
J�������	
 Compile�time Optimization of Point and Interval Expressions

G� William �Bill� Walster� Keith Biermany

April ��� ����z

Abstract� The speed and sharpness of interval programs can be signif�

icantly increased by applying mathematical simpli�cations and other transfor�
mations at compile�time� This paper contains both the theoretical justi�cation
and the practical results needed to know when the desired transformations can

be used�

�� Introduction

Optimizing compilers routinely transform arithmetic expressions to improve perfor�
mance� For example� if R is a 	oating�point variable� the value � may be substituted
for R�R during compilation� Substituting one mathematically identical expression
for another can be justi
ed on both theoretical and practical grounds� Such substi�
tutions can make code veri
cation and debugging more di�cult as some exceptional
events� may not be detected� The extra development time is often easily justi
ed
because of improved performance�

Compiler providers routinely spend tens of millions of dollars to perform ever more
advanced optimizations� because increased run�time performance saves end users hun�
dreds of millions of dollars� Optimizing transformations are doubly enticing when
applied to interval expressions� as they result both in faster execution and in sharper
interval results� Interval arithmetic can be used to prove that no exceptional events
are hidden by these transformations�

Throughout the modern interval era� beginning in ���� ��� interval arithmetic
has been motivated by the behavior in computers of 	oating�point arithmetic� The
execution of interval arithmetic has in	uenced the de
nition of the most fundamental

�Sun Microsystems� MS UMPK������� 	

� Garcia Avenue� Mountain View� CA �
���������
bill�walstereng�sun�com

ySun Microsystems� MS UMPK������� 	

� Garcia Avenue� Mountain View� CA �
���������
keith�biermaneng�sun�com

zThanks to Eldon Hansen amd George Corliss and Milton Barber for their many constructive
suggestions concerning earlier drafts of this paper� Special thanks to Kaye Walster� for her patience
and support during the paper�s preparation and writing�

� An exceptional event in the present context is an IEEE �oating�point exception �
�� such as
division by zero�

�

J�����	
�� Compile�time Optimization of Point and Interval Expressions �

interval concepts� Until recently� interval arithmetic has been viewed primarily from
an operational perspective at run�time� as opposed to a mathematical perspective at
compile�time� An operational bias is easy to understand� given that there has been no
prospect of an interval�supporting compiler to perform optimizing transformations�

The consequences of adopting a mathematical perspective at compile�time are
worth considering� now that compiler support for interval arithmetic is imminent ��
��� The primary consequence is the theoretical justi
cation for both point and inter�
val compile�time identity transformations� To precisely de
ne when these transforma�
tions may be applied� the concept of a single�valued interval expression is introduced�

Notation� Throughout this paper� mathematical identity� denoted by ���� is
distinguished from the assignment of value� denoted by ����� Two expressions are
identical if they are equal whenever the expressions have meaning ��� Two functions�
f and g� are identical if they share a common domain� D� and if f�x� � g�x� for all
x � D ��� In the case of intervals� four distinct de
nitions of equality exist� three of
which are needed herein�

In mathematical notation� lower and upper case letters are used to denote point

and interval variables� respectively� To denote actual code fragments� Fortran no�
tation in BOLD UPPER CASE is used� For example� the code� �� A� A ��
and �� A� B ��� denote degenerate and possibly non�degenerate literal interval con�
stants� respectively� while a� a� and a� b�� denote the same interval constants using
mathematical notation� The code �� A �� is used to denote an interval that must
contain the literal constant A� If A is not machine representable� �� A �� cannot be
degenerate�

The interval extension of the point function� f�x�� is denoted� f�X� or F �x��
depending on whether the interval extension is evaluated over the interval� X� or at
the point� x� respectively� Either the upper case function argument or the upper case
function letter is used to denote the interval extension�

���� Overview� In Section �� the mathematical and operational perspectives are
de
ned� The mathematical perspective is used to justify the current practice of
applying algebraic transformations to point�expressions at compile�time�

In Section �� the concept of identically equal interval variables is de
ned and
distinguished from the other three de
nitions of interval equality� Both the determi�
nation of� as well as the consequences of� each type of interval equality are examined
at compile�time and at run�time�

