
J3/97-182r1

Dynamic Binding and Polymorphism
Draft Specifications and Illustrative Syntax

1. Introduction

These are the specifications with illustrative syntax to satisfy the requirement for the ability to
invoke dynamically bound procedures where the actual procedure invoked depends on
the runtime type of a single, potentially polymorphic, associated variable. Such procedures
are bound to the type of an entity, whereas a procedure component is bound to the contents
(value) of an entity.

These dynamically bound procedures are like the "virtual functions" of C++ and friends, the
"type-bound" procedures of Oberon-2, and the "methods" of Smalltalk. We will call these
type-bound procedures, as their invocation is bound to a specific type. This neatly
captures the difference between them and the object-bound procedures we call procedure
components.

Type-bound procedures are not permitted in SEQUENCE types, because there is no unique
definition to trigger the creation of the runtime dispatch table (or equivalent data structure for
runtime support).

2. Basic Functionality

Type-bound procedures are declared in the definition of the type to which they are bound.
They have a unique "component name" by which they are accessed (perhaps "accessor
name" is a better term?) which is not necessarily the same as the actual procedure name.
This renaming is provided both for convenience and to allow a single module to provide both
a type and one or more extensions. The actual procedure is a module procedure from that
module.

The first dummy argument of a "type-bound procedure" shall be a scalar non-pointer dummy
variable of the type; this is the equivalent of C++'s "this" (implicit) argument. We do not want
to have a reserved word (like "this") so allowing users to use their own dummy argument
names seems reasonable and friendly. C++ allows access to components of its "this"
variable without qualification; we do *not* propose this.

Example:
TYPE vector_2d

REAL x,y
CONTAINS

PROCEDURE length => length_2d
END TYPE
...
REAL FUNCTION length_2d(v)

TYPE(vector_2d) v
length_2d = SQRT(v%x**2+v%y**2)

END FUNCTION

Reference to a type-bound procedure looks just like a reference to an object-bound
procedure (a.k.a. procedure component), and the object used to access the procedure
becomes the first argument, e.g.

TYPE(vector_2d) vec
REAL size
...
size = vec%length() ! Equivalent to "size =

length_2d(vec)",
! provided length_2d is accessible.

3. With Type Extension

A type-bound procedure may be overridden in an extension of the type, e.g.

TYPE vector_3d, EXTENDS TYPE(vector_2d)
REAL z

CONTAINS
PROCEDURE length => length_3d

END TYPE
REAL FUNCTION length_3d(self)

TYPE(vector_3d) self
length_3d = SQRT(self%x**2+self%y**2+self%z**2)

END FUNCTION

When invoked from a TYPE(vector_3d) entity, "length" references "length_3d". Access is
still possible to the TYPE(vector_2d) version of "length" (i.e. length_2d) by invoking "length"
on the vector_2d part, for example:

TYPE(vector_3d) x
...
size = x%length() ! Invokes length_3d
size = x%vector_2d%length() ! Invokes length_2d on the

length_2d
! part of x.

4. Dynamic Dispatch

Determination of which actual procedure is invoked can often be done at compile-time; it is
only necessary to use runtime dispatch when the entities are polymorphic, e.g. given

TYPE(vector_2d) v2
TYPE(vector_3d) v3
OBJECT(vector_2d) obj

v2%length() invokes the vector_2d length because v2 is always of TYPE(vector_2d).
v3%length() invokes the vector_3d length because v3 is always of TYPE(vector_3d).
obj%length() invokes the vector_2d length when obj is of TYPE(vector_2d), and

 vector_3d length when obj is of TYPE(vector_3d).

Note that although "v3%length()" and "length_3d(v3)" are equivalent, there is no
straightforward equivalent to "obj%length()" because the actual procedure invoked depends
on the runtime type of "obj".

obj%vector_2d%length() invokes the vector_2d length on the vector_2d part of obj
 (if obj is of TYPE(vector_2d) that is the entirety of it).

5. Another Example

These procedures may have further arguments following the object dummy. When
overriding a type-bound procedure, the names of all arguments and the characteristics of all
but the first argument shall be the same.

MODULE image_processing
TYPE image

...
CONTAINS

PROCEDURE draw_box => image_draw_box
...

END TYPE
CONTAINS

SUBROUTINE image_draw_box(on,x1,y1,x2,y2)
TYPE(image) on
REAL x1,y1,x2,y2
...

END SUBROUTINE
...

END MODULE
PROGRAM example

USE image_processing
OBJECT(image) view
...
CALL view%draw_box(1.5,1.0,2.5,3.0)
...

END PROGRAM

6. Abstract Type-Bound Procedures

It can be useful to allow a base type to declare a type-bound procedure name that is not
actually bound to anything, forcing the extended types to declare their own version of this
operation. This could be provided by syntax like, for example:

TYPE vector_0d
! No components necessary, a type-bound procedure is

enough
CONTAINS

PROCEDURE length => NULL()
END TYPE

A type extended from "vector_0d" shall contain a declaration for length; this is permitted to
confirm that "length" is still abstract or to supply a specific procedure. E.g.,

TYPE vector_0d_special
INTEGER special_value

CONTAINS
PROCEDURE length => null() ! Still abstract

END TYPE
TYPE vector_1d

REAL x
CONTAINS

PROCEDURE length => length_1d ! We have a
"length()"

END TYPE

However, it is not possible to override an existing procedure binding with the null binding,
e.g.

TYPE vector_2d
REAL y

CONTAINS
PROCEDURE length => NULL() ! Illegal

END TYPE

It is possible to declare entities of TYPE(vector_0d) or OBJECT(vector_0d); however it is a
compile-time error to have a reference to "length" in a TYPE(vector_0d) entity, and a runtime

error to execute a reference to "length" from an object that still has the null binding (e.g. the
variable is OBJECT(vector_0d) and the runtime type is TYPE(vector_0d_special)).

7. Visibility

The default visibility of a type-bound procedure is PUBLIC, i.e. the default visibility of the
section before the "CONTAINS" is separate from the default visibility of the section after the
CONTAINS.
This default may be changed with an explicit PRIVATE statement following the CONTAINS,
and may be overridden for individual procedures with an accessibility attribute.

E.g.,
TYPE mytype

PRIVATE
REAL x,y ! secret components

CONTAINS
PROCEDURE mean ! public type-bound

procedure
PROCEDURE, PRIVATE :: hypot ! private type-bound

procedure
END TYPE

TYPE another
LOGICAL available(100) ! public components

CONTAINS
PRIVATE
PROCEDURE secret ! private procedures...
PROCEDURE hidden
PROCEDURE, PUBLIC :: pub ! public procedure

END TYPE

The rationale for resetting the default visibility on the CONTAINS is that it is anticipated that
it would be common for the user to require private (or mostly private) components but to
have public type-bound procedures (e.g. which could include functions which access the
private components).

