J3/97-158: Compile-time Optimization of Point and Interval Expressions

G. WiLLiaM (BILL) WALSTER" KEITH BIERMAN'

April 13, 1997+

ABSTRACT. The speed and sharpness of interval programs can be signif-
icantly increased by applying mathematical simplifications and other transfor-
mations at compile-time. This paper contains both the theoretical justification
and the practical results needed to know when the desired transformations can
be used.

1. INTRODUCTION

Optimizing compilers routinely transform arithmetic expressions to improve perfor-
mance. For example, if R is a floating-point variable, the value 0 may be substituted
for R — R during compilation. Substituting one mathematically identical expression
for another can be justified on both theoretical and practical grounds. Such substi-
tutions can make code verification and debugging more difficult as some exceptional
events'! may not be detected. The extra development time is often easily justified
because of improved performance.

Compiler providers routinely spend tens of millions of dollars to perform ever more
advanced optimizations, because increased run-time performance saves end users hun-
dreds of millions of dollars. Optimizing transformations are doubly enticing when
applied to interval expressions, as they result both in faster execution and in sharper
interval results. Interval arithmetic can be used to prove that no exceptional events
are hidden by these transformations.

Throughout the modern interval era, beginning in 1966 [4], interval arithmetic
has been motivated by the behavior in computers of floating-point arithmetic. The
execution of interval arithmetic has influenced the definition of the most fundamental

*Sun Microsystems, MS UMPK16-304, 2551 Garcia Avenue, Mountain View, CA 95040-1100,
bill. walster@eng.sun.com

'Sun Microsystems, MS UMPK16-304, 2551 Garcia Avenue, Mountain View, CA 95040-1100,
keith.bierman@eng.sun.com

'Thanks to Eldon Hansen amd George Corliss and Milton Barber for their many constructive
suggestions concerning earlier drafts of this paper. Special thanks to Kaye Walster, for her patience
and support during the paper’s preparation and writing.

L An ezceptional event in the present context is an IEEE floating-point exception [5], such as

division by zero.

J3/97-158: Compile-time Optimization of Point and Interval Expressions 2

interval concepts. Until recently, interval arithmetic has been viewed primarily from
an operational perspective at run-time, as opposed to a mathematical perspective at
compile-time. An operational bias is easy to understand, given that there has been no
prospect of an interval-supporting compiler to perform optimizing transformations.
The consequences of adopting a mathematical perspective at compile-time are
worth considering, now that compiler support for interval arithmetic is imminent [7]
[1]. The primary consequence is the theoretical justification for both point and inter-
val compile-time identity transformations. To precisely define when these transforma-
tions may be applied, the concept of a single-valued interval expression is introduced.

“—»

Notation. Throughout this paper, mathematical identity, denoted by “=7. is
distinguished from the assignment of value, denoted by “:=”. Two expressions are
identical if they are equal whenever the expressions have meaning [3]. Two functions,
f and g, are identical if they share a common domain, D, and if f(x) = g(«) for all
z € D [3]. In the case of intervals, four distinct definitions of equality exist, three of
which are needed herein.

In mathematical notation, lower and upper case letters are used to denote point
and interval variables, respectively. To denote actual code fragments, Fortran no-
tation in BOLD UPPER CASE is used. For example, the code, (< A, A >)
and (< A, B >)? denote degenerate and possibly non-degenerate literal interval con-
stants, respectively, while [a, a] and [a, b], denote the same interval constants using
mathematical notation. The code (< A >) is used to denote an interval that must
contain the literal constant A. If A is not machine representable, (< A >) cannot be
degenerate.

The interval extension of the point function, f(x), is denoted: f(X) or F(x),
depending on whether the interval extension is evaluated over the interval, X, or at
the point, x, respectively. Either the upper case function argument or the upper case
function letter is used to denote the interval extension.

1.1. Overview. In Section 2, the mathematical and operational perspectives are
defined. The mathematical perspective is used to justify the current practice of
applying algebraic transformations to point-expressions at compile-time.

In Section 3, the concept of identically equal interval variables is defined and
distinguished from the other three definitions of interval equality. Both the determi-
nation of, as well as the consequences of, each type of interval equality are examined
at compile-time and at run-time.

2(< A, B >) is the notation used to define the literal interval constant, [a, b], in the proposed
Fortran 2000 interval arithmetic standard [1].

J3/97-158: Compile-time Optimization of Point and Interval Expressions 3

In Section 4, identically equal interval expressions are introduced and used to
make simple identity transformations.

In Section 5, single valued intervals are defined and the fundamental theorem of
interval arithmetic is extended from functions to relations. Single-valued and multi-
valued intervals are defined in terms of the underlying point-functions and relations,
of which they are respectively extensions.

In Section 6, the application of mathematical identities at compile-time is gener-
alized from interval variables to single-valued interval expressions.

In Section 7, some examples are presented of compile-time transformations that
can be used to sharpen single-valued interval expressions.

In Section 8, compile-time transformations and other program modifications are
used to illustrate how to sharpen interval expressions for which there is no uniformly
sharpest representation.

In Section 9, justification is presented for the requirement to declare single-valued
user-defined function subprograms and operators.

Section 10 summarizes the benefits from automatically determining whether a
user’s function-subprogram is single or multi-valued.

Finally, in Section 11 the required information is presented to automatically de-
termine whether Fortran named constants are single or multi-valued.

2. SIMPLIFYING POINT EXPRESSIONS

A single point-expression, or a sequence of assignment statements, can be viewed in
two ways: as a series of arithmetic operations that must be performed in a prescribed
order, or as the operational definition of an underlying mathematical function of the
variables contained therein. The former view is from the operational perspective,
and the latter, is from the mathematical perspective. At run-time, each arithmetic
expression is defined by the value of its variables and its operations. At compile-
time, useful information is available about the underlying function, in addition to
the operations used to compute it. Consider some illustrative examples, in which E
represents the code for an arbitrary mathematical expression, F:

Code Mathematics | Value
E-E L —F 0
E/E E/E 1
SIN(E) * 2 + COS(E) * %2 sin’ F + cos® E 1
E %% 0 EY 1

J3/97-158: Compile-time Optimization of Point and Interval Expressions 4

The two principal reasons why it is advantageous to program compilers to recog-
nize and apply such identities are: First, code is often generated by other programs
that may not be capable of recognizing these and other possible simplifying transfor-
mations. Second, E may be arbitrarily complex, making human recognition difficult,
especially if E is automatically constructed.

When applied to point expressions, a potential problem with such transformations
is that they may make it impossible to see program bugs, or even errors in the
mathematics on which a program is based. For example, consider E/E when E = 0,
or any circumstance in which an exception is raised in the process of computing E.
A frequent cause of such exceptions is the attempt to compute E, or a function of
E, at a point that is outside an expression’s domain. For example, = 0 is outside
the domain of f(x) = x/x. For all other values of x, f(x) = 1. If a constant is
substituted for an expression that would otherwise cause an exception to be raised,
the exception will be hidden from view. While compilers are not required to detect
all possible programming errors, ease of debugging is important, and compilers are
required to produce codes that correctly execute mathematically correct expressions.
For particular interval arguments, interval arithmetic can be used to prove that a
mathematical expression cannot raise exceptions.

2.1. Multiple Assignment Statements. Compilers are capable of recogniz-
ing opportunities to perform ever increasingly complex optimizations across mul-
tiple assignment statements, or even across procedure boundaries. For example, a
compiler may recognize that in place of X = E1 + E2, followed some time later by
Y = X — E1, the substitution Y = E2 may be made. Moreover, if X is never used
elsewhere, if there are no side effects associated with its computation, and if neither
X nor E1 are re-defined between the first and second statements, then X need not
be computed at all.

2.2. The Fortran Standard. The Fortran standard permits a compiler to per-
form any “mathematically equivalent” transformations. Section 7.1.7.1 of [8], states:
“It is not necessary for a processor to evaluate all of the operands of an expression,
or to evaluate entirely each operand, if the value of the expression can be determined
otherwise”. Note 7.19 further states that Section 7.1.7.1 applies to “...all expressions”.
Section 7.1.7.3 states that in place of performing the specified operations in a given
mathematical expression, “...the processor may evaluate any mathematically equiva-
lent expression, provided that the integrity of parentheses is not violated”. (Emphasis
added.) Section 7.1.7.3 goes on to define mathematically equivalent thusly: “Two ex-

J3/97-158: Compile-time Optimization of Point and Interval Expressions)

3

pressions are mathematically equivalent if, for all possible values of their primaries’,

their mathematical values are equal”. The standard does not define “possible values”.
If the set of “possible values” is the same as the domain of an expression, mathemat-
ically equivalent in the Fortran Standard is the same as mathematically identical.

The requirement to preserve the “integrity of parentheses” is motivated by the
desire to permit a programmer to specify the exact order in which operations are
to be performed. This requirement can be viewed from both an operational and
from a mathematical perspective. For example, Y = X/(A +B)and Y =X/A + B
are both mathematically and operationally different. Whereas, Y = X 4 (A 4+ B)
and Y = X + A + B are mathematically identical and operationally different. When
mathematically identical transformations are permitted, only those parentheses that
change the mathematical definition of an expression must be observed. However, if
identity transformations are not permitted, strict adherence to the specified opera-
tions is required.

2.3. Control of Identity Transformations. In production programs, the bene-
fits from improved run-time performance resulting from compile-time transformations
can be critically important. There are at least two situations in which it is necessary
for a compiler to be strictly operational and to perform no identity transformations:
debugging and testing. Therefore, it is necessary to specify whether or not identity
transformations are permitted, using a pragma®, a global variable, or a command-line

flag.

2.4. Inter-Procedural Analysis. If different compilation units are compiled at
the same time, or if inter-procedural information is otherwise made available to the
compiler, algebraic transformations across procedures can be performed. For exam-
ple, consider the two functions:

FUNCTION FOO(X, Y)
FOO=X+Y

RETURN

END

3For the purposes of this paper, a primary is an argument of the underlying function that the
mathematically equivalent ezpression in question operationally defines.

1A pragma is a statment to the compiler about how to process subsequent statements. For
example, the pragma

C$PRAGMA COMPILE_TIME TRANSFORMATIONS =< ON, OFF >,

can be used in the present context to set the mode of compilation.

J3/97-158: Compile-time Optimization of Point and Interval Expressions 6

FUNCTION BAR(X, Y)
BAR=X-Y

RETURN

END

In place of X = FOO(A, B), followed by Y = BAR(X, A), a compiler could sub-

stitute Y = B.

The Fortran standard contains a “caveat emptor” warning in Section 7.1.3: “How-
ever, mathematically equivalent expressions of numeric type may produce different
computational results.” The interval guarantee of containment permits these “differ-
ent results” to be used to obtain sharper intervals than otherwise would be possible.

3. IDENTICALLY EQUAL INTERVAL EXPRESSIONS

Two identically equal point variables are interchangeable. When two interval variables
coincide, their endpoints are equal, but they are not necessarily identically equal. A
simple example of the distinction between coincidence and identical equality of two
intervals is the “dependence problem”, which is the source of the conclusion that for
any non-degenerate interval, X, X — X # 0. When viewed from the operational
perspective at run-time, the code X — X is no different from X — Y, when X and Y
coincide.

3.1. The Four Definitions of Interval Equality. There are four possible def-
initions of interval equality, three of which are required to precisely define concepts
in this paper.

Let X ={2z |a<a2<b}=a, bjand Y ={y | ¢c <y < d} = e, d]. The four

types of interval equality are presented in the following table:

Type of Interval Equality | Symbol® Definition
Identical X=Y r=yVereXandyeyVY
Certain X .CEQ.Y a=b=c=d
Set or Coincidence X .SEQ.Y a=cand b=d
Possible X .PEQ.Y b>cand a <d

°In the case of Certain, Set, and Possible equality, as well as the other order relations, the notation
.Cop., .Sop., and .Pop. as well as .Cop.,.Sop., and .Pop. is used to denote the three varieties of
relational operators; where op = {LT, LFE, GT, GE, EQ, or NE}, and op = {LT, LE, GT, GE,
EQ, or NE}. The Possibly operators are not used herein and are included only for completeness.

J3/97-158: Compile-time Optimization of Point and Interval Expressions 7

Identical Equality. Two interval variables are identically equal if they coincide®
and they are dependent. Coincidence is the consequence of X and Y having the
same endpoints. Dependence is the consequence of = being equal to y Vo € X
and y € Y. Because dependence cannot be determined from interval endpoints
alone, testing for identical equality at run-time is not possible. When viewed from a
mathematical perspective at compile-time, however, the assignment statement X =Y
can be interpreted to mean identical equality, because the symbolic names of the
variables are known to the compiler.

Unlike point constants, interval constants do not share all the properties of interval
variables. In particular, a non-degenerate interval constant cannot be identically
equal to anything, including itself. The interval constant [a, b] & [a, 0], if b > a,
because there exists no scalar variable in an interval constant with which a dependence
can be formed. Two interval constants can be certainly equal or set equal, see below.

Certain Equality. Two intervals are certainly equal if they are degenerate and
equal. Certain equality can be determined from interval endpoints and therefore can
be tested at run-time. Certain equality is the only case in which identical equality
can be determined by comparing interval endpoints at run-time. Two interval con-
stants are identically equal, for example, when [a,] .CEQ. [a, «]. At run-time, only
degenerate intervals can be shown to be identically equal. However, at compile-time,
(< A >) can be treated as [a, a] even though the point, A, may not be machine-
representable. An illustration of this common situation is: A = 0.1 on a binary
computer.

Set Equality or Coincidence. Two intervals are set equal, or coincide, if they
represent the same set of points. This is true if their respective endpoints are equal.
Coincidence of two intervals results from an assignment of interval values during
program execution. After the assignment of the interval endpoints of X to Y in the
statement Y = X, X .SFEQ. Y, but x and y remain independent. Note that even
from the mathematical perspective at compile-time, the code X = (< A, B >) is an
assignment of value.

The following example illustrates the fact that set equality and identical equality
are different. Let X = [1, 2] and define: ¥; = X? and Y; = 3X — 2. While Y; and
Y, do coincide (because Y; = [1, 4] and Y, = [1, 4], and thus, Y} .SFEQ. Y3), clearly
Vi 2 Vi

3.2. Interval Equality Summary. The following table summarizes the nota-
tion used to distinguish among the different types of interval equality used in this

paper.

5They have the same endpoints.

J3/97-158: Compile-time Optimization of Point and Interval Expressions 8

Code Compile-time | Run-time Run-time
Definition Definition Result

X=Y rT=y ri=y X .EQ. Y

X=Y X=Y X =Y X .SEQ.Y
X=(<A, A>) X = [a, d X :=[a,] | X.CEQ. (< A, A>)
X=(<A>) X =a, 4q X :=[a,] | X.CEQ. (< A, A>)
X=(<A, B>) X :=a, b] X :=la, b | X.SEQ. (<A, B>)
X=(<A>) X =a, 4q X :=la, b | X.SEQ. (<A, B>)

The second column can be used to resolve any apparent ambiguity regarding which
variables are points and which are intervals. For example, in the first row, second
column, x and y are both lower case. This means that in the first row, first column,
X and Y are both point variables. In the second row, they are all upper case, and
therefore, intervals. There are two rows containing X = (< A >) in the first column.
In the first, A is machine representable. In the second, it is not.

4. IDENTICALLY EQUAL INTERVAL EXPRESSIONS - CONTINUED

To continue the development of identically equal interval expressions, the most impor-
tant theorem of interval analysis is needed. The theorem’s importance and identifying
it as the “fundamental theorem of interval analysis” is credited to Louis Rall [6] by
Eldon Hansen [2]. This theorem was first proved by Ramon Moore [4].

Theorem 1. An inclusion monotonic interval extension’, f(X), of a real function,
f(x), bounds the range of the function over its argument interval. That is, f(X) has
the following property:

J(X) 2{f(x) | v € X} (2)

The fundamental theorem leaves unspecified what happens if X contains points
outside the domain of f. Letting D; denote the domain of f, there are two obvious
conventions:

Convention a) Leave f(z) undefined if X ¢ Dy; or,

"F(X) = f(X), is an interval extension of f(z) if F(z) = f(x)Vz. That is, the interval extension
equals the function when evaluating the extension over a degenerate interval. f(X) is inclusion
monotonic if f(X) D f(Y)VX D Y.

J3/97-158: Compile-time Optimization of Point and Interval Expressions 9

Convention b) Define:

F(X) 2 {f(x)| € XNDy}, or (3a)

f(X) 2 U{f(:z;) | + € X;}; where UXi =X, and X; C D;.(3b)
Convention a) requires that X C Dy. In this case, any interval argument of a
function must be within the function’s domain, or an exception is raised. For

example, both /[—1, 1] and [—1, 1]/[—1, 1] are undefined.
Convention b) only requires that X N Dy # ¢. In this case 4/[—1, 1] = [0, 1],

and [—1, 1]/[-1, 1] = [-o0, oo]. However, /[-2, —1] = [-1, 1]/]0, 0] = ¢,
the empty interval, which can be denoted by [co, —oo]. It is convenient to
associate convention a) with the operational perspective and convention b) with
the mathematical perspective.

Using the definitions of interval equality at run-time summarized in Section 3.2 and
employing the operational perspective, X — X # 0, because X — X is operationally
the same as X — Y, given only that X .SFEQ. Y. When performing the assignments
X :=[a, bl and Y :=[¢, d], only the endpoints of X and Y are defined within which

the variables @ and y are contained. Interval subtraction is operationally defined:
X—-Y={e—ylaeeX, yeY}t=[a—d, b—c|. (4)
Now suppose X .SFEQ. Y. Nothing changes, except that:
X—-Y=[a—0, b—d (5)
can be written in place of (4). It follows at once that:
[a, b] — [a, b] =[a—b, b—a] #0. (6)

Now consider X — X from the mathematical perspective at compile-time. From
the fundamental definition of the interval extension of the real function, f(x) = & —a:

fX)=X-X={e—z]zeX}=0VX. (7)

If 0 can be substituted for X — X at compile-time, both run-time performance and
interval sharpness will be improved.

Now consider X/X. Just as it is desirable to substitute 0 for X — X, so it is to
substitute 1 for X/X. Define the function f(x) = a/x Vo € Dy = [—o0, o] — 0.
That is, the domain of f is the real line, except for the single point at the origin

J3/97-158: Compile-time Optimization of Point and Interval Expressions 10

since f(x) =1 Va except when & = 0. Therefore, the interval extension f(X) =1VX
except when X = [0, 0], in which case f([0, 0]) = ¢, because [0, 0] N D; = ¢. In
other words, [0, 0] is strictly outside the domain of f. Any combination of arguments
that results in an attempt to evaluate a function outside its domain is a bug.

Interval arithmetic provides a way to verify that no function arguments are strictly
outside any function’s domain. If no exceptions are raised when mathematical trans-
formations are prohibited, this proves that no exceptions can be raised anywhere
inside the sub-domain defined by the interval arguments. This means that within
this sub-domain, no function argument can be outside the function’s domain. Either
as a consequence of analysis or as the result of empirical testing using interval arith-
metic, the prudent programmer will include tests to verify that arguments are never
strictly outside the domain of any functions.

The only case in which substituting 1 for X/X at compile-time hides and unde-
fined result is when X = [0, 0]. There are other cases in which large parts of the real
line can be outside the domain of a function. For example, consider f(z) = /z/\/x.
Then Dy = [0, oc].

It is difficult to conceive of a case in which substituting 1 for X/X at compile-
time might cause an incorrect result to be computed. There would be no hesitation
in making the substitution with paper and pencil. Therefore:

Conjecture 1. In a valid interval algorithm, substituting 1 for X/X, where X is a
non-empty interval variable, will not cause a containment failure.

5. SINGLE-VALUEDNESS
Substitutions can only be made using identically equal expressions. To extend the
concept of identically equal interval variables to interval functions, operators, and ex-
pressions, the concept of single-valued intervals is introduced. Single and multi-valued
interval expressions are simply interval extensions of their underlying mathematical
functions and relations, respectively.

5.1. Interval Extensions of Mathematical Functions and Relations. An
interval function is a mapping of sets of points in its domain to sets of points in
its range. (In the mathematics of points, an interval function is a mathematical
relation.[3] To be a point-function, a relation must have only one value in its range for
each value in its domain. In other words, point-functions are single-valued relations.)

Definition An interval function is an interval extension of a point function if it
is equal to the point function when its interval arguments are all degenerate,

J3/97-158: Compile-time Optimization of Point and Interval Expressions 11

or points [4]. That is, letting F' symbolize the interval extension of the point
function, f:

Fay, oy xn) = fo1, o, 20); (8)
for all x;, (1 =1,...,n).

Thus, any interval extension of a point function is single-valued, because the un-
derlying point function is necessarily single-valued. A second interpretation of a
single-valued interval is: Fach occurrence of a single-valued interval can be treated as
one mathematically identical single value. Whereas each occurrence of a multi-valued
interval is a distinctly separate and independent value.

The interval extension of a point relation is defined relative to its underlying point
relation in precisely the same way that the interval extension of a point function is
defined relative to its underlying point function. That is:

Definition If g(z) defines a multi-valued relation between x and g(x), then G(X) is
an interval extension of g(x), if G(x) = g(x) Va

Inclusion monotonicity carries over from functions to relations as well:

Definition The interval extension of a relation is inclusion monotonic if g(X) D

gY)¥VX DYl

Following the same steps used to prove the fundamental theorem of interval analy-
sis for functions, the theorem can be extended to include interval extensions of point
relations:

Corollary 1. The inclusion monotonic interval extension of a relation bounds the
set of values that can be returned by the relation. That is, if g(x) defines a
multi-valued relation between x and g(x), and if the interval extension, g(X),
is inclusion monotonic, then:

9(X) 2 {g(e) | v € X} (9)

Consider the relation y € [a, b]. In this case, the set of possible values of y is the
interval [a, b]. In the special case that a = b, the expressions y = @ and y := « are
indistinguishable, as there is no difference between assignment of value and identical
equality of points. Using interval notation, the relation y € [a, b] is the same thing as
Y := [a, b], because the interval Y represents the set {y | y € Y'}. The central idea
is that there is no underlying function of which Y := [a, 0] is an interval extension.

J3/97-158: Compile-time Optimization of Point and Interval Expressions 12

In other words, the interval constant [a, b] is not single-valued unless @ = b. Every
occurrence of [a, b] is the same as a distinct and independent variable.

Consider the relation y € [a, b]az. The set of possible values of y depends on the
variable x. As with the relation y € [a, b], unless a = b, y € [a, b]x is not a function.
Using interval notation, Y := [a, bla. If 2 € X it is also possible to write the interval
extension: Y := [a, b]X = {[a, bl | € X}. Again, although Y depends on X and
y depends on z, y € [a, b]x is a relation not a function, [a, b]X is not a single-valued
interval expression, and it is incorrect to write either: Y = [a, blx, Y = [a, b]X, or
Y = [a, b].

If EMYV is the code for any multi-valued expression, the assignment statement
Y = EMYV represents an assignment, both at compile and at run-time. Thereafter
at compile-time, Y is a single-valued interval variable. This is not a contradiction.

An interval operator is simply the interval extension of the corresponding real
operator. If the real operator (or function of two or more variables) is single-valued,
then so is its interval extension.

Any interval expression can be viewed as a mathematical definition of the func-
tion (or relation) of all the interval variables contained in the expression. Only if the
relation is a function, is the corresponding interval expression single-valued. Only
single-valued expressions can be identically equal. Let Fjv and Egy represent arbi-
trary multi-valued and single valued expressions, respectively. Then:

Eyv — Exyv # 0, however

FEsy — Esy = 0. (10)
5.2. Properties of Single-valued (SV) and Multi-valued (MV) Interval
Expressions . The same logic used in Section 5.1 can be used to establish the

following properties of single-valued (SV) and multi-valued (MV) interval expressions:

1. Interval variables are SV.

Degenerate interval constants are SV.

Non-degenerate interval constants are MV

Interval expressions containing only SV sub-expressions are SV.

Interval expressions containing at least one MV sub-expression are MV.

AR AN B

Each occurrence of a MV interval expression is a distinct and independent
interval value.

7. Each occurrence of the same SV interval expression is the same identical math-
ematical quantity.

J3/97-158: Compile-time Optimization of Point and Interval Expressions 13

6. MATHEMATICAL IDENTITIES

Mathematical identities take the form f(x) = ¢ Yo € Dy, where ¢ is a constant.
Examples include:

rx—zx = 0;
z/r = 1;and
sinfx +cos’z = 1. (11)

The validity of the interval extension of a mathematical identity depends on two
conditions: all the identity’s interval arguments must be single-valued; and no inter-
val argument can be strictly outside the identity’s domain. This result is a direct
consequence of the definition of an interval extension. Consequently, any mathe-
matical identity can be applied at compile-time to single-valued interval expressions.
For an arbitrary single valued interval expression, Egy, and a mathematical identity,
f(x) = ¢, the generalization of Conjecture 1 to single-valued interval expressions is:

Conjecture 2. If f(x) = ¢ Vo € Dy is a valid mathematical identity and ESV is a
non-empty single-valued interval expression, then in a valid interval algorithm
containing F(ESV), substituting C for F(ESV) cannot cause a containment
failure in the algorithm.

7. MATHEMATICALLY IDENTICAL EXPRESSIONS
When computing any interval expression in which each variable appears only once,
the result is an exact bound on the range of the function defined by the expression.
When any variable appears more than once, the result may not be as sharp as possible.
For example, if £, F,, and E, are arbitrary interval expressions, then:

EE, + EE, D E(E, + E,). (12)

With the goal of improving the sharpness of computed results, under what condi-
tions can a compiler perform an equivalence transformation such as that implied by
(12)? That is, when can a compiler substitute E« (EX + EY) for Ex EX + ExEY
at compile-time? The answer is: whenever F is single-valued. Take a simple example
of a case when F is not single-valued. Substituting [a, b] for £ in (12):

[a, b|E, + [a, b]F,. (13)
Expression 13 is not mathematically identical to:

[a; O](Ew + Ey). (14)

J3/97-158: Compile-time Optimization of Point and Interval Expressions 14

The reason is that [a, b]F, +[a, b]F, is the same as the result of assigning U := V :=
[a, b], followed by:
UE, +VE,. (15)

If [a, b](£+ E,) is substituted for expression (15), containment cannot be guaranteed,
thereby violating the fundamental requirement of interval arithmetic.

Thus, the normal rules of algebra can be used to construct mathematically iden-
tical interval expressions, provided that substitutions only involve single-valued ex-
pressions.

8. INTERSECTIONS OF MATHEMATICALLY IDENTICAL EXPRESSIONS

If there is no single uniformly sharpest representation for a given interval expression,
the sharpness of interval results can still be increased. This is done by using the in-
tersection of the intervals obtained from evaluating different mathematically identical
expressions. For example, consider: E(E(E — 1)), where E is an arbitrary single-
valued interval expression. There is no mathematically identical interval expression
containing only one occurrence of K. Nevertheless, there are many mathematically
identical expressions, such as: E((F —1/2)* —1/4).

Let E; be interval extensions of mathematically identical expressions, for ;7 =
1,...,n. Then at compile time, the code to compute ﬂ?zl E; at run-time can be
generated.

A number of points deserve mention:

1. While locally more costly to compute alternative expressions and intersect their
results, global run-time performance actually may be improved.

2. Employing a subroutine to perform the optimization necessary to compute the
sharpest possible bounds on the range of any interval expression may improve
overall run-time performance. The only requirement is that containment be
guaranteed.

3. If parallel computing hardware is available, computing alternative expressions
can be done in parallel.

9. USER-DEFINED FUNCTIONS AND OPERATORS
For intrinsic functions and operators®, information can be included in a compiler
about which interval extensions are single-valued and which are multi-valued. For
example, the only Fortran intrinsic interval functions that are multi-valued are:

8Intrinsic functions and operators are part of a language and therefore their properties can be
“known” to the compiler.

J3/97-158: Compile-time Optimization of Point and Interval Expressions 15

e INTERVAL(A, B), and
e (<A, B >), provided that B > A.

To program a compiler to automatically identify single-valued user-defined func-
tions and operators, it is sufficient to identify sub-expressions as SV or MV, and
to follow the rules given in Section 5.2. In Fortran, only interval constants are in-
herently MV quantities. Fven the RANDOM_NUMBER subroutine returns an
interval variable, which is by definition, single-valued.

In the absence of language support to declare SV user-defined functions and op-
erators, compile-time optimizations can be restricted to interval expressions contain-
ing only interval variables, and single-valued intrinsic functions and operators. If
a programmer can declare, or a compiler can automatically identify, single-valued
user-defined interval function sub-programs and operators, all expressions can be
candidates for automatic compile-time optimization.

Without language or compiler support for interval single-valuedness, but with
extra programming work, the compiler can be provided the information needed to
identify mathematically identical expressions even if they contain user-defined opera-
tors and functions. Consider an expression, EU, that contains user defined function
subprograms and/or operators. A compiler cannot substitute 0 for the expression
EU — EU. Because all interval variables are single-valued, zero can be substituted
for X — X if this expression is preceded by X = EU. This is valid even if EU is multi-

valued. Nevertheless, automatic recognition at compile-time is always preferred.

10. AUTOMATIC DETERMINATION OF SINGLE-VALUEDNESS
Section 5.2 contains the properties that are needed to program a compiler to identify
any sub-expression as SV or MV. There are cases in which these properties are insuf-
ficient to determine that a user-defined function subprogram is single-valued. In such
cases, it 1s desirable for a programmer to be permitted to declare any user-defined
function or operator to be single or multi-valued. For example, a routine can be used
to compute the interval extension of a real function. In the process, an interval may
need to be constructed to bound the error in the approximation algorithm. While a
compiler must conclude that such a function subprogram is multi-valued, a program-
mer may want to override with an explicit declaration. For testing and debugging, it
must be possible to declare a single-valued function to be multi-valued.
To the list in Section 5.2, one additional property must be added:

8. A single-valued function of a non-degenerate interval constant argument is MV.

Thus, for example:

exp([a, b))/ exp([a, b]) # 1. (16)

J3/97-158: Compile-time Optimization of Point and Interval Expressions 16

11. FORTRAN NAMED CONSTANTS

In Fortran a PARAMETER statement can be used to declare named constants.
Neither named nor literal constants can have their value changed during program
execution. As with literal constants, degenerate named constants are SV. What
about non-degenerate named constants? If the named constant is assigned a value
from a single-valued literal interval constant, then the named constant is SV, even
though it may not be degenerate. However, if the named constant is assigned its
value from an explicitly multi-valued interval constant or constant expression, then
the result is MV. An example of the former is:

PARAMETER PI = (< 3.1415... >). (17)

An example of the latter is:

PARAMETER C23 = (< 2.0, 3.0 >). (18)

12. CONCLUSION

The distinction between operational and mathematical perspectives has been intro-
duced and used to justify the application of mathematically identical transformations
at compile-time. The concept of single-valued interval expressions has been defined
to extend the concept of identical equality from variables to expressions. Optimizing
transformations can be automatically applied to SV interval expressions. Interval
expressions containing user-defined operators and function sub-programs can be de-
clared and /or automatically identified as single or multi-valued. Automatic identifica-
tion of possible compile-time transformations is facilitated by judiciously introducing
intermediate interval variables, which are always single-valued.

Compile-time optimizations of interval code will produce a significant increase
both in interval sharpness and in run-time performance. Interval arithmetic without
compile-time transformations, can be used to prove that no function arguments can
ever be strictly outside a function’s domain.

REFERENCES
[1] R. Baker Kearfott et al. A Specific Proposal for Interval Arithmetic in Fortran.
Technical report, X3J3, March 1996.

[2] Eldon Hansen. Global Optimization Using Interval Analysis. Marcel Dekker, Inc.,
New York, 1992.

[3] Glen James and Robert C. James. James and James Mathematics Dictionary.
Van Norstrand Reinhold, 11 Fifth Avenue, New York, New York 10003, fourth
edition, 1976.

J3/97-158: Compile-time Optimization of Point and Interval Expressions 17

[4] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J., 1966.

[5] Institute of Electrical and Electronic Engineers. IEEE standard for binary
floating-point arithmetic, ANSI/IEEE STD 754-1985. Technical report, New
York, 1985.

[6] L. B. Rall. Computational Solution of Nonlinear Operator Equations. Wiley, New
York, 1969.

[7] G. William Walster. Stimulating Hardware and Software Support for Interval
Arithmetie, pages 405-416 in R. B. Kearfott and V. Kreinovich, “Applications of
Interval Computations”. Dordrecht, The Netherlands, 1996.

[8] X3J3. International Standard Programming Language Fortran. Technical report,
ISO/IEC 1539-1, 1996.

