
J��������
Date	 July 
�� ����
From	 G� William Walster and Eldon R� Hansen
To	 J�
Subject	 Composite Functions in Interval Mathematics

Abstract

Composite interval extensions of functions and relations are re�

quired to justify expression folding and other mathematical transfor�

mations at compile�time in an optimizing compiler supporting interval

data types� The composite of interval extensions is proved to con�

tain the corresponding interval extension of composites� This leads

to a deeper analysis of interval mathematics and its relation to point

mathematics� In turn� analysis of composites leads to new language

and compiler requirements�

� Introduction

The design of language support for interval data types must include allow�
able mathematical transformations at compile�time� Considering alterna�
tives in the context of interval extensions to Fortran leads to the conclusion
that intervals are fundamental mathematical objects� with their own unique
properties� and the same or greater� stature as integer� real� and complex
variables�

The requirement to perform expression folding at compile�time depends
on the existence of composites of interval extensions of functions and rela�
tions� Composites of interval extensions are proved to contain corresponding
interval extensions of composites� These ideas are motivated by the require�
ment to de�ne what an optimizing compiler may be permitted to do at
compile�time� However� the implications are much broader because these
same ideas can be used more generally to de�ne interval mathematics and
its relation to point mathematics�

�



� Interval Arithmetic

Let �a� b� and �c� d� denote non�degenerate interval constants and let X 	�
�a� b� and Y 	� �c� d� denote the assignment of the value of these interval
constants to the interval variables X and Y � respectively� It will be shown
that there is an important distinction to be made between interval variables
and constants� Let �op� denote a member of the set of arithmetic operations
f�� �� �� �g� The rules of interval arithmetic e�g�� see �
�� require that
fX�Y � contain the set ffx� y� j x � X� y � Y g� where fX� Y � � X op Y
and fx� y� � x op y�

� Point Composite Functions and Expres�

sion Folding

In point mathematics� composite functions are de�ned as follows	

De�nition� Given the functions fx� and gx�� de�ne hx� � fgx�� and
the domain of h such that x is in the domain of g and g is in the domain
of f �

De�nition� Given hx� y� in addition to f and g� de�ne qx� y� � hfx�� gy���
with the domain of q being de�ned by the domains of f � g� and h�

The Fortran standard ��� permits a compiler to substitute �mathemati�
cally equivalent� expressions within a given statement� However the standard
clearly de�nes the ��� operator to be an assignment of value� not a macro
de�nition� Expression folding is thereby expressly forbidden� Nevertheless�
in the interest of run�time performance� optimizing compilers perform ex�
pression folding of the following sort	

Original Code	 Folded Code	

X�A�B Y�B
Y�X�A

Implicit functions can be used to prove the above codes are mathemati�
cally equivalent	






y � fga� b�� a�� where

ga� b� � a� b and fx� a� � x� a� from which it follows that

y � a� b� a � b�

However� when evaluated using �oating�point arithmetic� rounding errors
can cause the two codes to produce completely di�erent results� For example�
if A is su�ciently larger than B � there will be no agreement between the
folded and unfolded forms� One way to give a compiler explicit permission
to perform expression folding� is to permit the ��� operator to be to be
interpreted as mathematical identity in the macro substitution sense� Note�
this is a permissive interpretation� not a required interpretation�

In the above example it is clear that the folded code is both more accurate
and faster� In general� the best way to compute a given result may not always
be obvious� Accuracy and speed may sometimes be in con�ict� or in some
situations assignment of value may be required� Current compilers perform
expression folding only for speed� usually under high levels of optimization�
but not under explicit program control� Algorithm developers will want to
explicitly control when expression folding is permitted�

To illustrate the need for both expression folding and assignment of value�
consider the case in which y �

Pn
i�� xi� Later it may be desired to compute

dj � y�xj for some value of j� If xj is much greater than
P

i��j xi� y�xj will
be inaccurate if computed using �oating�point arithmetic� However� in many
cases� it may be su�ciently accurate and much faster to compute dj � y�xj

rather than
P

i��j xi� In such cases� assignment of value is required to prevent
expression folding and in others� macro de�nition is required to permit it�

One way to control when expression folding is permitted is with two op�
erators	 ��� and �	��� de�ned to mean identical algebraic equality as in the
de�nition of a macro and assignment of value� respectively� Given current
practice and the relative frequency with which � and 	� will be used� the
existing ��� operator can be interpreted as � and introduce a new �	�� oper�
ator can be introduced to force assignment of value� Backward compatibility
with existing code can be easily achieved by forbidding expression folding
with a pragma and�or a command line option� This is equivalent to forcing
both � and 	� in assignment statements to be interpreted as assignment of
value�

�



� Interval Composites and Expression Fold�

ing

To justify interval expression folding it is necessary to de�ne the interval
extension of a composite function� the composite of interval extensions� and
how they are related� Given real functions� fx�� gx� and the composite
function hx� � fgx��� any interval extension hX� of the composite func�
tion hx� must contain fhx� j x � Xg� If inclusion monotonic interval
extensions of f and g exist� an inclusion monotonic interval extension of the
composite function h can be constructed from the composite of the interval
extensions	

hX� � fgX�� � ffgx� j x � Xg�� ��

Inclusion monotonicity of f and g� guarantees that hX� is inclusion
monotonic and contains	 fhx� j x � Xg� Letting X � x� at once yields	
Hx� � hx� � fgx��� where H x� denotes the interval extension� h X��
evaluated at the point� x� Provided intrinsic and user�de�ned routines are
valid inclusion monotonic interval extensions of their respective underlying
point functions or relations� any composite of interval extensions always
yields a valid inclusion monotonic extension of the underlying composite
function or relation� It may not be sharp� but it will be a valid inclusion
monotonic interval extension�

What follows at once is that interval expression folding can be performed
in exactly the same way it is with point expressions� With points� di�erent
results of varying accuracy may be computed� With intervals� sharpness may
vary� It is the challenge of an optimizing interval compiler to use transforma�
tions that will result in fast code to compute sharp results� while guaranteeing
containment�

� Independent and Dependent Intervals

An interval variable can be viewed in one of two di�erent� but mathematically
equivalent ways� It may be a single unknown point in the interval� In this
view� the endpoints merely serve as bounds on the point� Alternatively� it
may be the set of single points in the interval� In this view� the interval serves

�



to specify the set of single points� In either view� every single point in every
occurrence of the same interval variable is identical� The individual points
are therefore dependent� In contrast� an interval constant is merely the set
of all possible values in the interval� There is no possibility of dependence
between multiple occurrences of an interval constant�

Point and interval constants and variables obey the commutative and as�
sociative laws of algebra for addition and multiplication� Point constants
equivalently� degenerate interval constants�� point variables� and interval
variables� also obey the distributive law of algebra and have additive and
multiplicative inverses� However� each occurrence of a non�degenerate inter�
val constant must be treated as if it were a new interval variable� independent
of all other occurrences of the same interval constant� Let �a� b� be a con�
stant interval� Then� for example� computing �a� b�� �a� b� and �a� b���a� b�
is the same as computing X � Y � fx� y j x � X� y � Y g � �a� b� b� a�
and X�Y � fx�y j x � X� y � Y g � �mina�b� b�a�� maxa�b� b�a��� where
X 	� Y 	� �a� b� and in the case of division� �a� b����� �� � � It is not possi�
ble for two non�degenerate interval constants to be completely dependent or
identically equal� An interval variable is completely dependent on itself and
identically equal to itself� Contrary to interval constants� interval variables
have additive and multiplicative inverses	 X �X � fx�x j x � Xg � � and
X�X � fx�x j x � Xg � ��

This useful distinction between interval constants and variables has been
largely overlooked in the development of interval arithmetic� So far� interval
arithmetic has been developed under the assumption that intervals are con�
stants� As shown above� interval variables have all the algebraic properties of
points� This fact can be used to great advantage at compile�time to perform
algebraic transformations that would otherwise not be possible�

A somewhat di�erent view of the distinction between interval variables
and constants can be seen by letting fX� and gX� denote the interval ex�
tensions of the real function and relation fx� and gx�� respectively� Func�
tions are single�valued and relations are multi�valued� Examples of simple
functions are	 fx� � a or fx� � x� Examples of simple relations are	
gx� � �a� b� or gx� � �a� b�x� Both functions and relations can have in�
terval extensions� For example� fX� � ffx� j x � Xg � a and X are
interval extensions of the functions fx� � a and fx� � x� respectively�
gX� � fgx� j x � Xg � �a� b�� and �a� b�X are interval extensions of the
relations gx� � �a� b� and gx� � �a� b�x� respectively� Only interval exten�

�



sions of functions can be completely dependent or identically equal� Interval
extensions of relations can be partially� but never completely dependent�
Pure interval constants are completely independent�

There is a case in which dependence among intervals has been recognized�
The ability to perform subtraction with cancellation is described in ���� page
��� Suppose the interval Y �

Pn
i��Xi is computed� Later it is desired

to compute Dj � Y � Xj for some value of j� In the cases where it is
su�ciently accurate to compute Dj � Y � Xj rather than

P
i��j Xi� the

following subtraction with cancellation algorithm can be used	

X � Y � �a� c� b� d� � where 
�

X � �a� b�� Y � �c� d�� and for this operation to be valid� Y must be an
additive component of X�

� Independent and Dependent Functions

There is yet another way to distinguish between dependent and independent
intervals� Two point functions or relations� f and g are dependent if they
share at least one common variable argument� For example� fx� y� and
gu� v� are independent� while fx� y� and gu� x� are dependent� Two inter�

val functions or relations� f and g are dependent if they share at least one
common variable argument� For example� fX�Y � and gU� V � are indepen�
dent� while fX�Y � and gU�X� are dependent� Neither point nor interval
constants count� That is� f
� y� and g
� v� are independent� Similarly�
f�a� b�� Y � and g�a� b�� V � are independent�

Composites of dependent functions or relations� can sometimes result
in signi�cant simpli�cations� For example� consider the function hx� y� �
x op y� where op � f�� �� �� �g � An example of a composite h of two de�
pendent functions is	 hfx� y�� fu� x��� where fx� y� � x� y and hx� y� �
x� y� from which it follows that

hfx� y�� fu� x�� � y � u ��

A consequence of the extension of composite functions to intervals is that
any dependent interval expression can be simpli�ed in exactly the same ways

�



as its point counterpart� For example� given inclusion monotonic interval
extensions of f and h� it follows that	

hfX�Y �� fU�X�� � fy � u j y � Y� u � Ug � Y � U ��

� Interval Arithmetic on Dependent Inter�

vals

Two intervals that are functions of the same interval variable are dependent�
Consequently� X op X is di�erent from X op Y or �a� b� op �a� b� for op �
f�� �� �� �g� because X depends on itself� In this case� the following rules
apply for X 	� �a� b�	

Expression Result

X �X �
a� 
b�
X �X �

X 	X � X�

�
�minfa�� b�g � maxfa�� b�g� if a � � or b � �

��� maxfa�� b�g� � otherwise

�

X�X �

As noted above� analogous simpli�cations do not exist for �a� b� op �a� b��
where �a� b� is a constant interval� These results must be obtained by sub�
stituting a for c and b for d in the normal relations for two independent
intervals� Non�degenerate interval constants are independent� even though
their corresponding endpoints are equal� Thus� for example� while 
� 
 � ��
�
� �� � �
� �� � ���� ��� These results expose the fundamental di�erence
between interval arithmetic on constants and interval mathematics on vari�
ables�

The analogous distinction is not made for points� at least not explicitly�
The rules of algebra of points are typically quali�ed with a statement such as	
�except for division by zero�� The real numbers can be extended to include

� to cover division of a non�zero number by zero� However� ��� is not
de�ned and fx��gx�� when both f and g approach zero at a point� requires

�



additional analysis� such as with L�Hopital�s rule� Nevertheless� no thought
is ever given to canceling x�x or fx��fx� and replacing them by �� either
in complete expressions or when such cancellations can be made in a larger
expression� The reason may be that there exists an unstated recognition
of the subtle di�erence between point numbers and variables that is more
obvious in the case of intervals�

	 Interval Expression Folding

There is a restriction on interval expression folding that does not exist with
points	 because interval constants are independent� they may not be treated
as identically equal� Thus� consider the following example	

Original Code	 Folded Code	

X���	
��B Z���
	
��B
Y���	
��B
Z�Y�X

While it is permissible to take into account the dependence between the two
occurrences of the interval variable B � the two occurrences of the interval
constant ��	
� are independent�


 Fortran PARAMETER Statements

Assignment of value can lead to a sharper result when operating with interval
constants� Consider the following two examples	

Example	 A
Original Code	 Folded Code	

X���	
� Y���
	
�
Y�X�X

Example	 B
Original Code	 Folded Code	

X����	
� Y��
Y�X�X

�



In example A� the constant ��	
� is substituted for X in the expression
for Y � In example B� the value ��	
� is assigned to the variable X � This
permits the cancellation to be made in the expression for Y � For this reason�
the de�nition of the �� � operator in Fortran PARAMETER declarations
must be that of a macro� In this case� the PARAMETER is simply a named
constant� Only if the new assignment of value operator ��� � is used in its
de�nition� can a PARAMETER be regarded as a read�only variable�

�� Conclusion

From the inception of interval arithmetic� unnecessary constraints have been
imposed that may have resulted from following the traditional approach in
point mathematics of building constructs� one on top of another� In this
respect� interval mathematics is di�erent� Any interval computation is an
extension of an underlying real function or relation� As a consequence� any
computer language used to implement intervals must not operationally pre�
scribe how interval expressions are to be evaluated� To do so can unnecessar�
ily constrain compiler developers from constructing ever sharper implemen�
tation methods� Rather� there is only one requirement for a valid interval
implementation	 containment� Speed and sharpness are goals� Containment
is a constraint� Compiler developers must be free to pursue whatever means
at their disposal to construct code that will quickly compute sharp containing
intervals� This freedom imposes some new requirements on languages that
support intervals and on testing methods used to validate implementation
correctness�

References

��� E� Hansen� Global Optimization Using Interval Analysis� Marcel Dekker�
Inc�� New York� ���
�

�
� R� E� Moore� Methods and Applications of Interval Analysis� SIAM Publ��
�����

��� X�J�� International Standard Programming Language Fortran� Technical
report� ISO�IEC ������� �����

�


