
Handling IEEE ��� Invalid Operation Exceptions

in Real Interval Arithmetic

Douglas M� Priest

Draft revised May ��� ����

Abstract

Interval arithmetic operations implemented using IEEE �oating point can

deliver incorrect results when certain exceptions are mishandled� This note

proposes a way to handle those exceptions correctly� We �rst de�ne a set of

representable real intervals based on the IEEE �oating point number system�

We then show that we can implement consistent arithmetic on these intervals

with e�cient algorithms that deliver correct results even when exceptions occur�

Finally� we suggest ways to incorporate these ideas into improved hardware

support for interval arithmetic�

� Introduction

How reliable are the results of interval computations� The expression ab����a�� �
���b��� simpli�es to 	
� when b � �a but a simple program using INTLIB��� to
compute an interval bound on this expression for a � ������ and b � � � ������
obtains the interval �����	 � ������� ���	 � ������� on many systems� The quantity

y

�
�

����x� ���
� �

�

is unbounded when x ranges over the interval �������� �� and y ranges over the interval
���� �� but a straightforward program using Kn�uppel�s BIAS subroutine library��� to
compute a bound on this quantity for x and y in those intervals produces the result
���� �� on at least three di�erent machines� The expression ���s�t���� can take values
extremely close to one when s ranges over the interval �������� �� and t ranges over the
interval ��� ������ but a short program to compute a bound on this expression using

�

the interval arithmetic incorporated in Van Iwaarden�s VerGO software���� delivers
the interval ��� ���� on many computers�

The preceding results were all obtained on systems conforming to the IEEE ���
standard���� In each case the computation produced an incorrect result because the
software implementing the basic interval arithmetic operations did not account for a
situation de�ned by the standard as an invalid operation exception� In general an
exception occurs whenever a �oating point operation has no single universally accept�
able result so for each exception the standard prescribes a default result that may
depend on one or more modes established by the program� Two of these modes the
round�to�positive�in�nity mode and the round�to�negative�in�nity mode are intended
to support interval arithmetic� In these modes the default results for exceptional op�
erations are de�ned to give either the best representable upper or lower bound on the
true result or else an indication that no such bound can be delivered�

Unfortunately the default result speci�ed by the IEEE standard for an invalid op�
eration exception a code meaning �Not�a�Number� or NaN is not always the best
result for interval arithmetic operations� A straightforward implementation of an
interval operation can produce an incorrect result if one of its constituent �oating
point operations incurs such an exception and the computation continues using the
default NaN result� Consider for example the following algorithm for computing the
interval product �a� b�� �c� d��

l� �� a� c� l� �� a� d� l� �� b� c� l� �� b� d rounding down
l�� �� if l� � l� then l� else l�
l�� �� if l� � l� then l� else l�
l �� if l�� � l�� then l�� else l��
u� �� a� c� u� �� a� d� u� �� b� c� u� �� b� d rounding up
u�� �� if u� � u� then u� else u�
u�� �� if u� � u� then u� else u�
u �� if u�� � u�� then u�� else u��
return �l� u�

For the product ��� ��� ����� the preceding algorithm �rst computes l� � � l� � �
and l� � � but l� � � � � � NaN� Since the predicate � � NaN is false the
algorithm sets l�� � l� � NaN� It then sets l�� � � and since NaN � � is also false
it sets l � l�� � �� Likewise the algorithm computes u� � � u� � NaN u� � �
u� �� then sets u�� � NaN u�� �� and �nally u ��� Thus the output interval
is ����� which is clearly incorrect� the smallest interval that encloses the product of
��� �� and ����� is ������ �This is precisely the �aw that causes the VerGO software
to deliver an incorrect result in the example cited above��

Of course most systems that conform to the IEEE standard support its optional
trapping mode so one could simply trap and abort the computation whenever an

�

invalid operation exception occurs� This practice would be safe but not e�cient
forcing programmers to use defensive tests to prevent exceptions rather than simply
detecting their occurrence after the fact� Moreover one of the primary features of
interval arithmetic is its ability to bound roundo� errors which are artifacts of the
nonstop mode of handling inexact exceptions� Interval arithmetic can cope with the
larger�than�usual roundo� errors resulting from under�ows and over�ows too� Since
these exceptions can be handled so easily we might like to handle invalid operation
exceptions more gracefully than by aborting�

In this note we propose an alternative that extends nonstop handling to all IEEE
exceptions in real interval arithmetic� We de�ne an interpretation of the real intervals
represented by pairs of IEEE �oating point numbers and give speci�cations for a
closed consistent interval arithmetic� In this arithmetic the obvious algorithm for
interval addition always delivers correct results when exceptions are handled according
to the IEEE default� Multiplication division and square root however require some
care� we give e�cient algorithms for these operations that yield correct results even in
the presence of invalid operation exceptions� Finally we consider some implications
of our interpretation and algorithms for �oating point hardware support for interval
arithmetic�

� Real Interval Arithmetic in IEEE Floating Point

In order to deliver correct results without forcing program termination in exceptional
cases an implementation of real interval arithmetic must be closed for all operations
with operands in some set of representable intervals� Also the results of exceptional
operations must be de�ned consistently to ensure that evaluating any expression
will produce correct bounds� Of course we would also like to obtain sharp bounds
whenever possible and we would like the implementation to be e�cient requiring a
minimal amount of logic to detect and handle special cases� Taking all of these goals
into account we de�ne a set of representable intervals and the results of operations
on those intervals�

De�nition of Real Interval Arithmetic

Table � lists the real intervals we identify with pairs of IEEE �oating point values�
Naturally the representable intervals include all intervals of the form �x� y� where
x and y are �nite �oating point numbers and x � y� To close the arithmetic for
operations whose results must contain numbers larger than the largest �nite �oating
point number we also include intervals unbounded at one or both ends which we
represent using the IEEE �oating point numbers �� as endpoints� Note that we

	

Representation Interval Representation Interval
������� f�g �x���� fz � x � zg

�x� y�� x � y fz � x � z � yg ���� y� fz � z � yg
�x����� x � � fz � x � z � �g ������� fz � z � �g
�x����� x � � fz � x � z � �g ������� fz � z � �g
���� y�� � � y fz � � � z � yg ������� fz � � � zg
���� y�� � � y fz � � � z � yg ������� fz � � � zg
�NaN�NaN� � ������� R

Table �� Valid �oating point intervals and the real intervals they represent� Here x
and y may be any �nite nonzero �oating point numbers�

do not treat the symbols �� as real numbers but only as a means to represent
in�nite intervals� For this reason we can de�ne arithmetic on intervals with in�nite
endpoints without encountering dilemmas over the de�nition of arithmetic on the
�number� in�nity� such dilemmas are the source of several of the invalid operation
exceptions in IEEE �oating point� For example because we do not admit the pairs
������� and ������� we avoid the��� invalid operation exception in interval
addition�

One invalid operation that poses a problem for real interval arithmetic is the square
root of a negative interval� To close the arithmetic for this operation without intro�
ducing complex intervals we must deliver a result that indicates that square root
does not take real values on the negative real axis� The IEEE special value NaN is
a convenient way to represent such a result particularly since the standard requires
that the square root of a negative number deliver NaN� Therefore we propose to
deliver the result �NaN�NaN� for the square root of a strictly negative interval�

This choice raises a question� how should we handle the square root of an interval
that contains both negative and nonnegative numbers� Simply taking the square root
of each endpoint would produce an interval with NaN at only one end� As Popova����
observes such intervals can be di�cult to handle correctly in interval operations such
as multiplication and division which typically branch on comparisons of �oating
point numbers� �The reason the BIAS software delivers an incorrect result in the
example in section � is that its implementation of interval multiplication can not only
produce a NaN result from real interval operands but also deliver a real result when its
operands involve NaNs�� Instead Popova suggests restricting the interval argument
of a function to the real�valued domain of that function so that sqrt�X� is implicitly
interpreted as sqrt�X � ������� Of course if X is strictly negative the intersection
is empty� Because we deliver the result �NaN�NaN� in that case it seems natural

�

to interpret �NaN�NaN� as a representation of the empty set� Moreover unlike an
interval with NaN at only one end the interval �NaN�NaN� does not pose any special
di�culty for the implementation of interval arithmetic operations� if either operand
is �NaN�NaN� the result is �NaN�NaN� also� Since the result of any operation with
an empty operand should be empty this is another reason to identify �NaN�NaN�
with the empty set�

Most of the remaining invalid operations in IEEE �oating point are related to the
indeterminate form ���� �Its relatives are � �� and ����� In real interval arith�
metic there is often only one reasonable result we can deliver for a quotient A�B
when B contains zero� for example if A contains any nonzero number and B con�
tains zero in its interior we must deliver ������� and if A does not contain zero
and B is a degenerate interval at zero we should deliver �NaN�NaN� since there is
no real number x such that a � xb for some a 	 A and b 	 B� By analogy with
this last argument one might be tempted to de�ne A�B �� ������� whenever
B is a degenerate interval at zero and A contains zero� This would be tantamount
to �lling in each removable singularity in a rational function with a vertical line�
Unfortunately removable singularities do not always appear in such a simple form�
even the obvious transformation A�B � A� ���B� turns a quotient that one might
want to be ������� into a product that should be empty� When we consider other
transformations such as �A�B�� � �A��B��B � A� �A� ���B��� we �nd that it is
not easy to de�ne division by a degenerate interval at zero consistently in this way�
We therefore propose a di�erent approach� following the example of square root we
implicitly interpret the quotient A�B as A��B n f�g�� This interpretation simply
leaves removable singularities empty�

We can summarize the preceding observations in two simple speci�cations for an
implementation of real interval arithmetic� For brevity we �rst introduce a de�nition�

Definition� Call an ordered pair of �oating point values a valid �oating point
interval if it is one of the representations shown in table ��

Evidently an implementation of real interval arithmetic will deliver correct results
even in the presence of exceptions if it meets the following speci�cations�

�� The computed sum product or quotient of two valid intervals is valid and the
computed square root of a valid interval is valid�

�� The computed sum or product of intervals A and B contains the exact sum
or product of those intervals� The computed quotient A�B contains the set
fa�b � a 	 A� b 	 B� b
 ��g� The computed square root sqrt�A� contains the
set fpa � a 	 A� a � �g�

In particular the quotient of any interval divided by a degenerate interval at zero

�

and the square root of a strictly negative interval may be empty�

Algorithms for Real Interval Arithmetic Operations

We have de�ned the representable real intervals and speci�ed the results of arith�
metic operations on them to facilitate e�cient implementations of these operations
in IEEE �oating point� Our implementations rely for their e�ciency on the default
results and exception �ags required by the IEEE standard� For example as noted
above the obvious algorithm for interval addition meets both of the preceding speci�
�cations because we have de�ned the representable intervals so that invalid operation
exceptions cannot arise� the only other exception besides inexact that can occur in
interval addition is over�ow for which the IEEE default results give correct bounds�
In this section we give algorithms for interval multiplication division and square
root that also meet our speci�cations�

Our algorithms also rely on the convention that a nonempty interval contains zero
if and only if its endpoints have opposite signs� Of course this is obviously true of
intervals with nonzero endpoints� To extend this convention to intervals with zero
endpoints we adopt an idea suggested by Kahan��� to use the sign bit in the �oating
point representation of zero to distinguish open and closed interval endpoints at zero�
For example the interval ������� includes zero at its left endpoint but ������� does
not� Likewise ������� and ������� are not valid representations of a degenerate
interval at zero� only ������� is� Fortunately this convention was designed into
the IEEE standard�s rules prescribing the sign of a zero result so interval addition
automatically follows the convention� In interval multiplication we must be careful
to ensure that zero endpoints of products have the correct sign but as the following
algorithm shows this requirement is easy to satisfy in a software implementation� As
we will show in section 	 with suitable hardware support we can satisfy it at no
extra cost�

The following algorithm computes the interval product �a� b� � �c� d� and meets both
speci�cations given above� The algorithm selects one of nine cases based on the signs
of the endpoints of the factors to determine which endpoints will give the extreme
bounds for the interval product� This method can encounter an invalid operation
exception when one of the endpoint products has the form � ��� in that case the
correct result is obtained by replacing the product by a correctly signed zero� Here
the integer variable s keeps track of the appropriate signs� �s is � if the interval
product is strictly positive � if it is strictly negative and � if it contains zero�� Note
that the tests y
 �y etc� are used to check for NaNs� in IEEE arithmetic the
predicate x
 �x is true precisely when x is NaN� Also when either l or u is found
to be NaN we use the tests a � b and c � d to distinguish a NaN arising from a
� � � product from one propagated from an empty operand� �To avoid spurious

�

exceptions these tests as well as the tests x � y and z � w in the ninth case should
be implemented with predicates that do not raise an invalid operation exception when
either operand is a quiet NaN��

if signbit�a� � �
if signbit�c� � �

l �� a� c rounding down
u �� b� d rounding up
s �� �

else if signbit�d� � �
l �� b� c rounding down
u �� a� d rounding up
s �� �

else
l �� b� c rounding down
u �� b� d rounding up
s �� �

else if signbit�b� � �
if signbit�c� � �

l �� a� d rounding down
u �� b� c rounding up
s �� �

else if signbit�d� � �
l �� b� d rounding down
u �� a� c rounding up
s �� �

else
l �� a� d rounding down
u �� a� c rounding up
s �� �

else
s �� �
if signbit�c� � �

l �� a� d rounding down
u �� b� d rounding up

else if signbit�d� � �
l �� b� c rounding down
u �� a� c rounding up

else
x �� a� d rounding down
y �� b� c rounding down
l �� if �x � y or y
� y� then x else y

�

z �� a� c rounding up
w �� b� d rounding up
u �� if �z � w or w
� w� then z else w

if l
� l or u
� u
if a � b and c � d

if l
� l
l �� if s � � then �� else ��

if u
� u
u �� if s � � then �� else ��

return �l� u�

We have de�ned interval division by excluding zero from the divisor� One consequence
of this de�nition is that we can implement interval division as multiplication by
a reciprocal� In particular the following algorithm computes the interval quotient
�a� b���c� d� and meets both of our speci�cations� Note that if the divisor is a degenerate
interval at zero we explicitly divide its endpoints both to obtain the correct result
�NaN�NaN� and to raise the invalid operation exception �ag� Similarly if the divisor
contains zero we explicitly divide by zero both to obtain in�nite endpoints in the
quotient and to raise the division�by�zero exception �ag� By raising these �ags in
addition to delivering the default results we allow a user�s program to detect these
exceptions after the fact� �To avoid spurious exceptions the test c � d in the �fth
line should be implemented with a predicate that does not raise an invalid operation
exception if either operand is a quiet NaN��

x �� d� y �� c
if signbit�c�
� signbit�d�

if c � d
return �c�d� c�d�

else if c � d
if c � �

x �� ��
if d � �

y �� ��
z �� ��x rounding down
w �� ��y rounding up
�l� u� �� �a� b�� �z� w�
return �l� u�

Finally the following algorithm computes the interval square root sqrt��a� b�� and
meets both of our speci�cations� Note that we compute the square root of each
endpoint of the argument before testing whether it contains negative numbers� This
ensures that we raise the invalid operation �ag even when the argument contains both

negative and nonnegative numbers so that we provide an indication that something
unusual happened even though the result appears unexceptional� �To avoid spurious
exceptions the test a � b in the third line should be implemented with a predicate
that does not raise an invalid operation exception if either operand is a quiet NaN��

l �� sqrt�a� rounding down
u �� sqrt�b� rounding up
if a � b

if signbit�b� � �
u �� l

else if signbit�a� � �
l �� ��

return �l� u�

� Hardware Support

The preceding algorithms might suggest that implementing interval arithmetic in
IEEE �oating point requires changing the rounding direction frequently� This could
be a performance bottleneck since changing the rounding direction is an expen�
sive operation on many systems� Fortunately we need not change rounding direc�
tions often� Except for the square root operation IEEE arithmetic in the round�
to�negative�in�nity mode is completely symmetric with arithmetic in the round�to�
positive�in�nity mode� Thus rather than represent an interval in storage by its upper
and lower bounds we can instead store its lower bound and the negative of its upper
bound or vice versa� we can then compute both bounds in the same rounding mode����
This technique saves numerous rounding mode changes at a cost of one unary nega�
tion for each input and output and at most two negations for each multiplication
and division� Addition incurs no extra cost� With care we can even compute both
endpoints of an interval square root in the same rounding direction� for example in
round�to�positive�in�nity mode the code fragment

l �� �sqrt��x�
if l � l � �x

l �� l � nextafter��� ��

delivers the negative of the nearest representable lower bound to
p�x�� In principle

then we only need to change the rounding mode once to begin a sequence of interval
operations and again to return to point operations�

�This implementation� however� can raise a spurious under�ow exception when x is tiny and a
spurious over�ow exception when x is the largest �nite �oating point number� A similar technique
for computing the negative of the upper bound in round�to�negative�in�nity mode avoids spurious
over�ow but not spurious under�ow� At the cost of a �oating point division and an extra rounding

