDRESS C INCREMENT and C DEREFERENCE
undermines the possibility to incorporate these optimizations into Fortran�

One could provide interoperability functionality without introducing new
keywords� Fortran has developed a tradition to annotate attributes� This
report proposes to annotate EXTERNAL and POINTER attributes and
allow to attach them into contexts where they are presently prohibited�

The mechanism proposed in N���� by which varying length C argument
lists are passed to C functions requires that the Fortran processor be aware of
the properties of a derived type TYPE�C VA LIST� and transform values
of that type is speci�c ways� This proposal removes that requirement�

In addition this proposal extends the functionality of the previous pro�
posal in a �safe� direction by de�ning how CHARACTER variables of size
other than one Fortran pointers and assumed�shape arrays can be used as
actual arguments to C procedures�

The revisions proposed herein have no impact on existing programs�
This report does not propose any new intrinsic procedures�

� General

This report does not propose to change the corresponding section of N�����

� Rationale

This report does not propose to change the corresponding section of N�����

X�J��������
Page � of ��

� Technical Speci�cations

This report does not propose to change the introduction to the corresponding
section of N�����

��� Intrinsic modules and C standard headers

This report does not propose to change the corresponding section of N�����

��� Parameterization of the EXTERNAL and POINTER at�
tributes

This section is proposed to replace section ��� The BIND attribute of
N�����

The Fortran standard does not specify the mechanisms by which pro�
grams are transformed for use on computing systems ������ Additionally
a reference in a Fortran program to a procedure de�ned by means other
than Fortran is normally made as though it were de�ned by an external
subprogram ���������

This Technical Report de�nes parameters of EXTERNAL and POINT�
ER attributes that may be employed to adapt the behavior of the Fortran
processor to the behavior of another processor possibly for another lan�
guage in a portable way� Parameterization of EXTERNAL and POINTER
may be used in all places where it is necessary to inform the Fortran proces�
sor that a change of processor dependent or language dependent conventions
is required� This section speci�es the general form of the parameters of EX�
TERNAL and POINTER�
R�	� attr�spec is EXTERNAL � � � LANG � �

lang�keyword
� �NAME � � name�string �
� PRAGMA �
pragma�string � � �

or POINTER � � � LANG � �
lang�keyword
� PRAGMA �
pragma�string � � �

R��	� lang�keyword is FORTRAN
or C

R��	� name�string is scalar�default�char�init�expr
R��	� pragma�string is scalar�default�char�init�expr

X�J��������
Page � of ��

Constraint� If name�string is present and lang�keyword is FORTRAN the
value of name�string shall be a valid Fortran name�

Constraint� If name�string is present and lang�keyword is C the value of
name�string shall be a valid C external name�

The processor shall support at least those lang�keywords listed in R��	��
support of other lang�keywords is processor dependent� The processor shall
report the use of unsupported lang�keywords�

The term �EXTERNAL�lang�keyword� attribute� or �POINTER�lang�
keyword� attribute� denotes the EXTERNAL or POINTER attribute with
the given lang�keyword parameter� neither term implies the presence or ab�
sence of a name�string or pragma�string�

EXTERNAL�FORTRAN� and POINTER�FORTRAN� specify the de�
fault behavior of the Fortran processor� The behavior for lang�keyword C
is de�ned in this Technical Report� The behavior for lang�keywords other
than those listed in R��	� is processor dependent� The interpretation of
pragma�strings is processor dependent�

Selecting the programming language C with the lang�keyword Note ���
alone does not specify the implementation�de�ned and imple�
mentation�dependent behavior of the C processor and specifying
such information would in fact make the program unportable�
The Fortran processor should be accompanied by documentation
that states which C processor�s conventions are followed�

If multiple C processors are supported selection of a speci�c C
processor should occur separately from the Fortran program �e�g�
by command�line arguments to the Fortran processor� rather
than by introducing additional lang�keywords for nondefault C
processors�

Although names of C entities are normally case�sensitive a C Note ���
processor may ignore the distinctions of alphabetic case of ex�
ternal names� This limitation is implementation�de�ned�

A strictly conforming C program shall not rely on the imple�
mentation�de�ned behavior and a Fortran processor that does
not support lower case letters still conforms to this Technical
Report because it will be able to generate bindings to all external
names that are allowed in a strictly conforming C program�

C�� has a linkage�speci�cation ����� that is similar in usage to Note ���
parameters of EXTERNAL� The processor must support the val�
ues �C� and �C���� C�� does not however need a NAME�

X�J��������
Page � of ��

clause because C and C�� have the same �case sensitive� rules
for names and the C�C�� pre�processor processes �pragmas�

An EXTERNAL attribute with parameters may appear as part of an
INTERFACE statement and as a attr�spec in a type�declaration�stmt� EX�
TERNAL and POINTER attributes with parameters may appear as an
attr�spec for a data object� The EXTERNAL statement with attributes
may also be used to attach the EXTERNAL�C� attribute to a data object�

Section ����� describes the use of parameters of the EXTERNAL at�
tribute to map C structure types to Fortran� Section ��� shows how to use
parameters of the EXTERNAL and POINTER attributes in explicit pro�
cedure interfaces to map C function prototypes to Fortran� Section ��� ex�
plains how to use parameters of the EXTERNAL and POINTER attributes
to bind to C data objects with external linkage�

��� Datatype mapping

This section speci�es the mapping of C object types to Fortran types� To
specify C function types a Fortran program shall use explicit procedure in�
terfaces with the EXTERNAL�C� attribute as described in section ���� The
only C incomplete types supported are C function parameters of unknown
size� These are mapped to assumed�size dummy arrays �see section �������

The incomplete type void is not supported� The types �pointer Note ��	
to void� and �function returning void� are supported �see sec�
tions ����� and �����

Both languages de�ne object types that are intrinsically available� These
are called intrinsic types in Fortran and basic types in C� Derived types can
be constructed from them�

The C enumerated types declared with the type speci�er enum Note ��

are not speci�ed to be basic types in the C standard �they are
integral types but not integer types� but neither are they spec�
i�ed to be derived types� Section ����� addresses C enumerated
types�

Section ����� speci�es a complete mapping of C basic types to Fortran
types� Access to the corresponding environmental limits is speci�ed in sec�
tion ������ The remaining sections deal with some of the derived types of

X�J��������
Page � of ��

C� The mechanisms de�ned in this Technical Report do not specify map�
pings for all possible C data types� Derived type generation in C can be
recursively applied� Not all resulting types have a general approximation in
Fortran types�

�	�	� Matching C basic types with Fortran intrinsic types

This report does not propose to change the corresponding section of N�����

�	�	� Numerical limits of the C environment

This report does not propose to change the corresponding section of N�����

�	�	� C enumerated types

This report does not propose to change the corresponding section of N�����

�	�	
 C structure types

A structure type in C with member objects that all have a type for which this
Technical Report establishes a corresponding Fortran type can be mapped
to a Fortran derived type by using a derived type de�nition� To ensure
that the memory layout of the Fortran derived type matches the memory
layout of the C struct the EXTERNAL�C� attribute shall be speci�ed
in the derived�type�def� The EXTERNAL�FORTRAN� attribute or the
EXTERNAL attribute alone may not be used in a derived�type�def�

A pragma�string may be used to provide additional implementa� Note ����
tion�dependent information to the Fortran processor� For exam�
ple �pragma options settings to describe alignment of C struc�
tures may be given� Interpretation of pragma�strings is processor
dependent�

The order of Fortran component�def�stmts shall be identical to the order
of the corresponding C struct�declaration�list� A component�initialization
shall not be speci�ed for derived types that have the EXTERNAL�C� at�
tribute�

For example the C structure type declaration Note ����

struct point �

int x�

X�J��������
Page � of ��

int y�

��

can be mapped to Fortran in the following way�

TYPE� EXTERNAL�C� �� point

INTEGER�c	int� �� x� y

END TYPE point

The Fortran type�name need not correspond to the tag of the C
struct because both are local to their respective scoping units�
Consequently a NAME� clause in an EXTERNAL�C� speci��
cation within a derived type de�nition is not allowed� Similarly
the Fortran member objects need not have the same names as
the C structure members�

Nested structures can be treated in a natural way� A Fortran derived
type with the EXTERNAL�C� attribute may have components that are of
derived types so long as those derived types also have the EXTERNAL�C�
attribute�

The C structure type declaration Note ������

struct rect �

struct point pt
�

struct point pt��

��

can be mapped to the Fortran type declaration

TYPE� EXTERNAL�C� �� rect

TYPE�point� �� pt
� pt�

END TYPE rect

using the above mapping for struct point for the member ob�
jects�

POINTER�C� may be used for a component�attr�spec �see section �������
The POINTER �FORTRAN� or POINTER attribute may not be used for
a component�attr�spec in a derived type de�nition that has the EXTER�
NAL�C� attribute�

X�J��������
Page � of ��

For example the C structure Note ���

struct tnode �

char �word�

int cout�

struct tnode �left�

struct tnode �right�

��

might be used to represent a binary tree with two data �elds
and two pointers to other nodes of the tree� It can be mapped
to Fortran by the derived type de�nition

TYPE� EXTERNAL�C� �� tnode

CHARACTER�KINDc	char�� POINTER�C� �� word���

INTEGER�c	int� �� count

TYPE�tnode�� POINTER�C� �� left� right

END TYPE tnode

C structs that specify bit��elds cannot be mapped to Fortran by any
mechanism speci�ed in this Technical Report�

�	�	� C union types

Fortran does not directly support union types and this Technical Report
does not provide features to map C union types to Fortran�

C objects of union type may be accessed by specifying separate Note ����
EXTERNAL�C� derived types for each union member �as if that
member were the only member of a struct� and using TRANS�
FER or EQUIVALENCE to convert between these types� The
derived type used in the actual C binding must be �wide� enough
to hold the �widest� member of the union and at the same time
ful�ll the most restrictive alignment requirements of all union
members� In

union u	tag �

char name�
���

double val�

��

X�J��������
Page
 of ��

the member name probably is the widest member but the mem�
ber val probably has the more restrictive alignment require�
ments� This means that even if

TYPE� EXTERNAL�C� �� u	name

CHARACTER�c	char�� �� name�
��

END TYPE u	name

TYPE� EXTERNAL�C� �� u	val

REAL�c	dbl� �� val

END TYPE u	val

are suitable de�nitions for the union members both are prob�
ably insu�cient to bind to the union object u tag� It may be
necessary to employ an additional derived type

TYPE� EXTERNAL�C� �� u	fits	all

REAL�c	dbl� �� alignment

CHARACTER�c	char� �� fill	up���

END TYPE u	fits	all

to ful�ll both the size and alignment requirements�

�	�	� C array types

This report does not propose to change the corresponding section of N�����

�	�	� C pointer types

In C the pointer type �pointer to T� derived from the referenced type T
is di�erent from the referenced type T and is also di�erent from pointer
types derived from other types� Like all C derived type constructions the
C pointer type derivation may be applied recursively�

A C pointer to a C basic or derived type can be mapped to Fortran
by including the POINTER�C� attribute in the declaration of objects of
the Fortran type to which the corresponding C types are mapped� The
POINTER�C� attribute may only be used with scalars explicit�shape arrays
or assumed�shape arrays of rank one� Neither whole�array operations nor
the UBOUND LBOUND or SIZE intrinsic functions may be applied to
assumed�shape arrays that enjoy the POINTER�C� attribute�

X�J��������
Page � of ��

A C pointer to a char is usually a pointer to an array of inde�nite length�
The end of the array is usually denoted by the character having numeric rep�
resentation zero denoted in C by NULL� This character has the representation
CHAR�	� in Fortran� In Fortran arrays of characters have a speci�ed size
and are not terminated by CHAR�	�� Mapping a CHARACTER��� array
to a �pointer to char� by using the POINTER�C� attribute does not au�
tomatically insert CHAR�	� at the end of a CHARACTER��� array� One
should allow an extra array element and then insert CHAR�	� after the last
character to be considered part of the argument� By using EQUIVALENCE
between a CHARACTER��� array and a character scalar having the same
length as the array size one can use LEN TRIM to determine the position
of the last non�blank character in an array�

The CHARACTER type in Fortran needs regularization� Note

A C pointer to a C pointer may be mapped to a Fortran object hav�
ing the POINTER�C� attribute of a type that is a Fortran derived type
with the EXTERNAL�C� attribute having a component annotated with
the POINTER�C� attribute�

Pointer assignment is extended to convert between POINTER�C� and
POINTER�FORTRAN�� A POINTER�C� pointer that accesses an array
may be assigned by pointer assignment to a POINTER�FORTRAN� pointer
only if both pointers have explicit�shapes that are the same� Any POINTER
�C� object may be assigned the value NULL�� by pointer assignment�

A POINTER�C� object may be assigned to point to a TARGET that is
a scalar or an array of explicit shape� If the type is a character type the
length must be one�

The NULLIFY statement is extended to nullify POINTER�C� pointers�
The ASSOCIATED intrinsic function is extended to allow arguments

with the POINTER�C� attribute�

POSIX�� speci�es that the values of environment variables are Note ��

accessible through an external variable declared

extern char ��environ�

This is a pointer to a null�terminated array of pointers to null�
terminated character strings�

A rank one assumed�shape array with the POINTER�C� and
EXTERNAL�C� attributes �see also section ���� may be used to
access environment variables in POSIX�� compliant systems�

X�J��������
Page �	 of ��

TYPE� EXTERNAL�C� �� env

CHARACTER��KINDc	char�� POINTER�C� �� envc���

END TYPE env

TYPE�env�� POINTER�C�� EXTERNAL�C��environ�� �� �

� envs�
��

The end of the array is denoted by an element of envs say
envs�j� for which ASSOCIATED�envs�j��envc� is �false� Indi�
vidual characters of an environment string may be accessed by
using envs�j��envc�k�� The end of an environment string is
denoted by envs�j��envc�k� CHAR���KINDc char��

�	�	 C function types

C function types whose declarator does not contain a parameter�type�list
��K�R style�� are not supported by this Technical Report� The speci�ca�
tion of a C function prototype by means of an explicit interface with the
EXTERNAL�C� attribute is described in section ������

�	�	� Handling of C typedef names

In C a declaration whose storage�class�speci�er is typedef can be used
to de�ne identi�ers that name types� These typedef�names do not intro�
duce new types � only synonyms for types that could have been speci�ed
in another way� They may be used as type�speci�ers� typedef�names may
be simulated in Fortran by constructing a Fortran derived type having one
component of the type of the name for which a synonym is to be constructed�
In Fortran this introduces a new type�

The Xlib application programming interface includes a type Win� Note ����
dow� It is de�ned in �X

�Xlib�h� by the following typedefs�

typedef unsigned long XID�

typedef XID Window�

Rather than directly using an INTEGER�c ulong� type�spec in
the application program these details may be at least partly
hidden by declaring the following types�

TYPE XID

INTEGER�c	ulong� �� XID	value

X�J��������
Page �� of ��

END TYPE XID

TYPE Window

TYPE�XID� �� Window	ID

END TYPE Window

�	�	�� Type quali�ers

This report does not propose to change the corresponding section of N�����

�	�	�� Storage class speci�ers

This report does not propose to change the corresponding section of N�����

��� Procedure calling conventions

This section de�nes mechanisms to instruct the Fortran processor to follow
the calling conventions of the processor designated by the lang�keyword C
when an external procedure de�ned by means of C is referenced� An explicit
interface for that procedure shall be accessible in all scoping units containing
a procedure reference that must use these modi�ed calling conventions� The
function�stmt or subroutine�stmt in the corresponding interface�body shall
contain an EXTERNAL�C� attribute�

Section ����� contains the rules for the speci�cation of a Fortran explicit
interface corresponding to a C function prototype� Section ����� describes
the procedure reference to such a procedure including the modi�ed process
of argument association� Support for C varying length argument lists is
provided in section ������

�	
	� Procedure interface using the EXTERNAL�C� attribute

This Technical Report does not support �K�R style� C function declara�
tions that do not contain a parameter�type�list� An explicit interface with
the EXTERNAL�C� attribute corresponds to a C function prototype that
includes a parameter�type�list�

This restriction is imposed to avoid the complicated rules of C Note ���
for mixed �K�R� and �ANSI� style function declarations and
de�nitions�

When binding to a C function whose de�nition is speci�ed us�
ing �K�R� style an explicit interface must be speci�ed that
corresponds to the C function prototype that would result from

X�J��������
Page �� of ��

C�s default argument promotion of the �K�R� style C function
de�nition�

Pre�x speci�cations The pre�x of an interface�stmt that introduces an
interface body that corresponds fo a C function prototype shall contain a
parameterized EXTERNAL attribute with the lang�keyword C� Specifying
RECURSIVE for a procedure in the interface body is allowed and has no
e�ect� Since a pure procedure must be a subprogram �that is de�ned by
means of Fortran� neither the PURE nor ELEMENTAL pre�x shall be
present in the interface body�

If the Fortran entity is a dummy procedure no name�string shall be
present� If the Fortran entity is an external procedure and no name�string
is present the function�name or subroutine�name is used to generate an
external entry for the procedure using the Fortran processor�s conventions�
This implies ignoring alphabetic case for the name� If the Fortran entity is
an external procedure and a name�string is speci�ed the external entry is
generated using the C processor�s conventions as if the value of the name�
string were a C external name�

Mapping the C function�s return type If the C function�s return type
is void the Fortran interface shall specify a subroutine� Otherwise the
Fortran interface shall specify a function with a scalar result type�

The ISO C standard requires that the return type of a C function Note ����
shall not be a function type or an array type ���������� This im�
plies that a Fortran interface for a C function must not specify an
array�valued function result unless it also has the POINTER�C�
attribute�

The declarations of the function result variable shall be as follows� If the
return type of the C function is

� a basic type or a structure type the function result variable shall
have the type speci�ed for that C type in section ��� of this Technical
Report�

� an enumeration type or union type this is not directly supported�

� a pointer type the type of the function result variable shall be of an ar�
bitrary derived type with a single component having the POINTER�C�
attribute and of the same as the type from which the C pointer type
is derived�

X�J��������
Page �� of ��

The PASS BY atrribute This report proposes to delete the correspond�
ing section of N�����

Mapping C function parameters to dummy arguments The inter�
face�body that speci�es a Fortran interface to a C function shall specify
dummy arguments that correspond by position with the C function param�
eters in the parameter�type�list� If the list consists solely of void no dummy
argument shall be speci�ed� Section ����� deals with the case that the list
terminates with an ellipsis� Except in the case that the list terminates with
an ellipsis the characteristics of the C function shall be speci�ed by an
interface block with the EXTERNAL�C� attribute�

In an interface block with the EXTERNAL�C� attribute the following
interpretations apply�

� If the dummy argument is a dummy procedure it must have the EX�
TERNAL�C� attribute� a pointer to the procedure is passed to the C
function�

� If a dummy argument has neither the DIMENSION nor POINTER
attribute and it is not of a Fortran character type with length other
than one then the corresponding actual argument is passed �by value�
to the C function� The corresponding parameter of the C function
shall be a basic type or a structure type �T� that corresponds to the
dummy argument according to the mapping speci�ed in section ����
The dummy argument must be speci�ed to have INTENT�IN��

� If a dummy argument is of COMPLEX type it must have a KIND type
parameter for a C oating type� a C pointer to the actual argument
is passed to the C function� The corresponding parameter of the C
function should have type �array of T� or �pointer to T� where T is
the C oating type corresponding to the KIND of the dummy argu�
ment� The dummy argument may have any INTENT or unspeci�ed
INTENT�

� If a dummy argument has either a DIMENSION attribute specifying
explicit shape or assumed size or the POINTER�C� attribute and it
is not of a Fortran character type with length other than one then
a C pointer to the actual argument is passed to the C function� The
corresponding parameter of the C function should have type �array of
T�or �pointer to T� where �T� corresponds to the dummy argument
type according to the mapping speci�ed in section ���� The dummy
argument may have any INTENT or unspeci�ed INTENT�

X�J��������
Page �� of ��

All information about the shape of the argument is lost when Note ����
a Fortran actual argument is passed to a C dummy argument
of type �pointer to T� or �array of T��

� If a dummy argument is of a Fortran character type with length other
than one �including �!�� or has either a DIMENSION attribute spec�
ifying assumed shape or a POINTER�FORTRAN� attribute then a
pointer to a descriptor is passed to the C function� The dummy argu�
ment may have any INTENT or unspeci�ed INTENT� The content
and layout of the descriptor may be di�erent from the descriptor used
for arguments to Fortran subprograms and are not speci�ed by this
Technical Report� The C type of the descriptor shall be �pointer to
FortranArgument�� A �C header� isoftn�h and corresponding func�
tions shall be provided�

�� type declaration for FortranArgument here ��

void� FortranAddress��FortranArgument�� �� cast it ��

long FortranRank��FortranArgument��

long FortranLbound��FortranArgument�int��

long FortranUbound��FortranArgument�int��

long FortranElementSize��FortranArgument��

�� same as LEN for CHARACTER arguments ��

If the type of the C function parameter is

� a basic type or a structure type the dummy argument shall be scalar
and have the type speci�ed for the corresponding C type in section ���
of this Technical Report�

� an enumeration type or union type this is not directly supported�

� a type �function returning T� this type is adapted by the C processor
to the type �pointer to function returning T� and the rules for that
type shall be followed�

� a type �array of T� this type is adapted by the C processor to the
type �pointer to T��

� a type �pointer to T� the Fortran interface shall either use a declara�
tion corresponding to �pointer to T� or shall declare the type corre�
sponding to the C type T and a DIMENSION attribute corresponding

X�J��������
Page �� of ��

to the C array declarator specifying explicit shape or assumed size�
The rules further depend on the type from which the pointer is derived�
If the type �T� is

� the incomplete type void then the Fortran dummy argument
can have any type� the TRANSFER function or EQUIVALENCE
may be used to convert to the correct type�

� char the dummy argument shall be a scalar of type CHARAC�
TER �LEN�� KIND�c char� or an array thereof having explicit
shape or assumed size�

� an integer type oating type or structure type the dummy ar�
gument shall be a scalar that has the type corresponding to the
C type �T� or an array thereof having explicit shape or assumed
size�

� an enumeration type or union type this is not directly supported�

� a type �function returning T�� a dummy procedure shall be de�
clared� The dummy procedure shall have have explicit interface�
The interface�block shall have the EXTERNAL�C� attribute� The
explicit interface of the dummy procedure shall correspond to the
function prototype of the C function parameter as speci�ed in
this section�

No other C pointer types are directly supported�

Further restrictions on EXTERNAL�C� interfaces Regardless of
the form of the C function prototype to which an explicit interface with
the EXTERNAL�C� attribute might correspond the following restrictions
apply within an interface body that has the EXTERNAL�C� attribute�

� Neither the OPTIONAL nor TARGET attribute shall be speci�ed�

� A dummy argument shall not have the type LOGICAL�

� If a dummy argument or function result has derived type that type
shall have the EXTERNAL�C� attribute�

� A procedure with EXTERNAL�C� interface may be associated as an
actual argument only to a dummy procedure with EXTERNAL�C�
interface�

X�J��������
Page �� of ��

�	
	� Procedure reference for EXTERNAL�C� procedure

The C standard speci�es that in preparing for the call to a C function the
arguments are evaluated and each parameter is assigned the value of the
corresponding argument ���������� A C function may change the value of its
parameters but cannot change the value of the actual arguments� On the
other hand it is possible to pass a pointer to an object� the function may
not change the pointer but may change the value of the data accessed by
the pointer �������� footnote ����

The EXTERNAL�C� attribute of an interface�block instructs the Fortran
processor to adapt its rules concerning actual arguments dummy arguments
and argument association accordingly when referencing such a procedure�
This section describes these modi�ed semantics�

Actual arguments associated with dummy data objects If the dum�
my argument is an array the actual argument shall be an array of the same
type and type parameters� It shall be a variable�

If the dummy argument is of type TYPE�C VA LIST� the behavior is
speci�ed by section ������

If the dummy argument is a scalar of intrinsic type or of a derived type
that has the EXTERNAL�C� attribute and does not have the POINTER
attribute the actual argument shall be a scalar expression or a scalar data
object� It shall have a type and type parameters for which assignment to a
variable of the type and type parameters of the dummy argument is de�ned
by ISO ������ or this Technical Report� The C function parameter is as�
signed the value of the actual parameter converted as if by such assignment
to the type and type parameters of the dummy argument using de�ned
assignment if necessary�

The conversion �as if by assignment� of the actual argument to Note ����
the type of the dummy argument corresponds to the conversion
that occurs within C when referencing a C function with a visible
prototype declaration�

Because a copy of the �possibly converted� value of the actual Note ����
argument is passed to the C function the C function may not
modify the actual argument�

If the dummy argument is a scalar of intrinsic type or of a derived
type that has the EXTERNAL�C� attribute and has the POINTER�C�
attribute or is an array of explicit shape or assumed size it is assumed

X�J��������
Page �� of ��

to have INTENT�INOUT� if no INTENT is speci�ed� The corresponding
actual argument shall be a variable whose type and type parameters are
the same as those of the dummy argument� The actual argument may or
not have the POINTER�C� attribute� If the dummy argument and actual
argument both have the POINTER�C� attribute the actual argument may
be nulli�ed in which case a C null pointer is passed to the C function�

Because a C pointer is passed the C function may modify the ac� Note ���
tual argument� If the actual argument denotes a C null pointer
and the C function dereferences the corresponding parameter
the behavior is unde�ned�

If a dummy argument is of a Fortran character type with length other
than one �including �!�� or has either a DIMENSION attribute specifying
assumed shape or a POINTER�FORTRAN� attribute then the actual ar�
gument must be a variable that has the same type type parameters and
rank as the dummy argument� A pointer to a descriptor is passed to the
C function as described under �Mapping C function parameters to dummy
arguments� above�

Actual arguments associated to dummy procedures If a dummy
argument is a dummy procedure it shall have an explicit interface with
the EXTERNAL�C� pre�x� The corresponding actual argument shall be
the speci�c name of an external or dummy procedure that has an explicit
interface with the EXTERNAL�C� attribute�

The characteristics of the associated actual argument shall be identical
to the characteristics of the dummy procedure�

Function results of C pointer types A C function result that is of a
pointer type must have the POINTER�C� attribute� As with all other C
pointer types a function result of pointer type must be a scalar or an array
of explicit shape or assumed size or a rank one array of assumed shape�
The underlying type may not be a character type having length other than
one� The value may be used in the same ways that other C values may be
used� The pointer may be assigned using pointer assignment subject to the
same restrictions as any other object having the POINTER�C� attribute�

�	
	� Support for C variable argument lists using �stdarg�h�

C functions may be called with a variable number of arguments of varying
type� The argument list in the function prototype of such a function must

X�J��������
Page �
 of ��

contain one or more parameters followed by an ellipsis ������ The called
function may access the varying number of actual arguments by facilities
de�ned in the standard header �stdarg�h�� Fortran does not directly
support this kind of procedure interface�

The Fortran concept of OPTIONAL arguments is less exible� Note ����
It requires the speci�cation of all possible combinations of argu�
ments at compile time including their types�

To provide a Fortran interface to an external C function that contains
an ellipsis an intrinsic module ISO C STDARG H shall be provided� This
module shall provide access to the following�

� A derived type de�nition with type�name C VA LIST� This type has
the EXTERNAL�C� attribute and PRIVATE components�

The type TYPE�C VA LIST� is a translation of the C type Note ����
va list de�ned in �stdarg�h��

� A named constant C VA EMPTY of type TYPE�C VA LIST�� The
value of this constant shall be distinct from any value that may re�
sult from an argument list constructed by means of OPERATOR����
�below��

� De�ned ASSIGNMENT��� is provided for variables and expressions
of type TYPE�C VA LIST�� Execution of this assignment causes the
de�nition of variable with a copy of the value of expression�

� An extension of OPERATOR���� is provided for scalar operands x�
of type TYPE�C VA LIST�� x� may be of any type corresponding to
a C data type as speci�ed in section ��� of this Technical Report
except a CHARACTER with length other than one or it may be of
type TYPE�C VA LIST�� If x� is not a scalar it shall be an array of
explicit shape or assumed size and have the POINTER�C� attribute�
The result type is TYPE�C VA LIST�� The result value is a copy of
x� concatenated with the value resulting from C�s default argument
promotion of x�� The following table shows the type conversions that
take place for x�� for all other types the value of x� is used without
conversion�

X�J��������
Page �� of ��

Type of x� Value resulting from promotion

INTEGER�c schar� INT�x � KIND�c int�
INTEGER�c shrt� INT�x � KIND�c int�
INTEGER�c uchar� INT�x � KIND�c int�
INTEGER�c ushrt� INT�x � KIND�c int�
REAL�c t� REAL�x � KIND�c dbl�

Parentheses used to specify the order of evaluation of the extended
���� operator have no e�ect on the value of the result�

If a scalar varying argument would have INTENT�OUT� or IN� Note ����
TENT�INOUT� if used as a �xed argument it must have the
POINTER�C� attribute�

Default argument promotion takes place when constructing the Note ���	
varying argument list rather than at the time of argument as�
sociation for the procedure reference� This is motivated by the
fact that an explicit interface with the EXTERNAL�C� attribute
represents a C function prototype� In this case no default argu�
ment promotion takes place� Varying arguments always su�er
argument promotion so to avoid complicated argument associa�
tion rules this promotion is done when constructing the varying
argument list�

Integral promotion of the C type char is not supported because Note ���

this Technical Report does not match that type with a Fortran
integer type� If required one of its signed or unsigned variants
may be used� Integral promotion of C bit �elds or enumeration
types in not required because this Technical Report does not
match those types with any Fortran type�

The interface�body that speci�es a Fortran interface to a C function hav�
ing an ellipsis parameter shall specify the �xed arguments as speci�ed in
section ����� and shall specify an additional �nal scalar dummy argument
of type TYPE�C VA LIST� in the position of the ellipsis� Intent other than
INTENT�IN� shall not be speci�ed for this argument� The POINTER at�
tribute shall not be speci�ed for this argument�

The actual argument associated to the argument in the position of the
ellipsis shall be a scalar expression of type TYPE�C VA LIST�� To indicate
an empty varying argument list its value shall be C VA EMPTY� Otherwise
its value shall be C VA EMPTY concatenated by OPERATOR���� with the

X�J��������
Page �	 of ��

list of required arguments� C VA EMPTY shall be the leftmost operand of
this concatenation� All other operands shall be speci�ed from left to right
in order according to their respective positions in a C function reference�

For example the POSIX�� function fcntl�� has the prototype

int fcntl � int fildes� int cmd� ��� � �

When the parameter cmd has the value of the named constant
F DUPFD fcntl�� expects a third parameter arg of type int
and returns a new �le descriptor that is the lowest numbered
available �le descriptor greater than or equal to arg� If cmd has
the value of the named constand F GETFD fcntl�� expects no
third parameter and returns the �le descriptor ags associated
with the �le descriptor �ldes� A Fortran interface for this func�
tion may be

EXTERNAL�C��fcntl�� INTERFACE

INTEGER�c	int� FUNCTION fcntl � fildes� cmd� va �

USE iso	c� ONLY� c	int

USE iso	c	stdarg	h� ONLY� c	va	list

INTEGER�c	int�� INTENT�IN� �� fildes� va

TYPE�c	va	list�� INTENT�IN� �� va

With this explicit interface accessible the function references

I FCNTL � FD� F	DUPFD� C	VA	EMPTY ��
�	c	int �

J FCNTL � FD� F	GETFD� C	VA	EMPTY �

return the lowest numbered available �le descriptor greater than
or equal to �	 in I and the �le descriptor ags associated with
FD in J�

��� Access to C global data objects

This functionality could be removed because one can always ac� Note
cess a C global data object by way of a C function�

This section de�nes mechanisms to reference global data objects that are
de�ned in C translation units from within Fortran program units�

X�J��������
Page �� of ��

To access a C data object of type T with external linkage from within
Fortran a Fortran variable with Fortran type corresponding to T �as spec�
i�ed in section ��� of this Technical Report� shall be declared in a module
and may then be accessed within the module and all other scoping units
that contain a module reference for that module subject to the rules for
USE association�

To indicate that the storage for the Fortran variable is reserved by the
C translation unit containing the de�nition of that C external variable the
EXTERNAL�C� attribute shall be speci�ed with a name�string whose value
is the identi�er of the C object with the extern storage class� Because the
data object is a global data object the EXTERN�C� attribute for a module
variable implies the SAVE attribute for that variable�

For example POSIX�� requires the standard header �errno�h� Note ����
to contain the declaration

extern int errno�

This is only a declaration not a de�nition� storage for this vari�
able is reserved somewhere else probably in the kernel of the
operating system� The value of errno is set by various functions
of the C standard library and POSIX��� A Fortran module such
as

MODULE my	errno

USE isc	c� ONLY� c	int

INTEGER�c	int�� EXTERN�C�NAME�errno�� �� errno

END MODULE my	errno

might be USEd in scoping units that need access to errno�

The following additional restrictions apply for module variables having
the EXTERNAL�C� attribute�

� No initialization shall appear in the entity�decl�

� Neither ALLOCATABLE PARAMETER POINTER nor TARGET
shall be speci�ed�

� If the object has derived type that type shall have the EXTERNAL�C�
attribute�

X�J��������
Page �� of ��

� The object shall not have the LOGICAL type� If it has the CHAR�
ACTER type the length shall be one�

If two or more module variables with the EXTERNAL�C� attribute and the
same name�string are accessible in a scoping unit the following rules apply�

Case �i�� If they all have the same type type parameters and shape they
all refer to the same storage�

Case �ii�� If at least one di�ers in type type parameters or shape the value
of all accessible module variables with that name�string is unde�ned
in that scoping unit�

Fortran prohibits a module variable to be variable�name in a Note ����
common�block�object or as an equivalence�object and module vari�
ables having the EXTERNAL�C� attribute are not exempted�
However the C extern variable is a global variable� Binding dif�
ferent module variables to the same C object e�ectively EQUIV�
ALENCES them�

As with any global variable the value of a module variable having the
EXTERNAL�C� attribute may be changed by the execution of Fortran sub�
programs or C functions that have an external declaration of the identi�er
in the corresponding name�string in scope� The Fortran processor shall not
assume that the value of such a module variable remains unchanged after
a procedure reference� The value of a module variable having the EXTER�
NAL�C� attribute may also be changed by other means invisible to the
Fortran program� The Fortran processor is not required to guard against
such behavior�

For example if a function reference to FCNTL in Note ���� re� Note ���
turns the value �� the value of the module variable errno in
note ���	 after that function reference will be set to the corre�
sponding error number�

� Editorial changes to ISO�IEC ����	�
 ����

This section would be substantially di�erent from the corresponding section
of N����� It has not been prepared� It will be prepared if there is interest
in this alternative formulation of interoperability between Fortran and C�

