
J��������
Page � of �

Date� �� July ����
To� J�
From� Van Snyder
Subject� White Paper on Object Oriented Programming

Summary of recommended changes

In order to support object oriented programming	 this report recommends the following changes

The intent of this report is to explain features necessary and useful for object oriented programming	
enumerate all the desirable or necessary changes in a single document	 and show their relation

Not all of them are immediately necessary
 The design of those that are implemented immediately
should be such that the remainder can be implemented later without undue di�culty


Un�de	ne intrinsic operations Ada uses limited to unde�ne assignment and intrinsic equality	
and de�nes inequality to be in Fortran notation� 
NOT
equality
 Either a single word e
g

LIMITED� or an �instruction� with �parameters� e
g
 DELETE��	 DELETE�	��� etc
�
could be used as an attribute of a type in Fortran
 See ������
 � � � � � � � � � � � � � � � � � � � � � � � � ��
�

De	ned pointer assignment Use INTERFACE ASSIGNMENT ���
 � � � � � � � � � � � � � � � � � � �
�
�

Destructor procedures Numerous possibilities
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�
�

Type extension Use the mechanism described in ������ or ������
 � � � � � � � � � � � � � � � � � � � � � � � � �
�

Conversion within derivation class Use type name as a view converter and as an extended
structure�constructor
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�
�


Module extension Use A�B for a module name to indicate it is a �child unit� of module A
 See
������
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�
�


Separate speci	cation and implementation of modules See ������
 � � � � � � � � � � � � � � � � � �
�
�

Polymorphic data objects Allow non�pointer polymorphic data objects analogous to automatic
arrays	 by providing executable initialization expressions
 See also ������ and ������
 �
�
�

Conversion to polymorphic type De�ne a �type� name for polymorphic object declarations�
use it for view conversions
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�
�

Over�riding procedure de	nitions Mechanism of ������ is workable	 but preferably without
shifting actual�to�formal argument correspondence
 Alternatives should be debated
 See also
������
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
�
�

Dispatching calls 
 dynamic binding Mechanism of ������ is workable	 if polymorphic actual
arguments that appear between 


�	 and that have the same run�time type as the �argument�
before �	 can correspond to monomorphic formal arguments
 See also ������
 � � � � � � � � �
�
�

Abstract types and procedures Use an attribute of types and procedures	 e
g
 TYPE	 AB�
STRACT �� foo	 ABSTRACT SUBROUTINE and ABSTRACT FUNCTION I prefer SUB�
ROUTINE	 ABSTRACT �� and FUNCTION	 ABSTRACT ���
 See ������ and ������
 � � ��



J��������
Page � of �

� Introduction

The most widely used de�nition of Object Oriented Programming revolves around three concepts �
data abstaction	 inheritance or extension	 and polymorphism


Data abstraction means that a data type consists of a set of values	 together with the operations
on those values
 Both the sets of values	 and the operations on them	 can be de�ned by the program


Inheritance means that a new data type can be derived from an existing data type by adding to
the existing set of data values	 adding to the operations	 or changing some of the existing operations


Polymorphism allows de�ning variables that have di�erent types at di�erent times	 and opera�
tions that apply to more than one type


Fortran �� has rudimentary forms of data abstraction and procedural polymorphism	 but no
inheritance
 Data abstraction and polymorphism must be extended	 and inheritance must be
introduced


Other facilities that are necessary and useful for software engineering	 but lacking from Fortran	
in�uence the use of the three basic concepts of object oriented programming
 Extension of For�
tran to include support for object oriented programming and software engineering could be done
piecemeal	 but the greatest bene�t	 and the greatest di�culty	 comes from integrating all of the
necessary facilities


This may be too di�cult to do all at once
 Nonetheless	 all of the necessary facilities should be
kept in mind during the design of those to be introduced into the present revision of Fortran	 so as
not to make later addition of the other facilities unnecessarily di�cult


Chapter �� of Ada As a Second Language by Norman H
 Cohen ISBN ��������������	
entitled Classwide Programming	 is an excellent discussion of the ideas outlined here


� Data abstraction

The principal principle supporting data abstraction is information hiding	 that is	 use of an object
should depend neither on its representation	 nor on the methods by which operations on the object
are carried out
 One habit of software engineering that helps to conceal details of representation is
to hide all accesses and operations in procedures
 An alternative is described in ������
 To prevent
dependence on methods of operation	 data representing the state of objects or collections thereof
are maintained as private resources of the abstraction


��� Un�de�ning intrinsic assignment and intrinsic equality

To allow use of type�dependent procedures	 while maintaining the value of the semantic suggestive�
ness of well�known operational symbols	 Fortran allows a program to provide de�nitions for them

There are de�ciencies	 however	 in the speci�cation of de�ned assignment
 One of those de�cien�
cies is addressed by ������
 Nonetheless	 as remarked in ������	 it is still possible to �subvert an
abstraction� by neglecting to import de�ned assignment


This could be prevented by allowing an attribute of a type to indicate that intrinsic assignment	
and perhaps intrinsic equality	 are not de�ned for the type
 In Ada	 this attribute is called limited


��� Storage management

Storage management should be entirely the responsibility of a data type
 Unfortunately	 de�ciencies
in Fortran �� require users of an abstraction sometimes to take on some of the responsibility for



J��������
Page � of �

storage management	 and	 worse	 in some situations	 prevent both the abstraction and the user
thereof to take on the responsibility


����� De	ned pointer assignment

One technique to prevent �memory leakage� is to maintain a �reference count� for each object
that is dynamically allocated
 The inability to de�ne pointer assignment requires users of objects
to undertake this responsibility
 This	 in turn	 requires exposing some of the representation or
mechanism of the managed objects


����� Destructors

A program can also �lose track� of memory usage when objects contain pointers to dynamically
allocated memory
 This can be somewhat ameliorated by providing a destroy the object procedure	
that users of the object explicitly invoke
 Neglecting to do so causes a memory leak
 No amount of
diligence	 however	 can cause a procedure that must be invoked explicitly to be invoked for objects
that have no names � temporary intermediate results created during evaluation of expressions
involving user�de�ned types and operators	 for example
 A facility to de�ne a procedure that is
invoked automatically whenever an object ceases to exist could prevent this source of memory
leakage
 In C�� this is called a destructor


Some possible mechanisms�

� INTERFACE DESTRUCTOR
SUBROUTINE DSUB D� � D is to be destroyed
TYPET�	 INTENTINOUT� �� D

END INTERFACE DESTRUCTOR

� DESTRUCTOR SUBROUTINE DSUB D� � Same interface for DSUB as above

� TYPE	 DESTRUCTORDSUB� �� T � Same interface for DSUB as above

Only one destructor subroutine may be de�ned for each type


� Inheritance

There is no mechanism for inheritance in Fortran ��
 Many languages provide inheritance by ab�

stract data type extension	 which consists of data representation extension and procedure extension


��� Data representation extension

A mechanism for data representation extension is proposed in ������� The data representation
for a new type of object is created by adding zero or more components onto the representation
of an existing derived type
 Both the base type and the extended type are Fortran derived types

Henceforth	 if a type T� is created by extension	 in zero or more steps	 from a type T�	 the type
T� will be said to be descendant from T�	 and T� will be said to be ancestral to T�


����� Conversion

Part of the de�nition in ������ is that an extension type is implicitly considered to have a component
having the same name and type as the ancestral type
 The implied component is used to construct



J��������
Page � of �

a value of an extension type by giving a value of the base type and values for components that
extend the base type	 and to access all of the components of the base type as a single component


A simple extension of the structure�constructor could serve for the �rst use
 In the case of
constructing an object of an extension type from an object of the base type	 plus additional �elds	
a structure�constructor for the extension type would necessarily have �arguments� for the additional
�elds
 A slight additional generalization is useful
 Suppose T� is a base type	 T� is an extension of
T�	 T� is an extension of T�	 X�	 X� and X� are objects of types T�	 T� and T� respectively	 and
C� and C� are additional components necessary to extend X� to X� and X� to X�	 respectively

One should be able to construct X� in the following ways�

� X� � T�X�	 C��

� X� � T�T�X�	 C��	 C��

� X� � T�X�	 C�	 C��

� X� � T�components�of�X�	 C�	 C��

The last two are progressively more general short�hand notations for the second method

To extract the base�type�part from an extension type	 simply considering the type name to be

a function that performs a view conversion see �
�
�� provides the desired functionality


��� Abstract data type extension

The method proposed in ������ provides to extend data representations by adding components	
and to extend operations by over�riding existing operations see �
�
��
 These two capabilities	
however	 leave two shortcomings


The mechanism in Fortran �� to construct abstract data types by packaging data representations
together with operations on them is the module
 Providing additional features of modules would
address these shortcomings


Other considerations concerning abstract data type extension are intimately connected to poly�
morphism see ��


����� Module extensions

An extension module is a natural container for extension types	 related new types	 over�riding
operations	 and new operations


Suppose a module A is to be extended
 Its extensions	 and their extensions	 might be named
A�B	 A�B�C	 etc
 Extensions in A�B of types de�ned in A should have visibility of resources of
their base types de�ned in A
 USE association does not provide this visibility
 Thus	 for purposes
of visibility	 A�B should be considered to be incorporated into A	 and A�B�C incorporated
into A�B hence the notational suggestion�
 Therefore A�B would have access to private entities
de�ned in A	 and A�B�C would have access to private entities de�ned in A�B and by induction�
in A


����� Separating module speci	cation and implementation

It is sometimes desirable for some of the resources of a base type to be completely private resources of
the module that packages the type
 In C�� the distinction between resources that can and cannot
be accessed by a type derived from another by inheritance is speci�ed by di�erent accessibility
levels	 viz� private and protected
 In Ada ��	 the distinction is provided by separating the package



J��������
Page � of �

into a speci�cation part and an implementation part
 The speci�cation part of a base module is
visible in an extension module� the implementation part is not


Separating speci�cation and implementation has bene�ts in addition to controlling visibility
see �������� additional visibility levels do not


� Polymorphism

There are two interconnected varieties of polymorphism� procedure polymorphism	 and data poly�
morphism


Fortran �� already supports one form of procedure polymorphism by way of generic interfaces

Data polymorphism can be described in terms of a derivation class
 A derivation class T consists

of an extensible type T	 and all types derived from T by extension

It is useful to be able to construct polymorphic objects of class T	 that is	 objects whose values

may be of any type in the derivation class T
 Coupling polymorphic objects with the polymorphic
operations de�ned over the derivation class yields a particularly powerful combination


��� Data polymorphism

A polymorphic variable is one that might have values of di�erent types	 from the derivation class
declared for the variable	 at di�erent times


When the base type of a derivation class is de�ned	 one does not know all the extensions that
might eventually occur
 Thus	 it is impossible statically to declare a polymorphic data object �
how can one know how much storage to allocate� This does not a�ect polymorphic objects that
have the pointer attribute


����� Non�pointer polymorphic data objects

Automatic arrays are created when the scope in which they are declared comes into existence	 and
destroyed when its existence ceases
 Their sizes can be di�erent from one existence to another	 but
throughout a single existence	 their sizes are �xed


An �Automatic� non�pointer polymorphic data object could come into existence when the scope
in which it is declared comes into existence
 It might contain values of di�erent types from one
existence to another	 but throughout a single existence	 the type of value it contains is constrained	
either to be �xed throughout the existence of the object	 or	 at the expense of run�time bookkeeping	
it could contain a value of any type in the derivation class between the base of the class	 and the
type of the object at the instant it came into existence


One way to create a non�pointer polymorphic object with a speci�c type when it comes into
existence is to provide a declaration that takes a parameter � from a function of a� formal argument	
or a global variable	 for example � that is examined when it comes into existence


