
J3/97-183r2

Single Inheritance Model - Type Extension
Specifications and Illustrative Syntax

1. Introduction

This provides specifications with illustrative syntax for single inheritance based on the
existing derived type mechanism. The goals and requirements are those set out in paper
J3/97-131.

2. Declaring a base type

A type that can be extended shall be declared with the EXTENSIBLE keyword, e.g.

TYPE, EXTENSIBLE :: point_2d
REAL x, y

END TYPE

This may not be strictly necessary, but ensures object-code compatibility with Fortran 90/95.

3. Extending a base type

A type can be extended anywhere the base type is accessible. The memory layout of the
extended type is such that the base part occurs at the beginning of the type, and components
within the base part are laid out the same. It is not necessary to supply any new components
(the extension type could simply be a re-packaging of the original type) but any new
component names shall not conflict with accessible component names of the type being
extended (the base type). The accessibility of components inherited from the base type is
the same as in the base type. An extended type is automatically extensible and need not
specify the EXTENSIBLE keyword.

TYPE point_3d, EXTENDS TYPE(point_2d)
REAL z

END TYPE

It is possible to declare variables of TYPE(point_2d) and TYPE(point_3d) and those variables
are statically typed - the compiler can allocate (the correct amount of) storage and resolve
generic references at compile time.

The components of TYPE(point_3d) are x, y and z. It is possible to reference the base, i.e.
TYPE(point_2d), part of an entity of this type by using the base part's type name as a
component selector.
For example, given:

TYPE(point_2d) p2d
TYPE(point_3d) p3d

these entities have the components
p2d%x, p2d%y ! TYPE(point_2d) only has its own components
p3d%x, p3d%y, p3d%z ! TYPE(point_3d) has the additional "z" component
p3d%point_2d ! plus the base part as a whole (the x and y

components)
p3d%point_2d%x, p3d%point_2d%y ! these are redundant but possible

Neither the base type nor the extended type may be a SEQUENCE derived type.

4. Polymorphic Variables

Polymorphic variables have a declared base type (that may in itself be an extended type) but
can contain an object of that type or of any type extended from its declared base type.
Therefore they usually cost more to use than normal variables (i.e. those of static -
determined at compile-time - type); e.g. they sometimes imply an extra indirection (because
of the reference semantics) and sometimes lose optimisation opportunities. They are
declared with a separate keyword, e.g.

OBJECT(point_2d) polly

Access via "polly" only provides access to those components in TYPE(point_2d). "polly" can
be passed as an actual argument only to a TYPE(point_2d) dummy or an
OBJECT(something) dummy where "something" is point_2d or a type extended therefrom. A
polymorphic variable can be passed to a dummy argument that is of a parent type. When it
is passed to an extended type, the runtime type must be compatible. E.g.

CALL sub1(polly) ! sub1 expects TYPE(point_2d), so this is
legal

CALL sub2(polly) ! sub2 expects OBJECT(point_2d), so legal
CALL sub3(polly) ! sub3 expects OBJECT(point_3d), legal

provided
! polly's runtime type is "point_3d" or

extended
! from point_3d.

The possible classes of polymorphic variables are:
A. Polymorphic dummy arguments. The actual argument can be of any compatible
type (as above, this is the declared base type of the dummy argument or any type extended
from that base type). Access to a polymorphic dummy argument is via reference (copy
in/out is possible but only when done by the caller). An explicit interface is required for a
routine with a polymorphic dummy argument.
B. Polymorphic pointers. These are polymorphic entities with the POINTER attribute,
and may be:

(i) local variables
(ii) function results
(iii) structure components

Note that Fortran's auto-dereference facility is ideal for convenient use of polymorphic
pointers.

For example: (polymorphic dummy arguments):

REAL FUNCTION argument(p)
OBJECT(point_2d) p
argument = ATAN2(p%y, p%x)

END FUNCTION
! No need to redefine ARGUMENT for POINT_3D objects
REAL FUNCTION azimith(p)

OBJECT(point_3d) p
azimuth = ATAN2(p%z,argument(p))

END
! P is a polymorphic dummy argument so it will work with any later extension of

point_3d,
! e.g. a point_4d.

Another example, (polymorphic pointer variables):

OBJECT(point_2d), POINTER :: p2
OBJECT(point_3d), POINTER :: p3
TYPE(point_2d),TARGET :: t2
TYPE(point_3d),TARGET :: t3
p2 => t2; p2 => t3; p2 => p3 ! All legal - p2 can point to a point_2d or any

type
! extended therefrom

p3 => t2 ! Illegal, t2 is not extended from point_3d
p3 => t3 ! Legal
p3 => p2 ! Legal provided p2 is NULL() or its target is

of
! TYPE(point_3d) or a type extended

therefrom

Note that at this point, by construction, arrays of these "objects" are homogeneous.
However, non-homogeneous array-like collections are possible using the same
circumlocution which allows arrays of pointers.

5. Generic Resolution.

A polymorphic dummy argument can be a "disambiguator" provided that its type is
"completely incompatible" with that of its corresponding disambiguator. That is, the type of
the corresponding argument must be different (or have different kind type parameters) and
must not be extended from the same root type. I.e., they must be in different inheritance
trees.

This retains static resolution of generic references and avoids complication.

6. Type Enquiry

There are two enquiry functions provided for determining the exact type of a polymorphic
variable at runtime:

(a) SAME_TYPE_AS(POLY,MOLD)
POLY is a polymorphic variable, i.e. OBJECT(something) POLY
MOLD may be polymorphic or of fixed type
The result is .TRUE. iff POLY is referring to an object of the same actual

type as
MOLD.

(b) SIMILAR_TYPE_TO(POLY,MOLD)
POLY is a polymorphic variable (as above).
MOLD may be polymorphic or of fixed type (as above).
The result is .TRUE. iff POLY is referring to an object of the same actual

type as
MOLD or of a type extended from that type.

In order for these functions to work each extension type must have a unique signature and
polymorphic pointers (and dummy arguments) have a "tag" identifying their type. But there is
no need for each subobject to contain this tag - in particular since arrays are homogeneous
there is no need for each array element to contain such a tag. It would be natural for this
signature to be an internal runtime structure holding type-specific information (e.g. the type-
bound procedure dispatch table) and for the tag to be the address of this structure.

SAME_TYPE_AS is computable in fixed time simply by comparing the tags on the
polymorphic objects. SIMILAR_TYPE_TO can be computed in time proportional to the
height of the inheritance tree with a small constant space overhead in the type signature, or
in fixed time with a space overhead proportional to the height of the inheritance tree.

