J3/97-198
Date: July 23, 1997
From: G. William Walster and Eldon R. Hansen
To: J3

Subject: Composite Functions in Interval Mathematics

Abstract

Composite interval extensions of functions and relations are re-
quired to justify expression folding and other mathematical transfor-
mations at compile-time in an optimizing compiler supporting interval
data types. The composite of interval extensions is proved to con-
tain the corresponding interval extension of composites. This leads
to a deeper analysis of interval mathematics and its relation to point
mathematics. In turn, analysis of composites leads to new language
and compiler requirements.

1 Introduction

The design of language support for interval data types must include allow-
able mathematical transformations at compile-time. Considering alterna-
tives in the context of interval extensions to Fortran leads to the conclusion
that intervals are fundamental mathematical objects, with their own unique
properties, and the same (or greater) stature as integer, real, and complex
variables.

The requirement to perform expression folding at compile-time depends
on the existence of composites of interval extensions of functions and rela-
tions. Composites of interval extensions are proved to contain corresponding
interval extensions of composites. These ideas are motivated by the require-
ment to define what an optimizing compiler may be permitted to do at
compile-time. However, the implications are much broader because these
same ideas can be used more generally to define interval mathematics and
its relation to point mathematics.



2 Interval Arithmetic

Let [a, b] and [c¢, d] denote non-degenerate interval constants and let X :=
[a, b] and Y := [¢, d] denote the assignment of the value of these interval
constants to the interval variables X and Y, respectively. It will be shown
that there is an important distinction to be made between interval variables
and constants. Let “op” denote a member of the set of arithmetic operations
{+, —, X%, /}. The rules of interval arithmetic (e.g., see [2]) require that
F(X,Y) contain the set {f(z,y) |2 € X, y € Y}, where f(X, V)=X op V

and f(x,y) =z op y.

3 Point Composite Functions and Expres-
sion Folding

In point mathematics, composite functions are defined as follows:

Definition: Given the functions f(x) and g(x), define h(z) = f(g(x)) and

the domain of 2 such that x is in the domain of ¢ and ¢ is in the domain

of f.

Definition: Given h(x,y)in addition to f and g, define ¢(z,y) = h(f(x),9(y)),
with the domain of ¢ being defined by the domains of f, ¢, and h.

The Fortran standard [3] permits a compiler to substitute “mathemati-
cally equivalent” expressions within a given statement. However the standard
clearly defines the “=" operator to be an assignment of value, not a macro
definition. Expression folding is thereby expressly forbidden. Nevertheless,
in the interest of run-time performance, optimizing compilers perform ex-

pression folding of the following sort:

‘ Original Code: ‘ Folded Code: ‘
X=A+B Y=B
Y=X-A

Implicit functions can be used to prove the above codes are mathemati-
cally equivalent:



y = f(g(av b)v a); where
gla,b) = a+b and f(x,a) =2 —a, from which it follows that
y = a+b—a=0b.

However, when evaluated using floating-point arithmetic, rounding errors
can cause the two codes to produce completely different results. For example,
if A is sufficiently larger than B | there will be no agreement between the
folded and unfolded forms. One way to give a compiler explicit permission
to perform expression folding, is to permit the “=" operator to be to be
interpreted as mathematical identity in the macro substitution sense. Note,
this is a permissive interpretation, not a required interpretation.

In the above example it is clear that the folded code is both more accurate
and faster. In general, the best way to compute a given result may not always
be obvious. Accuracy and speed may sometimes be in conflict, or in some
situations assignment of value may be required. Current compilers perform
expression folding only for speed, usually under high levels of optimization,
but not under explicit program control. Algorithm developers will want to
explicitly control when expression folding is permitted.

To illustrate the need for both expression folding and assignment of value,
consider the case in which y = 3" | x;. Later it may be desired to compute
d;j = y —x; for some value of j. If z; is much greater than 37, z;, y —x; will
be inaccurate if computed using floating-point arithmetic. However, in many
cases, it may be sufficiently accurate and much faster to compute d; = y —z;
rather than >=,; ;. In such cases, assignment of value is required to prevent
expression folding and in others, macro definition is required to permit it.

One way to control when expression folding is permitted is with two op-
erators: “=” and “:=", defined to mean identical algebraic equality as in the
definition of a macro and assignment of value, respectively. Given current
practice and the relative frequency with which = and := will be used, the
existing “=" operator can be interpreted as = and introduce a new “:=” oper-
ator can be introduced to force assignment of value. Backward compatibility
with existing code can be easily achieved by forbidding expression folding
with a pragma and/or a command line option. This is equivalent to forcing
both = and := in assignment statements to be interpreted as assignment of
value.



4 Interval Composites and Expression Fold-
ing

To justify interval expression folding it is necessary to define the interval
extension of a composite function, the composite of interval extensions, and
how they are related. Given real functions, f(x), g(«) and the composite
function h(x) = f(g(x)), any interval extension h(X) of the composite func-
tion h(x) must contain {h(z) | @ € X}. If inclusion monotonic interval
extensions of f and ¢ exist, an inclusion monotonic interval extension of the
composite function & can be constructed from the composite of the interval
extensions:

h(X) = f(g(X)) = f({g(z) | v € X}). (1)

Inclusion monotonicity of f and ¢, guarantees that A(X) is inclusion
monotonic and contains: {h(z) | + € X}. Letting X = =, at once yields:
H(z) = h(x) = f(g(x)); where H (x) denotes the interval extension, h (X),
evaluated at the point, x. Provided intrinsic and user-defined routines are
valid inclusion monotonic interval extensions of their respective underlying
point functions or relations, any composite of interval extensions always
yields a valid inclusion monotonic extension of the underlying composite
function or relation. It may not be sharp, but it will be a valid inclusion
monotonic interval extension.

What follows at once is that interval expression folding can be performed
in exactly the same way it is with point expressions. With points, different
results of varying accuracy may be computed. With intervals, sharpness may
vary. It is the challenge of an optimizing interval compiler to use transforma-
tions that will result in fast code to compute sharp results, while guaranteeing
containment.

5 Independent and Dependent Intervals

An interval variable can be viewed in one of two different, but mathematically
equivalent ways. It may be a single unknown point in the interval. In this
view, the endpoints merely serve as bounds on the point. Alternatively, it
may be the set of single points in the interval. In this view, the interval serves



to specify the set of single points. In either view, every single point in every
occurrence of the same interval variable is identical. The individual points
are therefore dependent. In contrast, an interval constant is merely the set
of all possible values in the interval. There is no possibility of dependence
between multiple occurrences of an interval constant.

Point and interval constants and variables obey the commutative and as-
sociative laws of algebra for addition and multiplication. Point constants
(equivalently, degenerate interval constants), point variables, and interval
variables, also obey the distributive law of algebra and have additive and
multiplicative inverses. However, each occurrence of a non-degenerate inter-
val constant must be treated as if it were a new interval variable, independent
of all other occurrences of the same interval constant. Let [a, b] be a con-
stant interval. Then, for example, computing [a, b] — [a, b] and [a, b]/[a, b]
is the same as computing X —Y D {e—y |z e X, ye Y} =[a—b, b—d]
and X/Y D{x/y |z € X, y € Y} = [min(a/b,b/a), max(a/b,b/a)]; where
X :=Y :=[a, b] and in the case of division, [a, b]/[0, 0] = @ It is not possi-
ble for two non-degenerate interval constants to be completely dependent or
identically equal. An interval variable is completely dependent on itself and
identically equal to itself. Contrary to interval constants, interval variables
have additive and multiplicative inverses: X — X D {x —a |2 € X} =0 and
X/XD{a/x|ze X} =1.

This useful distinction between interval constants and variables has been
largely overlooked in the development of interval arithmetic. So far, interval
arithmetic has been developed under the assumption that intervals are con-
stants. As shown above, interval variables have all the algebraic properties of
points. This fact can be used to great advantage at compile-time to perform
algebraic transformations that would otherwise not be possible.

A somewhat different view of the distinction between interval variables
and constants can be seen by letting f(X) and g(X) denote the interval ex-
tensions of the real function and relation f(x) and g(x), respectively. Func-
tions are single-valued and relations are multi-valued. FExamples of simple
functions are: f(z) = a or f(x) = x. Examples of simple relations are:
g(x) = [a,b] or g(x) = [a, b]z. Both functions and relations can have in-
terval extensions. For example, f(X) 2 {f(x) | + € X} = a and X are
interval extensions of the functions f(x) = a and f(x) = =, respectively.
g(X) 2 {glx) | v € X} = [a, b], and [a, b]X are interval extensions of the
relations g(x) = [a, b] and g(x) = [a, b]x, respectively. Only interval exten-



sions of functions can be completely dependent or identically equal. Interval
extensions of relations can be partially, but never completely dependent.
Pure interval constants are completely independent.

There is a case in which dependence among intervals has been recognized.
The ability to perform subtraction with cancellation is described in [1], page
10. Suppose the interval ¥ = 7, X, is computed. Later it is desired
to compute D; = Y — X; for some value of j. In the cases where it is
sufficiently accurate to compute D; = Y — X rather than }°..; X;, the
following subtraction with cancellation algorithm can be used:

XeY=[a—c¢ b—d]; where (2)

X = [a,b], Y = [e,d], and for this operation to be valid, ¥ must be an
additive component of X.

6 Independent and Dependent Functions

There is yet another way to distinguish between dependent and independent
intervals. Two point functions (or relations) f and ¢ are dependent if they
share at least one common variable argument. For example, f(x,y) and
g(u,v) are independent, while f(x,y) and g(u, ) are dependent. Two inter-
val functions (or relations) f and ¢ are dependent if they share at least one
common variable argument. For example, f(X,Y) and ¢(U, V) are indepen-
dent, while f(X,Y") and ¢(U, X) are dependent. Neither point nor interval
constants count. That is, f(2,y) and ¢(2,v) are independent. Similarly,
f(la, 8],Y) and g¢([a, b],V) are independent.

Composites of dependent functions (or relations) can sometimes result
in significant simplifications. For example, consider the function h(z,y) =
x op y, where op € {4+, —, X, /}. An example of a composite h of two de-
pendent functions is: h(f(x,y), f(u,x)); where f(x,y) = x4+ y and h(z,y) =
x — y, from which it follows that

h(f(:l:,y),f(u,x)):y—u (3)

A consequence of the extension of composite functions to intervals is that
any dependent interval expression can be simplified in exactly the same ways



as its point counterpart. For example, given inclusion monotonic interval
extensions of f and h, it follows that:

h(fXY), fUX) 2{y—u|yeY, uel}=Y-U (4)

7 Interval Arithmetic on Dependent Inter-
vals

Two intervals that are functions of the same interval variable are dependent.
Consequently, X op X is different from X op Y or [a, b] op [a, b] for op €
{+, —, X, /}, because X depends on itself. In this case, the following rules
apply for X :=[a, b]:

‘ Expression ‘ Result
X+ X [2a, 20]
X-X 0
min {a?, b*}, max{a?, b*}] if a >0 or b< 0
X X=X { “ [0 }maX {ag, b*}] ,}] otherwise }
X/X 1

As noted above, analogous simplifications do not exist for [a, b] op [a, b],
where [a, b] is a constant interval. These results must be obtained by sub-
stituting ¢ for ¢ and b for d in the normal relations for two independent
intervals. Non-degenerate interval constants are independent, even though
their corresponding endpoints are equal. Thus, for example, while 2 —2 = 0,
[2, 3] — [2, 3] = [—1, 1]. These results expose the fundamental difference
between interval arithmetic on constants and interval mathematics on vari-
ables.

The analogous distinction is not made for points, at least not explicitly.
The rules of algebra of points are typically qualified with a statement such as:
“except for division by zero”. The real numbers can be extended to include
+oo to cover division of a non-zero number by zero. However, 0/0 is not
defined and f(x)/g(x), when both f and g approach zero at a point, requires




additional analysis, such as with L.’Hopital’s rule. Nevertheless, no thought
is ever given to canceling @/« or f(x)/f(x) and replacing them by 1, either
in complete expressions or when such cancellations can be made in a larger
expression. The reason may be that there exists an unstated recognition
of the subtle difference between point numbers and variables that is more
obvious in the case of intervals.

8 Interval Expression Folding

There is a restriction on interval expression folding that does not exist with
points: because interval constants are independent, they may not be treated
as identically equal. Thus, consider the following example:

‘ Original Code: ‘ Folded Code: ‘
X=[0,1]*B Z=[-1,1]*B
Y=[0,1]*B
7Z=Y-X

While it is permissible to take into account the dependence between the two
occurrences of the interval variable B , the two occurrences of the interval
constant [0,1] are independent.

9 Fortran PARAMETER Statements

Assignment of value can lead to a sharper result when operating with interval
constants. Consider the following two examples:

Example: A
‘ Original Code: ‘ Folded Code:
X=[0,1] Y=[-1,1]
Y=X-X
Example: B
‘ Original Code: ‘ Folded Code:
X:=[0,1] Y=0
Y=X-X




In example A, the constant [0,1] is substituted for X in the expression
for Y . In example B, the value [0,1] is assigned to the variable X . This
permits the cancellation to be made in the expression for Y . For this reason,
the definition of the “= 7 operator in Fortran PARAMETER declarations
must be that of a macro. In this case, the PARAMETER is simply a named

constant. Only if the new assignment of value operator “:= 7 is used in its

definition, can a PARAMETER be regarded as a read-only variable.

10 Conclusion

From the inception of interval arithmetic, unnecessary constraints have been
imposed that may have resulted from following the traditional approach in
point mathematics of building constructs, one on top of another. In this
respect, interval mathematics is different. Any interval computation is an
extension of an underlying real function or relation. As a consequence, any
computer language used to implement intervals must not operationally pre-
scribe how interval expressions are to be evaluated. To do so can unnecessar-
ily constrain compiler developers from constructing ever sharper implemen-
tation methods. Rather, there is only one requirement for a valid interval
implementation: containment. Speed and sharpness are goals. Containment
is a constraint. Compiler developers must be free to pursue whatever means
at their disposal to construct code that will quickly compute sharp containing
intervals. This freedom imposes some new requirements on languages that
support intervals and on testing methods used to validate implementation
correctness.

References

[1] E. Hansen. Global Optimization Using Interval Analysis. Marcel Dekker,
Inc., New York, 1992.

[2] R. E. Moore. Methods and Applications of Interval Analysis. STAM Publ.,
1979.

[3] X3J3. International Standard Programming Language Fortran. Technical
report, [SO/TEC 1539-1, 1996.