Another is to require that a non�pointer polymorphic object must have an initial value	 from
which it takes the most extended� type it is allowed to have during its existence
 Therefore initial
value expressions must be allowed to be executable� this has other uses on which others have
already commented�


����� View conversion

Conversion of a poly� or monomorphic object to an ancestor of its actual type is a view conversion	
not a value conversion� zero or more �elds are ignored
 An anonymous copy of the object is not



J��������
Page � of �

created	 and the value of the object remains unchanged
 It is always possible to view�convert or
copy a monomorphic object to an ancestral type	 or a polymorphic object to the monomorphic
base type of its derivation class� otherwise	 if a run�time check veri�es the converted type of a
polymorphic object is ancestral to the actual type	 conversion is allowed


����� Conversion to polymorphism

It is sometimes necessary to convert a value of mono� or polymorphic type to an ancestral poly�
morphic type
 This usually occurs as a result of a dispatching call see �
�
�� to a polymorphic
function that returns a monomorphic result
 Neither the mechanism described in �
�
�	 nor the
�implied component� mechanism described in ������	 addresses this need
 Ada �� uses the nota�
tion �type��classvalue�
 Doing so in Fortran would introduce an entirely new syntactic device

An alternative would be desirable
 One is to de�ne a name for a derivation class	 e
g


CLASS�vector��d� �� vectors

Then use TYPE�vectors� to declare polymorphic objects of the derivation class rooted at vector �d	
and use vectors����� as a view converter to polymorphic type


��� Procedure polymorphism

����� Primitive operation of a tagged type

In Ada ��	 a primitive operation of a tagged extensible� type is a procedure that is de�ned in the
same speci�cation part of a package module� as the type	 and that takes at least one argument of
the type
 It is not possible for a procedure to be a primitive operation of several extensible types �
all formal arguments of monomorphic extensible type must be of the same type


In C��	 Modula�� and the mechanism proposed in ������	 primitive operations are declared
within the de�nition of the type


����� Overloading and overriding procedure de	nitions

A set of procedures that have the same name	 but di�erent signatures � for example	 the sequences
of types of arguments � are collectively called a polymorphic procedure
 The procedures in the set
are said to overload one another
 When a polymorphic procedure reference appears	 the signature
of the reference determines the procedure that is invoked
 In Ada �� and Fortran ��	 the signature
of a reference must precisely match the signature of exactly one procedure


If a primitive operation of a base type exists	 and a primitive operation of the same name	
for an extension of the base type	 is de�ned	 and the only di�erences in signature are that formal
arguments of the base type are replaced by formal arguments of the extension type	 the latter
over�rides the former
 Absent over�riding de�nitions	 primitive operations of the base type are also
primitive operations of the extension type	 that is	 they are inherited by the extension type


Actual arguments to a primitive operation that correspond to formal arguments of monomor�
phic tagged type must be of the same type
 If necessary	 they are view�converted to the type of the
primitive operation
 Other actual arguments may be of any type consistent with their corresponding
formal arguments


����� Dispatching calls

A useful consequence of the interaction between data polymorphism and procedure polymorphism
is that the precise procedure used need not be known until the instant it is invoked
 This capability



J��������
Page � of �

is called dynamic binding� delayed binding or late binding
 When the procedure to be invoked is
selected at the instant of invocation	 it is called a dispatching call


In C��	 all pointers to objects are polymorphic	 but only virtual functions are dispatched

This design causes signi�cant �fragility� � a common error is to neglect to declare a function to
be virtual
 The primitive operation for the base type is invoked	 even when the actual type of the
object is an extension for which an over�riding de�nition of the primitive operation exists


Ada �� and the methods proposed in ������ and ������ distinguish between monomorphic
objects of speci�c types�	 and polymorphic �classwide�� objects
 If one uses polymorphic actual
arguments when invoking a polymorphic procedure that takes monomorphic arguments	 the precise
type of the object is examined to determine the procedure to invoke
 Several polymorphic arguments
may appear	 but their actual types must be identical when the procedure is invoked


Procedures may have polymorphic formal arguments
 Monomorphic or polymorphic actual
arguments may be associated to polymorphic formal arguments so long as only a view conversion
is required see �
�
��
 A run�time check is required when it cannot be statically determined that
the formal argument type is an ancestor of the actual argument type


����� Comparison of linguistic devices

In C��	 Smalltalk	 Objective C	 Modula��	 and the method proposed in ������	 there is exactly
one argument that determines the type of which a procedure is a primitive operation	 and hence
determines dispatching if it is polymorphic
 In invocations	 it appears in a special position	 using
a syntax that suggests the procedure is a component of the derived type� variable�procedure is
proposed in ������
 In C��	 Smalltalk and Objective C it is accessed within the procedure by
a pointer with a reserved name
 In ������	 it is proposed that it would be associated to the �rst
argument
 Languages that use one argument in a syntactically distinguished position frequently
explicitly describe invocation of primitive operations of a type as sending a message to an object


Ada �� allows a primitive operation of a type to have several arguments of the type	 with
the restriction that all polymorphic actual arguments that correspond to monomorphic formal
arguments must have the same type at the instant of invocation


Languages that use the �send a message� method usually restrict the polymorphic object whose
type determines the primitive operation to be a named object	 or a subobject of one
 The method
of Ada �� allows the objects� that determine dispatching to be arbitrary expressions
 To allow
this capability using the �send a message� method in Fortran	 it would be necessary to generalize
the conditions under which the component selection operator could be used


The syntactic device tentatively proposed in ������	 viz


type� extends�base� �� extension

contains

procedure foo 	
 bar

indicates three things�

�
 foo must be invoked as E�foo�����	 where E is of type�extension�
 E is an actual argu�
ment that is associated with the �rst dummy argument	 the �rst actual argument within�
is associated with the second dummy argument	 etc
 This introduces two irregularities� only
one �actual argument� can be bound by �	 and actual�to�formal argument correspondence
is di�erent from other procedures
 The �rst could be removed by allowing � to be a general
right�to�left argument�binding operator	 e
g
 a�b�c invokes a procedure c with arguments b
and a	 viz� c�b�a�
 This would be di�cult and time�consuming due to potential ambiguities
related to derived type component references




J��������
Page � of �

The second could be removed by using the type name	 in the procedure	 to denote the �formal
argument� associated to the �object in whose context� the procedure is invoked	 or one could
use	 e
g
 SUBROUTINE OBJ�B


�	 to associate A to OBJ in CALL A�B


�	 and to
associate actual arguments between 


� in the call to formal arguments between 


� in the
declaration in the same way as for non�type�bound procedures


�
 bar is the speci�c name for the over�riding or over�rideable procedure foo
 If the Ada ��
method to determine primitive operations of a type were used	 the Fortran generic interface
block mechanism could be used	 allowing overloading foo as well over�riding� the foo ��
bar mechanism is	 however	 admirably terse


�
 foo 	� bar is a primitive operation of type�extension�
 This could be indicated by inter�
pretations of the juxtaposition of type and procedure declaration in the same speci�cation�
module	 and dummy argument types	 as in Ada ��
 If the foo �� barmechanism is retained
to serve the second purpose	 using it for the third is natural


� Abstract types and procedures

When constructing a base class from which one expects others to derive extension classes	 for which
one wishes to require certain operations	 but those operations make no sense for the base class alone	
it is useful to be able to declare that these operations do not exist	 and must be implemented in an
extension


Similarly	 it is sometimes useful to declare the data representation for a base class	 but to declare
that no objects of that class may exist


In C�� and Ada	 such operations and data types are called abstract as distinguished from
concrete�


Abstract procedures have no body � only an interface � and cannot be invoked

Abstract data types may or may not have components	 but no objects of the type may be

created

If a data type is abstract	 all procedures that take it as an argument must also be abstract

If an operation of a type is abstract	 then either the operation must be de�ned when the type

is extended	 or the extension type must be abstract as well

An extension data type	 and any of its operations	 may be abstract even if its base type is not