�

Even if we can avoid changing rounding modes an implementation of interval multi�
plication based on the nine�case method will be less than optimal on modern heavily
pipelined superscalar processors� On most such processors testing the sign bit of a
�oating point number must be done using integer operations thereby requiring that
data in �oating point registers be stored and loaded into integer registers� �There
are a few exceptions� for example on UltraSPARC systems one can use the VIS
instructions to test the sign bit of a �oating point register������ Moreover the tests
and branches of the nine�case method tend to prevent hardware and compilers from
cooperating to fully utilize the �oating point pipeline to exploit instruction�level par�
allelism�

Hough��� suggests that with hardware support for branchless min and max operations
an implementation based on the usual de�nition

�a� b�� �c� d� � �min�ac� ad� bc� bd��max�ac� ad� bc� bd��

would be more e�cient� The eight products could be computed in parallel and some
of the latency in the min and max reductions could be hidden by arranging them
in binary tree form� Most important because the implementation would not require
any branches an optimizing compiler could freely schedule other computational in�
structions among the multiplications and reductions� Such an implementation would
require special consideration to handle the ��� invalid operation exception as well
as NaNs and signed zeroes however� For example because �� and �� compare equal
implementations of min and max using IEEE comparisons cannot easily support the
convention that the endpoints of a product have opposite signs whenever the product
contains zero� Likewise although we can arrange the reductions in interval multipli�
cation so that a NaN in either factor will propagate to the product in more general
contexts min and max based on IEEE comparisons cannot easily handle NaNs cor�
rectly either� Thus to handle NaNs and signed zeroes e�ciently we need hardware
primitives that support e�cient implementations of min and max satisfying

�i� min�x� y� � min�y� x� for all x� y and similarly for max

�ii� min�x�NaN� � max�x�NaN� � NaN for any x and

�iii� min������� � �� max������� � ���

To handle ��� invalid operations in interval multiplication we want to deliver an
appropriately signed zero for the result of each ��� product� This could be achieved

error in the result� the assignment

l �� if x � 	 then x else x�sqrt
�x�

in round�to�positive�in�nity mode delivers the negative of a lower bound for
p
�x with no spurious

exceptions�

��

using a feature Kahan��� calls �presubstitution�� Presubstitution extends the IEEE
default response to each exception by allowing the user to specify the value to deliver
when that exception occurs� In one form of presubstitution the substituted result
has the magnitude of the speci�ed value with the sign of what would have been the
default result� For our purpose the sign of the substituted result must be inferred
from the operands since the sign of the default NaN delivered for an invalid operation
exception is meaningless� Presubstitution can be implemented on current systems via
a trap handler but such implementations are awkward and ine�cient� Alternatively
presubstitution could be supported in hardware by adding a few special purpose
registers to hold presubstitution values but such a general mechanism would require
software coordination similar to that needed to cope with rounding and trapping
modes� For interval multiplication we prefer a simpler approach� provide an alternate
�oating point multiply operation that delivers zero rather than NaN for ����

More complete hardware support for interval arithmetic would combine features such
as those we have described with the ability to switch rounding direction quickly so
that we can handle both special and general cases as e�ciently as possible� One
approach to changing rounding modes quickly which has been implemented in the
Cray T��� � copies the rounding mode bits from the �oating point control register
and propagates them through the execution pipeline with each instruction so that
the bits in the control register may be changed to a�ect new instructions without
waiting for older instructions to complete� With special instructions that update
only the rounding mode bits leaving the other control and status bits unchanged we
can avoid saving and restoring the entire control register on each mode change� This
approach is perhaps the most attractive way to adapt existing implementations of
IEEE �oating point to support fast interval arithmetic since it requires only modest
changes to hardware and the addition of a few extra instructions� On the other
hand this method still requires explicit instructions to change rounding modes and
optimizing compilers must be programmed to respect the interaction between those
instructions and the �oating point operations they a�ect� Moreover the presence of
a mode of any kind implies the need to save and restore information when switching
between di�erent tasks either within a program or from one program to another and
this bookkeeping carries some cost�

The best way to provide directed roundings for interval arithmetic is to bypass the
IEEE standard�s rounding modes and encode rounding direction directly in each
�oating point opcode� �DEC�s Alpha architecture�	� does this in an unfortunately
awkward way� two bits in each opcode select one of three hard�wired rounding
directions or the direction speci�ed by the ambient rounding mode but round�to�
negative�in�nity is not one of the three hard�wired directions�� With this approach
interval arithmetic could be implemented using instructions with the rounding direc�
tions hard�wired eliminating both the need to emit extra instructions to change the