��� A� B �� is the notation used to de�ne the literal interval constant� �a� b�� in the proposed
Fortran 	��� interval arithmetic standard ����

J�����	
�� Compile�time Optimization of Point and Interval Expressions �

In Section �� identically equal interval expressions are introduced and used to
make simple identity transformations�

In Section �� single valued intervals are de
ned and the fundamental theorem of
interval arithmetic is extended from functions to relations� Single�valued and multi�
valued intervals are de
ned in terms of the underlying point�functions and relations�
of which they are respectively extensions�

In Section �� the application of mathematical identities at compile�time is gener�
alized from interval variables to single�valued interval expressions�

In Section �� some examples are presented of compile�time transformations that
can be used to sharpen single�valued interval expressions�

In Section �� compile�time transformations and other program modi
cations are
used to illustrate how to sharpen interval expressions for which there is no uniformly
sharpest representation�

In Section �� justi
cation is presented for the requirement to declare single�valued
user�de
ned function subprograms and operators�

Section �� summarizes the bene
ts from automatically determining whether a
user�s function�subprogram is single or multi�valued�

Finally� in Section �� the required information is presented to automatically de�
termine whether Fortran named constants are single or multi�valued�

�� Simplifying Point Expressions

A single point�expression� or a sequence of assignment statements� can be viewed in
two ways� as a series of arithmetic operations that must be performed in a prescribed
order� or as the operational de
nition of an underlying mathematical function of the
variables contained therein� The former view is from the operational perspective�
and the latter� is from the mathematical perspective� At run�time� each arithmetic
expression is de
ned by the value of its variables and its operations� At compile�
time� useful information is available about the underlying function� in addition to
the operations used to compute it� Consider some illustrative examples� in which E
represents the code for an arbitrary mathematical expression� E�

Code Mathematics Value

E�E E � E �

E�E E�E �

SIN�E� � ��COS�E� � � sin�E � cos�E �
E ��� E� �

J�����	
�� Compile�time Optimization of Point and Interval Expressions �

The two principal reasons why it is advantageous to program compilers to recog�
nize and apply such identities are� First� code is often generated by other programs
that may not be capable of recognizing these and other possible simplifying transfor�
mations� Second� E may be arbitrarily complex� making human recognition di�cult�
especially if E is automatically constructed�

When applied to point expressions� a potential problem with such transformations
is that they may make it impossible to see program bugs� or even errors in the
mathematics on which a program is based� For example� consider E�E when E � ��
or any circumstance in which an exception is raised in the process of computing E�
A frequent cause of such exceptions is the attempt to compute E� or a function of
E� at a point that is outside an expression�s domain� For example� x � � is outside
the domain of f�x� � x�x� For all other values of x� f�x� � �� If a constant is
substituted for an expression that would otherwise cause an exception to be raised�
the exception will be hidden from view� While compilers are not required to detect
all possible programming errors� ease of debugging is important� and compilers are
required to produce codes that correctly execute mathematically correct expressions�
For particular interval arguments� interval arithmetic can be used to prove that a
mathematical expression cannot raise exceptions�

��� Multiple Assignment Statements� Compilers are capable of recogniz�
ing opportunities to perform ever increasingly complex optimizations across mul�
tiple assignment statements� or even across procedure boundaries� For example� a
compiler may recognize that in place of X � E��E� followed some time later by
Y � X �E�� the substitution Y � E may be made� Moreover� if X is never used
elsewhere� if there are no side e�ects associated with its computation� and if neither
X nor E� are re�de
ned between the
rst and second statements� then X need not
be computed at all�

�� The Fortran Standard� The Fortran standard permits a compiler to per�
form any �mathematically equivalent� transformations� Section ������� of ��� states�
�It is not necessary for a processor to evaluate all of the operands of an expression�
or to evaluate entirely each operand� if the value of the expression can be determined
otherwise�� Note ���� further states that Section ������� applies to ����all expressions��
Section ������� states that in place of performing the speci
ed operations in a given
mathematical expression� ����the processor may evaluate any mathematically equiva�

lent expression� provided that the integrity of parentheses is not violated�� �Emphasis
added�� Section ������� goes on to de
ne mathematically equivalent thusly� �Two ex�

J�����	
�� Compile�time Optimization of Point and Interval Expressions �

pressions are mathematically equivalent if� for all possible values of their primaries��
their mathematical values are equal�� The standard does not de
ne �possible values��
If the set of �possible values� is the same as the domain of an expression� mathemat�

ically equivalent in the Fortran Standard is the same as mathematically identical�
The requirement to preserve the �integrity of parentheses� is motivated by the

desire to permit a programmer to specify the exact order in which operations are
to be performed� This requirement can be viewed from both an operational and
from a mathematical perspective� For example�Y � X��A �B� and Y � X�A �B
are both mathematically and operationally di�erent� Whereas� Y � X� �A�B�
and Y � X �A�B are mathematically identical and operationally di�erent� When
mathematically identical transformations are permitted� only those parentheses that
change the mathematical de
nition of an expression must be observed� However� if
identity transformations are not permitted� strict adherence to the speci
ed opera�
tions is required�

��� Control of Identity Transformations� In production programs� the bene�

ts from improved run�time performance resulting from compile�time transformations
can be critically important� There are at least two situations in which it is necessary
for a compiler to be strictly operational and to perform no identity transformations�
debugging and testing� Therefore� it is necessary to specify whether or not identity
transformations are permitted� using a pragma�� a global variable� or a command�line
	ag�

��� Inter�Procedural Analysis� If di�erent compilation units are compiled at
the same time� or if inter�procedural information is otherwise made available to the
compiler� algebraic transformations across procedures can be performed� For exam�
ple� consider the two functions�

FUNCTION FOO�X� Y�

FOO � X �Y

RETURN

END

�For the purposes of this paper� a primary is an argument of the underlying function that the

mathematically equivalent expression in question operationally de�nes�
�A pragma is a statment to the compiler about how to process subsequent statements� For

example� the pragma

C�PRAGMA COMPILE TIME TRANSFORMATIONS �� ON�OFF ��

can be used in the present context to set the mode of compilation�

J�����	
�� Compile�time Optimization of Point and Interval Expressions �

���

FUNCTION BAR�X� Y�

BAR � X�Y

RETURN

END

In place of X � FOO�A� B�� followed by Y � BAR�X� A�� a compiler could sub�

stitute Y � B�
The Fortran standard contains a �caveat emptor� warning in Section ������ �How�

ever� mathematically equivalent expressions of numeric type may produce di�erent
computational results�� The interval guarantee of containment permits these �di�er�
ent results� to be used to obtain sharper intervals than otherwise would be possible�

�� Identically Equal Interval Expressions

Two identically equal point variables are interchangeable� When two interval variables
coincide� their endpoints are equal� but they are not necessarily identically equal� A
simple example of the distinction between coincidence and identical equality of two
intervals is the �dependence problem�� which is the source of the conclusion that for
any non�degenerate interval� X� X � X �� �� When viewed from the operational
perspective at run�time� the code X�X is no di�erent from X �Y� when X and Y
coincide�

���� The Four De�nitions of Interval Equality� There are four possible def�
initions of interval equality� three of which are required to precisely de
ne concepts
in this paper�

Let X � fx j a � x � bg � a� b� and Y � fy j c � y � dg � c� d�� The four
types of interval equality are presented in the following table�

Type of Interval Equality Symbol� De�nition

Identical X � Y x � y �x � X and y � Y
Certain X �CEQ� Y a � b � c � d

Set or Coincidence X �SEQ� Y a � c and b � d

Possible X �PEQ� Y b � c and a � d

�In the case of Certain� Set� and Possible equality� as well as the other order relations� the notation
�Cop�� �Sop�� and �P op� as well as �Cop�� �Sop�� and �Pop� is used to denote the three varieties of
relational operators� where op � fLT� LE� GT� GE� EQ� or NEg� and op � fLT� LE� GT� GE�
EQ� or NEg� The Possibly operators are not used herein and are included only for completeness�

J�����	
�� Compile�time Optimization of Point and Interval Expressions �

Identical Equality� Two interval variables are identically equal if they coincide�

and they are dependent� Coincidence is the consequence of X and Y having the
same endpoints� Dependence is the consequence of x being equal to y �x � X
and y � Y � Because dependence cannot be determined from interval endpoints
alone� testing for identical equality at run�time is not possible� When viewed from a
mathematical perspective at compile�time� however� the assignment statementX � Y
can be interpreted to mean identical equality� because the symbolic names of the
variables are known to the compiler�

Unlike point constants� interval constants do not share all the properties of interval
variables� In particular� a non�degenerate interval constant cannot be identically
equal to anything� including itself� The interval constant a� b� �� a� b�� if b � a�
because there exists no scalar variable in an interval constant with which a dependence
can be formed� Two interval constants can be certainly equal or set equal� see below�

Certain Equality� Two intervals are certainly equal if they are degenerate and
equal� Certain equality can be determined from interval endpoints and therefore can
be tested at run�time� Certain equality is the only case in which identical equality
can be determined by comparing interval endpoints at run�time� Two interval con�
stants are identically equal� for example� when a� a� �CEQ� a� a�� At run�time� only
degenerate intervals can be shown to be identically equal� However� at compile�time�
�� A �� can be treated as a� a� even though the point� A� may not be machine�
representable� An illustration of this common situation is� A � ��� on a binary
computer�

Set Equality or Coincidence� Two intervals are set equal� or coincide� if they
represent the same set of points� This is true if their respective endpoints are equal�
Coincidence of two intervals results from an assignment of interval values during
program execution� After the assignment of the interval endpoints of X to Y in the
statement Y � X� X �SEQ� Y � but x and y remain independent� Note that even
from the mathematical perspective at compile�time� the code X � �� A� B �� is an
assignment of value�

The following example illustrates the fact that set equality and identical equality
are di�erent� Let X � �� �� and de
ne� Y� � X� and Y� � �X � �� While Y� and
Y� do coincide �because Y� � �� �� and Y� � �� ��� and thus� Y� �SEQ� Y��� clearly
Y� �� Y��

��� Interval Equality Summary� The following table summarizes the nota�
tion used to distinguish among the di�erent types of interval equality used in this
paper�

�They have the same endpoints�

J�����	
�� Compile�time Optimization of Point and Interval Expressions �

Code Compile�time Run�time Run�time
De�nition De�nition Result

X � Y x � y x �� y X �EQ� Y

X � Y X � Y X �� Y X �SEQ� Y

X � �� A� A �� X � a� a� X �� a� a� X �CEQ� �� A� A ��
X � �� A �� X � a� a� X �� a� a� X �CEQ� �� A� A ��

X � �� A� B �� X �� a� b� X �� a� b� X �SEQ� �� A� B ��
X � �� A �� X � a� a� X �� a� b� X �SEQ� �� A� B ��

The second column can be used to resolve any apparent ambiguity regarding which
variables are points and which are intervals� For example� in the
rst row� second
column� x and y are both lower case� This means that in the
rst row�
rst column�
X and Y are both point variables� In the second row� they are all upper case� and
therefore� intervals� There are two rows containing X � �� A �� in the
rst column�
In the
rst� A is machine representable� In the second� it is not�

�� Identically Equal Interval Expressions 	 Continued

To continue the development of identically equal interval expressions� the most impor�
tant theorem of interval analysis is needed� The theorem�s importance and identifying
it as the �fundamental theorem of interval analysis� is credited to Louis Rall �� by
Eldon Hansen ��� This theorem was
rst proved by Ramon Moore ���

Theorem �� An inclusion monotonic interval extension�� f�X�� of a real function�

f�x�� bounds the range of the function over its argument interval� That is� f�X� has
the following property�

f�X� 	 ff�x� j x � Xg� ���

The fundamental theorem leaves unspeci
ed what happens if X contains points
outside the domain of f� Letting Df denote the domain of f � there are two obvious
conventions�

Convention a� Leave f�x� unde
ned if X � Df � or�

�F �X� � f�X�� is an interval extension of f�x� if F �x� � f�x� �x� That is� the interval extension
equals the function when evaluating the extension over a degenerate interval� f�X� is inclusion
monotonic if f�X� � f�Y � �X � Y�

J�����	
�� Compile�time Optimization of Point and Interval Expressions �

Convention b� De
ne�

f�X� 	 ff�x� j x � X
Dfg� or ��a�

f�X� 	
n�

i	�

ff�x� j x � Xig� where

n�

i	�

Xi � X� and Xi � Df � ��b�

Convention a� requires that X � Df � In this case� any interval argument of a
function must be within the function�s domain� or an exception is raised� For
example� both

p
��� �� and ��� ������ �� are unde
ned�

Convention b� only requires that X
Df �� �� In this case
p

��� �� � �� ���

and ��� ������ �� � ��� ��� However�
p

��� ��� � ��� ����� �� � ��
the empty interval� which can be denoted by �� ���� It is convenient to
associate convention a� with the operational perspective and convention b� with
the mathematical perspective�

Using the de
nitions of interval equality at run�time summarized in Section ��� and
employing the operational perspective� X �X �� �� because X �X is operationally
the same as X � Y � given only that X �SEQ� Y � When performing the assignments
X �� a� b� and Y �� c� d�� only the endpoints of X and Y are de
ned within which
the variables x and y are contained� Interval subtraction is operationally de
ned�

X � Y � fx� y j x � X� y � Y g � a� d� b� c�� ���

Now suppose X �SEQ� Y � Nothing changes� except that�

X � Y � a� b� b� a� ���

can be written in place of ���� It follows at once that�

a� b�� a� b� � a� b� b� a� �� �� ���

Now consider X �X from the mathematical perspective at compile�time� From
the fundamental de
nition of the interval extension of the real function� f�x� � x�x�

f�X� � X �X � fx� x j x � Xg � � �X� ���

If � can be substituted for X �X at compile�time� both run�time performance and
interval sharpness will be improved�

Now consider X�X� Just as it is desirable to substitute � for X�X� so it is to
substitute � for X�X� De
ne the function f�x� � x�x �x � Df � ��� �� � ��
That is� the domain of f is the real line� except for the single point at the origin

J�����	
�� Compile�time Optimization of Point and Interval Expressions ��

since f�x� � � �x except when x � �� Therefore� the interval extension f�X� � � �X
except when X � �� ��� in which case f��� ��� � �� because �� ��
 Df � �� In
other words� �� �� is strictly outside the domain of f� Any combination of arguments
that results in an attempt to evaluate a function outside its domain is a bug�

Interval arithmetic provides a way to verify that no function arguments are strictly
outside any function�s domain� If no exceptions are raised when mathematical trans�
formations are prohibited� this proves that no exceptions can be raised anywhere
inside the sub�domain de
ned by the interval arguments� This means that within
this sub�domain� no function argument can be outside the function�s domain� Either
as a consequence of analysis or as the result of empirical testing using interval arith�
metic� the prudent programmer will include tests to verify that arguments are never
strictly outside the domain of any functions�

The only case in which substituting � for X�X at compile�time hides and unde�

ned result is when X � �� ��� There are other cases in which large parts of the real
line can be outside the domain of a function� For example� consider f�x� �

p
x�
p
x�

Then Df � �� ���
It is di�cult to conceive of a case in which substituting � for X�X at compile�

time might cause an incorrect result to be computed� There would be no hesitation
in making the substitution with paper and pencil� Therefore�

Conjecture �� In a valid interval algorithm� substituting � for X�X� where X is a

non�empty interval variable� will not cause a containment failure�

� Single	valuedness

Substitutions can only be made using identically equal expressions� To extend the
concept of identically equal interval variables to interval functions� operators� and ex�
pressions� the concept of single�valued intervals is introduced� Single and multi�valued
interval expressions are simply interval extensions of their underlying mathematical
functions and relations� respectively�

���� Interval Extensions of Mathematical Functions and Relations� An
interval function is a mapping of sets of points in its domain to sets of points in
its range� �In the mathematics of points� an interval function is a mathematical
relation��� To be a point�function� a relation must have only one value in its range for
each value in its domain� In other words� point�functions are single�valued relations��

De�nition An interval function is an interval extension of a point function if it
is equal to the point function when its interval arguments are all degenerate�

J�����	
�� Compile�time Optimization of Point and Interval Expressions ��

or points ��� That is� letting F symbolize the interval extension of the point
function� f �

F �x�� ���� xn� � f�x�� ���� xn�� ���

for all xi� �i � �� ���� n��

Thus� any interval extension of a point function is single�valued� because the un�
derlying point function is necessarily single�valued� A second interpretation of a
single�valued interval is� Each occurrence of a single�valued interval can be treated as
one mathematically identical single value� Whereas each occurrence of a multi�valued
interval is a distinctly separate and independent value�

The interval extension of a point relation is de
ned relative to its underlying point
relation in precisely the same way that the interval extension of a point function is
de
ned relative to its underlying point function� That is�

De�nition If g�x� de
nes a multi�valued relation between x and g�x�� then G�X� is
an interval extension of g�x�� if G�x� � g�x� �x

Inclusion monotonicity carries over from functions to relations as well�

De�nition The interval extension of a relation is inclusion monotonic if g�X�
g�Y � �X Y�

Following the same steps used to prove the fundamental theorem of interval analy�
sis for functions� the theorem can be extended to include interval extensions of point
relations�

Corollary �� The inclusion monotonic interval extension of a relation bounds the

set of values that can be returned by the relation� That is� if g�x� de�nes a

multi�valued relation between x and g�x�� and if the interval extension� g�X��
is inclusion monotonic� then�

g�X� 	 fg�x� j x � Xg� ���

Consider the relation y � a� b�� In this case� the set of possible values of y is the
interval a� b�� In the special case that a � b� the expressions y � a and y �� a are
indistinguishable� as there is no di�erence between assignment of value and identical
equality of points� Using interval notation� the relation y � a� b� is the same thing as
Y �� a� b�� because the interval Y represents the set fy j y � Y g� The central idea
is that there is no underlying function of which Y �� a� b� is an interval extension�

J�����	
�� Compile�time Optimization of Point and Interval Expressions ��

In other words� the interval constant a� b� is not single�valued unless a � b� Every
occurrence of a� b� is the same as a distinct and independent variable�

Consider the relation y � a� b�x� The set of possible values of y depends on the
variable x� As with the relation y � a� b�� unless a � b� y � a� b�x is not a function�
Using interval notation� Y �� a� b�x� If x � X� it is also possible to write the interval
extension� Y �� a� b�X � fa� b�x j x � Xg� Again� although Y depends on X and
y depends on x� y � a� b�x is a relation not a function� a� b�X is not a single�valued
interval expression� and it is incorrect to write either� Y � a� b�x� Y � a� b�X� or
Y � a� b��

If EMV is the code for any multi�valued expression� the assignment statement
Y � EMV represents an assignment� both at compile and at run�time� Thereafter
at compile�time� Y is a single�valued interval variable� This is not a contradiction�

An interval operator is simply the interval extension of the corresponding real
operator� If the real operator �or function of two or more variables� is single�valued�
then so is its interval extension�

Any interval expression can be viewed as a mathematical de
nition of the func�
tion �or relation� of all the interval variables contained in the expression� Only if the
relation is a function� is the corresponding interval expression single�valued� Only
single�valued expressions can be identically equal� Let EMV and ESV represent arbi�
trary multi�valued and single valued expressions� respectively� Then�

EMV � EMV �� �� however

ESV � ESV � �� ����

��� Properties of Single�valued �SV� and Multi�valued �MV� Interval
Expressions � The same logic used in Section ��� can be used to establish the
following properties of single�valued �SV� and multi�valued �MV� interval expressions�

�� Interval variables are SV�

�� Degenerate interval constants are SV�

�� Non�degenerate interval constants are MV

�� Interval expressions containing only SV sub�expressions are SV�

�� Interval expressions containing at least one MV sub�expression are MV�

�� Each occurrence of a MV interval expression is a distinct and independent
interval value�

�� Each occurrence of the same SV interval expression is the same identical math�
ematical quantity�

J�����	
�� Compile�time Optimization of Point and Interval Expressions ��

�� Mathematical Identities

Mathematical identities take the form f�x� � c �x � Df � where c is a constant�
Examples include�

x� x � � �

x�x � � � and

sin� x� cos� x � �� ����

The validity of the interval extension of a mathematical identity depends on two
conditions� all the identity�s interval arguments must be single�valued� and no inter�
val argument can be strictly outside the identity�s domain� This result is a direct
consequence of the de
nition of an interval extension� Consequently� any mathe�
matical identity can be applied at compile�time to single�valued interval expressions�
For an arbitrary single valued interval expression� ESV � and a mathematical identity�
f�x� � c� the generalization of Conjecture � to single�valued interval expressions is�

Conjecture � If f�x� � c �x � Df is a valid mathematical identity and ESV is a

non�empty single�valued interval expression� then in a valid interval algorithm

containing F�ESV�� substituting C for F�ESV� cannot cause a containment

failure in the algorithm�

�� Mathematically Identical Expressions

When computing any interval expression in which each variable appears only once�
the result is an exact bound on the range of the function de
ned by the expression�
When any variable appears more than once� the result may not be as sharp as possible�
For example� if E� Ex� and Ey are arbitrary interval expressions� then�

EEx � EEy 	 E�Ex � Ey�� ����

With the goal of improving the sharpness of computed results� under what condi�
tions can a compiler perform an equivalence transformation such as that implied by
����� That is� when can a compiler substitute E � �EX�EY� for E �EX�E �EY
at compile�time� The answer is� whenever E is single�valued� Take a simple example
of a case when E is not single�valued� Substituting a� b� for E in �����

a� b�Ex � a� b�Ey� ����

Expression �� is not mathematically identical to�

a� b��Ex � Ey�� ����

J�����	
�� Compile�time Optimization of Point and Interval Expressions ��

The reason is that a� b�Ex�a� b�Ey is the same as the result of assigning U �� V ��
a� b�� followed by�

UEx � V Ey� ����

If a� b��Ex�Ey� is substituted for expression ����� containment cannot be guaranteed�
thereby violating the fundamental requirement of interval arithmetic�

Thus� the normal rules of algebra can be used to construct mathematically iden�
tical interval expressions� provided that substitutions only involve single�valued ex�
pressions�

� Intersections of Mathematically Identical Expressions

If there is no single uniformly sharpest representation for a given interval expression�
the sharpness of interval results can still be increased� This is done by using the in�
tersection of the intervals obtained from evaluating di�erent mathematically identical
expressions� For example� consider� E�E�E � ���� where E is an arbitrary single�
valued interval expression� There is no mathematically identical interval expression
containing only one occurrence of E� Nevertheless� there are many mathematically
identical expressions� such as� E��E � ����� � �����

Let Ej be interval extensions of mathematically identical expressions� for j �
�� ���� n� Then at compile time� the code to compute

Tn

j	�
Ej at run�time can be

generated�
A number of points deserve mention�

�� While locally more costly to compute alternative expressions and intersect their
results� global run�time performance actually may be improved�

�� Employing a subroutine to perform the optimization necessary to compute the
sharpest possible bounds on the range of any interval expression may improve
overall run�time performance� The only requirement is that containment be
guaranteed�

�� If parallel computing hardware is available� computing alternative expressions
can be done in parallel�

�� User	defined Functions and Operators

For intrinsic functions and operators
� information can be included in a compiler
about which interval extensions are single�valued and which are multi�valued� For
example� the only Fortran intrinsic interval functions that are multi�valued are�

�Intrinsic functions and operators are part of a language and therefore their properties can be
�known� to the compiler�

J�����	
�� Compile�time Optimization of Point and Interval Expressions ��

� INTERVAL�A� B�� and

� �� A� B ��� provided that B � A�

To program a compiler to automatically identify single�valued user�de
ned func�
tions and operators� it is su�cient to identify sub�expressions as SV or MV� and
to follow the rules given in Section ���� In Fortran� only interval constants are in�
herently MV quantities� Even the RANDOM NUMBER subroutine returns an
interval variable� which is by de
nition� single�valued�

In the absence of language support to declare SV user�de
ned functions and op�
erators� compile�time optimizations can be restricted to interval expressions contain�
ing only interval variables� and single�valued intrinsic functions and operators� If
a programmer can declare� or a compiler can automatically identify� single�valued
user�de
ned interval function sub�programs and operators� all expressions can be
candidates for automatic compile�time optimization�

Without language or compiler support for interval single�valuedness� but with
extra programming work� the compiler can be provided the information needed to
identify mathematically identical expressions even if they contain user�de
ned opera�
tors and functions� Consider an expression� EU� that contains user de
ned function
subprograms and�or operators� A compiler cannot substitute � for the expression
EU � EU� Because all interval variables are single�valued� zero can be substituted
forX�X if this expression is preceded byX � EU� This is valid even if EU is multi�
valued� Nevertheless� automatic recognition at compile�time is always preferred�

��� Automatic Determination of Single	valuedness

Section ��� contains the properties that are needed to program a compiler to identify
any sub�expression as SV or MV� There are cases in which these properties are insuf�

cient to determine that a user�de
ned function subprogram is single�valued� In such
cases� it is desirable for a programmer to be permitted to declare any user�de
ned
function or operator to be single or multi�valued� For example� a routine can be used
to compute the interval extension of a real function� In the process� an interval may
need to be constructed to bound the error in the approximation algorithm� While a
compiler must conclude that such a function subprogram is multi�valued� a program�
mer may want to override with an explicit declaration� For testing and debugging� it
must be possible to declare a single�valued function to be multi�valued�

To the list in Section ���� one additional property must be added�

�� A single�valued function of a non�degenerate interval constant argument is MV�

Thus� for example�
exp�a� b��� exp�a� b�� �� �� ����

J�����	
�� Compile�time Optimization of Point and Interval Expressions ��

��� Fortran Named Constants

In Fortran a PARAMETER statement can be used to declare named constants�
Neither named nor literal constants can have their value changed during program
execution� As with literal constants� degenerate named constants are SV� What
about non�degenerate named constants� If the named constant is assigned a value
from a single�valued literal interval constant� then the named constant is SV� even
though it may not be degenerate� However� if the named constant is assigned its
value from an explicitly multi�valued interval constant or constant expression� then
the result is MV� An example of the former is�

PARAMETER PI � �� ��������� ��� ����

An example of the latter is�

PARAMETER C� � �� ��� ��� ��� ����

��� Conclusion

The distinction between operational and mathematical perspectives has been intro�
duced and used to justify the application of mathematically identical transformations
at compile�time� The concept of single�valued interval expressions has been de
ned
to extend the concept of identical equality from variables to expressions� Optimizing
transformations can be automatically applied to SV interval expressions� Interval
expressions containing user�de
ned operators and function sub�programs can be de�
clared and�or automatically identi
ed as single or multi�valued� Automatic identi
ca�
tion of possible compile�time transformations is facilitated by judiciously introducing
intermediate interval variables� which are always single�valued�

Compile�time optimizations of interval code will produce a signi
cant increase
both in interval sharpness and in run�time performance� Interval arithmetic without
compile�time transformations� can be used to prove that no function arguments can
ever be strictly outside a function�s domain�

References

�� R� Baker Kearfott et al� A Speci
c Proposal for Interval Arithmetic in Fortran�
Technical report� X�J�� March �����

�� Eldon Hansen� Global Optimization Using Interval Analysis� Marcel Dekker� Inc��
New York� �����

�� Glen James and Robert C� James� James and James Mathematics Dictionary�
Van Norstrand Reinhold� �� Fifth Avenue� New York� New York ������ fourth
edition� �����

J�����	
�� Compile�time Optimization of Point and Interval Expressions ��

�� R� E� Moore� Interval Analysis� Prentice�Hall� Englewood Cli�s� N�J�� �����

�� Institute of Electrical and Electronic Engineers� IEEE standard for binary
	oating�point arithmetic� ANSI�IEEE STD ��������� Technical report� New
York� �����

�� L� B� Rall� Computational Solution of Nonlinear Operator Equations� Wiley� New
York� �����

�� G� William Walster� Stimulating Hardware and Software Support for Interval

Arithmetic� pages ��� ��� in R� B� Kearfott and V� Kreinovich� �Applications of
Interval Computations�� Dordrecht� The Netherlands� �����

�� X�J�� International Standard Programming Language Fortran� Technical report�
ISO�IEC ������� �����

