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Abstract

This note proposes correct nonstop handling of IEEE 754 exceptions in
interval relational operators and intrinsics defined in the proposal for interval
arithmetic in Fortran 90 [2].

1 Introduction

The issue of properly handling IEEE 754 [1] exceptions in interval arithmetic was
first addressed by Popova in [5]. The proposal for interval arithmetic in Fortran 90
[2] defines new interval relational operators and requires that all Fortran intrinsic
functions that accept real data shall also accept interval data. Priest [4] defines a
set of representable real intervals based on the IEEE floating point number system
and offers an implementation of efficient interval arithmetic algorithms that deliver
correct results even when exceptions occur. In this note algorithms are defined that
provide correct nonstop handling of IEEE 754 exceptions for all the interval intrinsics
defined in [2].

2 Valid intervals

Priest’s paper[4] defines valid floating point intervals and the real intervals they rep-
resent. Since the result of any operation with an empty operand should be empty,
Priest proposes to use the interval [NaN, NaN] to represent the empty set because if
either operand is [NaN, NaN], the result will be [NaN, NaN].

In addition to [NaN, NaN] two additional representations of an empty set are needed:
intervals [z, NaN] and [NaN, z].



Adding these two represention to the table of valid floating point intervals from
Priest’s paper[4] we get table 1.

Representation | Interval
—0,+0] {0}

z,yl, © <y {z: <2<y}
z,—0], z <0 {z: < 2<0}
z,+0], z <0 {z: 2 <2<0}
—0,y], 0 <y {z: 0<z<y}
+0,y], 0 <y {z: 0<z<y}

[

[

[

[

[

[

[, +00] {z: <2}
[—o0, 9] {z: 2<y}
[—00, —0] {z: z2< 0}
[—00, +0] {z: 2<0}
[—0, +00] {z: 0< 2}
[+0, +00] {z: 0< 2}
[—00, +00] R

[NaN, NaN] 0

[z,NaN], x e R | )

[NaN,z], ze R | )

Table 1: Valid floating point itervals: = and y — any finite, nonzero floating point
numbers.

Intervals [—oo, —oo] and [4+00, +00], are not allowed to avoid the oo — oo invalid
operation exception in interval addition.

As in [4] the efficiency of proposed algorithms depends on the efficient implementation
of the following properties of the min and max functions:

(i) min(z,y) = min(y, x) for all z,y, and similarly for max,
(ii) min(z, NaN) = max(x, NaN) = NaN for any x, and
(iii) min(—0,+0) = —0, max(—0,40) = +0.

See [4] for complete discussion.

3 Interval infix operators

If either operand of the interval intersection or convex hull operators is an empty
interval then the result is an empty interval.

2



N
I

X.IS.Y Z <-- intersection of X and Y, that is,
[max{x1l,yl},min{xu,yu}] if
max{x1l,yl} < = min{xu,yu} and
empty interval [NaN,NaN] otherwise.

N
I

X.CH.Y Z <-- [min{x1l,yl}, max{xu,yul}]

If an empty interval is an operand of the following operators then FALSE is delivered
as the result. The algorithms for these operators proposed in [2] remain unchanged:

X.SB.Y .TRUE. if X is a subset of Y
(i.e. if x1 >= yl .AND. xu <= yu )

X.PSB.y .TRUE. if X is a proper subset of Y
(i.e. if X.SB.Y .AND. (x1 > yl .OR. xu < yu )

X.SP.Y .TRUE. if and only if Y.SB.X is true
( i.e. if x1 <= yl1 .AND. xu >= yu )

X.PSP.Y .TRUE. if and only if Y.PSB.X is true
(i.e. if Y.SB.X .AND. (yl > x1 .0OR. yu < xu )

R.IN.X .TRUE. if the REAL value R is contained in the
interval X (i.e. if x1 <= R and R <= xu)

An empty interval is always disjoint with any other interval. To provide the desired
result we must check for (x1 <= xu and yl <= yu) which is FALSE if one of the
intervals is empty.

X.DJ.Y .TRUE. if X and Y are disjoint sets or one or both of them is empty
(i.e. if (x1 > yu or xu < yl) or .NOT. (x1 <= xu and yl <= yu)

Note. It is necessary to use the compliment of the (zl <= zu and yl <=
yu) and not to simplify because ((zl > zu) or (yl > yu)) may not produce
the desired TRUE result if a NaN occurs.



4 Interval versions of relational operators

CERTAINLY TRUE relationals

If an empty interval is an operand of a CERTAINLY TRUE relational operator then
the result is FALSE. The one exception is the .CNE. operator which returns TRUE
in that case.

For example

([1,2] .CLT. [3, NaN]) == .FALSE.
[NaN, 3] .CLT. [4,5] == .FALSE.
[1,NaN] .CNE. [1,NaN] == .TRUE.

The algorithms for CERTAINLY TRUE relational operators proposed in [2] are

X.CLT.Y .TRUE. if xu < yl
X.CGT.Y .TRUE. if x1 > yu
X.CLE.Y .TRUE. if xu <=yl
X.CGE.Y .TRUE. if x1 >= yu

To provide the desired result if either argument interval is empty we essentially must
add a check for x1 <= xu and yl <= yu which is FALSE if one of the intervals is
empty.

X.CLT.Y .TRUE. if xu < yl and x1 <= xu and yl <=yu
X.CGT.Y .TRUE. if x1 > yu and x1 <= xu and yl <=yu
X.CLE.Y .TRUE. if xu <= yl and x1 <= xu and yl <=yu
X.CGE.Y .TRUE. if x1 >= yu and x1 <= xu and yl <=yu

However the check can be simplified in this case:



X.CLT.Y TRUE. if xu < yl and x1 < yu

X.CGT.Y .TRUE. if x1 > yu and xu > yl
X.CLE.Y .TRUE. if xu <= yl and x1 <= yu
X.CGE.Y .TRUE. if x1 >= yu and zxu >= yl

Additional checks should not incure a penalty in the overall performance because
relational operations occur relativly seldom.

The .CNE. operator is equivalent to the disjoint operator and as in that case one must
check for (x1 <= xu and yl <=yu) to provide the desired result which is FALSE if
one of the intervals is empty.

X.CEQ.Y .TRUE. if =xu <= yl and x1 >=yu,

X.CNE.Y .TRUE. if (x1 > yu or xu < yl) or .NOT. (x1 <= xu and yl <=yu)

POSSIBLY TRUE relationals

If an empty interval is an operand of a POSSIBLY TRUE relational operator then
the result is FALSE.

The result of the .PNE. operator is also FALSE because an empty interval is certainly
not equal to anything else.

Additional (in comparison to [2]) checks (x1 <= xu and yl <=yu) assure that the
result is FALSE if an empty interval is an operand.

X.PLT.Y .TRUE. if x1 < yu and xl1 <= xu and yl <=yu
X.PLE.Y .TRUE. 1if x1 <= yu and xl1 <= xu and yl <=yu
X.PGT.Y .TRUE. if xu > y1 and xl1 <= xu and yl <=yu
X.PGE.Y .TRUE. if xu >= yl and xl1 <= xu and yl <=yu

The algorithms of .PEQ. and .PNE. operators remain unchanged.

X.PEQ.Y .TRUE. if =xu >= yl and x1 <=yu

X.PNE.Y .TRUE. if xu > yl and x1 < yu



Equality and inequality of intervals as sets

If an empty interval is an operand of the .SEQ. operator then the result is FALSE.

X.SEQ.Y .TRUE. if x1=yl and xu=yu

If an empty interval is an operand of the .SNE. operator then the result is TRUE.

In contrast to the algorithm in [2] the .SNE. operator should not be defined comparing
the bounds of interval operands like (zl # yl) .OR. (zu # yu) because depending on
the implementation, NaN may compare as FALSE with anything else and we may
not get the desired TRUE result if an empty interval is an operand.

For example

[1,2] .SNE. [1,NaN] must be TRUE,
but (1 # 1) .OR. (2 # NaN) may be FALSE

Therefore the algorithm should use the negation of the .SEQ. operator

X.SNE.Y .TRUE. if .NOT. ( x1=yl and xu=yu)

5 Special interval functions

If an empty interval is an operand of the following functions then the result is NaN.
The width of an empty interval is also NaN.

R = MID(X) Midpoint of X
R = WID(X) R <—- xu - x1
R = MAG(X) R <—— max { [x1l|, |xul } "Magnitude"
| min { Ix1|, Ixul } if .NOT.(0.IN.X)
R = MIG(X) R <—-|

| 0, otherwise.

"Mignitude"



If an empty interval is the operand of the ABS function then the result is an empty
interval.

7 =

ABS (X)

I
Z <-= | [min{lx!|}, max{lx|}]
| x.IN.X x.IN.X
Range of absolute value

If an empty interval is an operand of the following functions then the result is an

empty interval.

N
]

N
]

MAX(X,Y)

MIN(X,Y)

Z <-- [max {x1,yl}, max {xu,yul}]

Range of maximum

MAX shall be extended analogously
for more than two

arguments.

Z <= [min {x1,yl}, min {xu,yul}]

Range of minimum

MIN shall be extended analogously
for more than two

arguments.

If an empty interval is the operand of NDIGITS function then it’s result is zero.

N = NDIGITS(X) Number of leading decimal digits that are the same in

xl and xu. n digits shall be counted as the same if
rounding x1 to the nearest decimal number with n
significant digits gives the same result as rounding
xu to the nearest decimal number with n significant
digits.

6 Interval versions of the intrinsic functions

All Fortran intrinsic functions that accept real data shall also accept interval data.
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All functions shall return enclosures of the range.

The interval argument of a function is intersected with the real-valued domain of that
function

Eg. \ﬂX) is implicitly interpreted as \ﬂX N[0, 00)).
The result is NaN if the intersection is empty. See also [3].
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