��

rounding direction and the need to save and restore modes� Moreover multiplication
instructions with hard�wired rounding directions could support the special treatment
of � � � we have described above leaving the standard mode�based multiply to
provide IEEE behavior� Even though this method requires a large number of addi�
tional �oating point opcodes and the attendant hardware needed to decode them we
believe that it will prove superior for high�performance implementations of interval
arithmetic�

� Concluding Remarks

We have proposed an interpretation of real intervals represented by certain pairs
of IEEE �oating point values and shown that we can realize a closed consistent
arithmetic on these intervals by e�cient algorithms that deliver correct results even
when exceptions occur� We have also suggested a way to enhance �oating point
hardware to allow a straightforward implementation of this arithmetic to cope with
exceptional cases at no extra cost�

Our proposals are by no means complete� For example an implementation must also
handle exceptions in interval comparisons and non�arithmetic operations such as hull
and intersection� as Popova���� shows these operations must be implemented carefully
to deal with NaNs� Likewise an implementation must decide what result to deliver
when the argument of an intrinsic elementary function lies partially or completely
outside the real�valued domain of that function� By analogy with the square root
operation it seems desirable to intersect the argument with the real�valued domain
but no matter what decision is made the implementation should raise an exception
�ag to let the user know that something suspicious happened� Finally in the interest
of e�ciency we have restricted our interpretation to real intervals and imposed a
particularly simple rule to de�ne division by intervals containing zero� Kahan���
proposes a more complete extended arithmetic based on connected subsets of one�
dimensional real projective space� His extension includes �exterior intervals� that
preserve more information in a quotient with a divisor containing zero at the cost
of requiring much more logic to interpret the representation� Thus our proposals
re�ect choices and tradeo�s typical of those we must make to develop better tools for
numerical computation�

The ideas we have proposed represent an attempt to enhance the reliability and util�
ity of interval arithmetic by incorporating an interval analogue of the IEEE nonstop
exception handling paradigm� The ability to handle �oating point exceptions grace�
fully in particular to substitute reasonable default results for exceptional operations
is one of the most useful �if least appreciated� features of IEEE �oating point� when
used properly it allows users to ignore most exceptions most of the time and to de�

��

tect and handle the rest after the fact� As we have shown we can turn this feature
to our advantage in interval arithmetic in some cases delivering potentially better
results than the IEEE default NaN in the presence of invalid operation exceptions�
By paying attention to �oating point exceptions making careful choices about how
best to handle them and considering the impact of our choices on future hardware
designs we can make interval arithmetic both safe and fast�

Acknowledgements

I would like to thank G� W� Walster for providing helpful comments on a preliminary
draft of this paper�

References

��� Alverson R� post to numeric�interest�validgh�com mailing list �����

��� ANSI
IEEE ������ � Standard for Binary Floating�Point Arithmetic Institute
of Electrical and Electronics Engineers New York �� ��

�	� Digital Equipment Corporation Alpha Architecture Handbook �����

��� Hough D� post to numeric�interest�validgh�com mailing list �����

��� Kahan W� A More Complete Interval Arithmetic lecture notes prepared for a
summer course at the University of Michigan ��� �

��� !! Lecture Notes on the Status of IEEE Standard ��� for Binary Floating�
Point Arithmetic unpublished notes ����� Available from

http���http�cs�berkeley�edu��wkahan�ieee�	
status�ieee�	
�ps

��� Kearfott R� B� M� Dawande K� Du and Ch� Hu Algorithm �	�� INTLIB� A
Portable Fortran��� Elementary Function Library ACM Trans� Math� Soft� ��

����	� ���"����

� � Kiernan J� and W� Harrod Implementation of IEEE �oating�point arithmetic
on the Cray T�� system Cray Users� Group Fall Proceedings �����

��� Kn�uppel O� PROFIL
BIAS!A Fast Interval Library Computing �� ������
���"� ��

�	

���� Popova E� Interval Operations Involving NaNs in G� Alefeld and A� Frommer
Eds� Scienti�c Computing and Validated Numerics� Proceedings of SCAN���
Akademie�Verlag Berlin �����

���� Sun Microsystems Inc� UltraSPARC User�s Manual Revision ��� �����

���� Van Iwaarden R� Global Optimization using VerGO� Veri�ed Global Optimiza�
tion in C�� ����� Software available from

http���www�cs�hope�edu��rvaniwaa�VerGO�VerGO�html

��

