
J��������
Page � of �

Date� �� July ����
To� J�
From� Van Snyder
Subject� Single Inheritance Model � Type Extension

� Introduction

Speci	cations with illustrative syntax for single inheritance based on the
existing derived type mechanism are provided here
 This paper addresses
several objections to speci	cations and illustrative syntax described in pa�
pers J�������r� and J�������r��

� Objects of extension type should not have an implied component of
the same name and type as the base type


� Primitive operations of a type should not be invoked as though they
are components of an object of the type


� The positional correspondence of actual and dummy arguments should
not be �shifted� for primitive operations of a type


� Primitive operations of a type should be allowed more than one argu�
ment of the type


� It should be possible to indicate a polymorphic type for an expression
value


Extensive background is provided by paper J��������


� Declaring a base type

A type that may be extended shall be declared with a distinguishing keyword
attribute such as EXTENSIBLE
 An example declaration might be

TYPE� EXTENSIBLE �� vector��d

REAL x� y

END TYPE

A keyword may not be strictly necessary� but it preserves object�code
compatibility with Fortran ��


� Extending a base type

A type can be extended anywhere the base type is accessible
 Additional
components may be supplied� but it is not necessary to do so � the extension
could be nothing more than a repackaging of the base type
 The components
of the base type are components of the extended type � they are inherited

Therefore� new component names shall be di�erent from component names
of the base type
 An extension type is declared by mentioning the base type
in its declaration� e
g




J��������
Page � of �

TYPE� EXTENDS�vector��d� �� vector��d

REAL z

END TYPE

The components of TYPE�vector �d� are x� y and z

The accessibility of components of the extended type that are inherited

from the base type is the same as their accessibility in the base type
 If
operations �see �� of an extension type are declared in a di�erent module
from the base type� private components of the base type are not visible to
operations of the extension type �see alternatives in ������ and �������


The memory layout of the extended type is such that the part of the
extended type that corresponds to the base type has the same memory
layout as the base type� and occurs at the beginning of the extended type


An extended type is automatically extensible� the EXTENSIBLE keyword
may not be re�speci	ed


Variables of base or extended type are statically typed
 The compiler
can allocate the correct amount of storage� and resolve generic references
that depend on them


It is possible to reference the base�type part of an extended type by using
the base type name as a view conversion
 For example� given

TYPE�vector��d� v�d

TYPE�vector��d� v�d

Then v�d has the components v�d	x and v�d	y� and v�d has the com�
ponents v�d	x� v�d	y and v�d	z
 The expression vector �d�v�d� is an
object of TYPE�vector �d�


An object of an extended type may be created by using the type name
as a structure constructor
 The value for the base type part is given by an
argument that is an object of the base type� or by arguments that would be
allowed as arguments for the base type constructor
 Successive arguments �if
any� provide values for components that extend the base type
 For example

v�d � vector��d�v�d� �	�
 � v�d�x � v�d�x� v�d�y � v�d�y

v�d � vector��d��	� �	�� �	�
 � v�d�x � �	� v�d�y � �	�

are both allowed� and are equivalent if v�d	x 

 �� and v�d	y 

 ���

A base type� together with all types derived from it by extension� is

called a derivation class
 The base type of an extended type is known as
its parent type
 An extended type� or its parent type� or its parent�s parent
type� etc
� are known as ancestor types of the extended type
 The base type�
and all types in its derivation class� are known as descendant types of the
base type


Neither the base type nor the extended type may be a SEQUENCE de�
rived type� because there would be no unique type de	nition with which to
associate primitive operations �see �� or dispatch tables �see �
��


� Polymorphic types

A polymorphic type name denotes the entire derivation class for the speci	ed
type
 Polymorphic type names are declared by a separate statement� e
g




J��������
Page � of �

CLASS�vector��d� �� vectors

declares a polymorphic type vectors for the derivation class of vector �d

�Contrast this with Ada�s un�Fortran�like vector �d�class
�

Polymorphic variables are declared by using a polymorphic type name�
e
g


TYPE�vectors
 �� v� � v�d � may get only TYPE�vector��d
 values

TYPE�vectors
 �� v� � v�d � may get TYPE�vector��d
 or

� TYPE�vector��d
 values �see below


A variable of polymorphic type may in principle contain a value of any
type in the derivation class
 Since it is impossible to know future extensions
in a derivation class� a variable of polymorphic type must be a dummy
argument� or must have the pointer attribute� or must have an initial value Use TYPE OF

�see ���from which it takes its initial monomorphic type �this is an extension of
the concept of automatic arrays�
 To provide useful functionality� the initial
value expression must be executable
 Postponable


Once a polymorphic object has been created� it may be assigned only Same type
only�values having types in its derivation class that are ancestral to the monomor�

phic type of the object at the instant it was created � a run�time check may
be required
 E
g


v� � v� � error if v� contains a TYPE�vector��d
 value

v� � v� � run�time check will determine this is OK

v� � v�d � OK

v� � v�d � v� won�t be big enough at run time

v� � v�d � OK

v� � v�d � run�time check will determine this is OK

Variables of polymorphic type that are structure components must have
the pointer attribute


Only the components of the base type of a polymorphic variable may be
referenced directly
 An object of polymorphic type may be view�converted
to a descendant type e
g
 vector �d�v��� but a run�time check is required
to make sure the view�converted type is ancestral to the actual type


Polymorphic type names can be used as view�converters
 For example�
assume OPERATOR��� has been de	ned for TYPE�vector �d�
 Then v�d �

vector �d�v�d� has TYPE�vector �d�� but vectors�v�d � vector �d�v�d��

has TYPE�vectors�


� Primitive operations of an extensible type

A primitive operation of an extensible type is a procedure that is de	ned in
the same procedure or module as the type� and that has at least one dummy
argument of the type
 E
g


REAL FUNCTION length��d �v�

TYPE�vector��d� �� v

length��d 
 sqrt�v	x��� � v	y����

END FUNCTION length��d



J��������
Page � of �

and

INTERFACE OPERATOR ���

TYPE�vector��d� FUNCTION plus��d �a� b�

TYPE�vector��d� �� a� b

END FUNCTION plus��d

END INTERFACE OPERATOR ���

are primitive operations of TYPE�vector �d�

If a procedure has more than one dummy argument of a monomorphic

extensible type� all such arguments must have the same type
 That is� a pro�
cedure may only be a primitive operation of one extensible type
 Otherwise�
operation inheritance �see �
�� and dispatching �see �
�� may be ambiguous


In addition to monomorphic dummy arguments of extensible type� a
primitive operation may have dummy arguments of non�extensible types� or
polymorphic types


��� Over�riding de�nition

If primitive operations of both base and extended types exist� have identical
signature except for the di�erence between base and extended type dummy
arguments� dummy arguments have the same names� and the procedures
appear in a generic interface block or implement the same operator� the
primitive operation for the extension type over�rides the primitive operation
for the base type
 E
g
 given

REAL FUNCTION length��d �v�

TYPE�vector��d� �� v

length��d 
 sqrt�v	x��� � v	y��� � v	z����

END FUNCTION length��d

INTERFACE length

MODULE PROCEDURE length��d

MODULE PROCEDURE length��d

END INTERFACE length

and

INTERFACE OPERATOR ���

TYPE�vector��d� FUNCTION plus��d �a� b�

TYPE�vector��d� �� a� b

END FUNCTION plus��d

END INTERFACE OPERATOR ���

then length �d over�rides length �d� and plus �d over�rides plus �d

If any of the above conditions are violated� the primitive operation of the

descendant type does not over�ride the primitive operation of the ancestor
type
 If they appear in a generic interface block they are �joined� in the
ordinary generic sense
 This a�ects dispatching �see �
��




J��������
Page � of �

��� Destructors

A destructor is a procedure that is automatically invoked when an object Is a destruc�
tor callable�ceases to exist
 They are useful in connection with derived types even in the

absence of object oriented programming �see �������

Inheritance a�ects the de	nition of destructors� Suppose a destructor is

declared for an extensible type T
 It would have exactly one INTENT�INOUT�
argument of type T� and would therefore be a primitive operation of type
T
 It should not be allowed to appear in a generic interface� but should

nonetheless be considered to over�ride a destructor for a base type


��� Inherited primitive operations

If an over�riding de	nition is not provided� the primitive operation for the
base type is inherited for use as the primitive operation for the extension
type
 E
g
� if length �d and plus �d were not de	ned� or not �joined� to
length �d and plus �d by generic and operator interfaces� length �d would
be a primitive operation both of TYPE�vector �d� and TYPE�vector �d��
and the OPERATOR��� implemented by plus �d would be a primitive opera�
tion of both types


� Arguments

��� Monomorphic actual arguments

An actual argument of monomorphic type must be associated to a dummy
argument of ancestral type
 The compiler can determine the identity of the
primitive operation


��� Polymorphic dummy arguments

A polymorphic dummy argument may correspond to a polymorphic or mo�
nomorphic actual argument of descendant type� without run�time checking

A polymorphic dummy argument may correspond to a polymorphic actual
argument of ancestor type� subject to a run�time check that the actual type
of the actual argument is descendant from the type of the dummy argument


Procedures may have dummy arguments of several polymorphic types�
and of other types �including at most one monomorphic type�
 Actual argu�
ments that correspond to polymorphic dummy arguments do not participate
in over�ride resolution� or in dispatching �see �
��


��� Polymorphic actual arguments

A polymorphic actual argument may correspond to a dummy argument of
an ancestor �mono� or polymorphic� type� without checking
 It may be
an actual argument corresponding to a dummy argument of descendant
�mono� or polymorphic� type� but a run�time check is necessary to verify
that the run�time actual argument type is descendant from the declared
dummy argument type




J��������
Page � of �

��	 Dispatching

If a polymorphic actual argument corresponds to a monomorphic dummy
argument� over�ride resolution takes place at run time
 This is called dis�

patching
 For example� suppose SUB is the generic name for two subroutines
that take an argument of TYPE�vector �d� and TYPE�vector �d�� respec�
tively
 Then call SUB�v�� results in run time selection of the speci	c
procedure
 Except in the case of the equality operator �see ��� when several
polymorphic actual arguments correspond to monomorphic dummy argu�
ments� the actual arguments must all have the same declared polymorphic
type� the same monomorphic type at run time� and the dummy arguments
must all have the same declared type
 Otherwise� dispatching can be am�
biguous


� Equality and inequality

Two polymorphic objects may be compared by intrinsic or de	ned equality
or inequality operations� and they need not have the same actual type
 If the
types are di�erent� then equality returns the value �FALSE�� and inequality
returns the value �TRUE�� without dispatching


� Abstract types and procedures


�� Abstract types

It is frequently useful to declare a base type� but prevent existence of objects
of the type� and therefore operations on the type
 Such a type is called
abstract
 An abstract type is declared by adjoining a keyword into the type
de	nition� e
g


TYPE� ABSTRACT� EXTENSIBLE �� image

REAL x�coord� y�coord

END TYPE image

declares a type for which no objects can be declared
 �This example might
be a base type for objects to be drawn � they all need a position� and the
abstract type so speci	es
�


�� Abstract procedures

An abstract procedure is a procedure that cannot be invoked
 It is declared primitive
operation�by adjoining a distinguishing keyword to the procedure �header�� e
g


ABSTRACT SUBROUTINE sub �a� b�

���

ABSTRACT REAL FUNCTION length��d �v�

���

A concrete type may not have an abstract primitive operation




J��������
Page � of �

An abstract type may have concrete primitive operations
 These can
never be reached by dispatching� but they can serve as primitive operations
of extension types �if they are not over�ridden�


If an extension type is concrete� then all abstract primitive operations
of the base type must be over�ridden by concrete primitive operations


A concrete base type may have an abstract extension type


	 Run
time type information

An intrinsic function TYPE OF takes a mono� or polymorphic argument of Needed�
extensible type� and returns a value of an intrinsic private type that denotes
the actual type of its argument


The intrinsic relational operators� and only the intrinsic relational op�
erators� e
g
 �GE�� are de	ned for this type
 Assignment and argument
association are not de	ned


Elements of derivation classes are partially ordered
 The base type of a
derivation class is �less� than the base type of an extension thereof
 E
g
� the
expression TYPE OF�vector �d� �GT� TYPE OF�vector �d� has the value
�TRUE� If two objects are of types neither of which is an extension of the
other� then all relational operations on the results of TYPE OF� other than
inequality� return �FALSE�� and inequality returns �TRUE�


