
From: Kurt W. Hirchert J3/97-209 (Page 1 of 4)
Subject: Constructors / Destructors Meeting 142

J3/97-209 (Page 1 of 4)

 Rationale

For many abstractions, it is possible to create a “better” implementation if one can validly make assumptions
about the state of the abstraction at the time its operations are executed. For example, it may be possible to
code a faster and more compact operation if one can assume that some aspects of the implementation have been
set up prior to the execution of an operation, or it may be possible to provide amore feature-rich implementation
if one can assume that certain information is being maintained in the representation “as you go”. In some cases,5

a correct implementation of the abstraction may be possible only if such assumptions can be made.

In order for such an assumption to be valid, two things must be true: The operations must implemented such tha t
assumed property is preserved by those operations, and something must establish that property initially.

In some abstractions, there is a natural first operation where this establishing can take place. In others, forcing
the existence of such explicit initialization is unnatural and likely to result in use because people either forget10

to do the initialization or inadvertently perform the initialization more than once. For this reason, abstraction
implementors would like a means for performing the necessary initialization automatically, without any
explicit action by the user of the abstraction.

Fortran 95 provided such an automatic mechanism in default initialization. Most abstractions requiring the
establishment of initial conditions can do so with default initialization, but the limitations of this form are15

such that there are many that cannot. For example, pointers cannot be initialized this way to a non-null state.
More subtly, there is no direct way to perform initialization that affects more than the components of the
representation. It would often be possible to work around this limitation by using default initialization to
establish a recognizable partially initialized state and adding code to each operation to recognize this state
and complete the initialization, but the time and space costs of distributing the initialization this way are20

frequently unacceptably high.

Thus, we find there is a residual need to be able to provide arbitrary code that is to be automatically executed
on the representation of an abstraction before all other operations. Because of the precedent in C++, we have
used the word “constructor” to describe this capability in our requirements. Unfortunately, we have used
“constructor” to mean something different in Fortran, so I suggest that we instead call this an automatic initial25

operation.

Similarly, although for different reasons, there is a need for automatic final operations (called “destructors” in
C++). One class of reasons involves the recovery of resources. Fortran 95 and the Data Type Enhancements TR
already provide for some automatic resource recovery in the automatic deallocation of allocatable arrays and
allocatable components. Resource recovery that might require user code includes memory deallocation based on30

reference counts, release of I/O units, or the deactivation of automatic display through a graphical interface.
A second class of reasons involves deferred or buffered operations. Often operations can be completed more
efficiently if they are batched together. For this reason, execution of operations may be deferred in hope of
combining them with later operations. I/O buffering is a classic example of this strategy. At the point we
know that there will be no later operations, the deferred operations must be completed.35

As with initial operations, there will sometimes be an appropriate explicit final operation, but in many other
cases such an explicit operation would be unnatural and error prone. Unlike initial operations, there is no way
to simulate general automatic final routines using the existing features of the language.

 Preliminary Specification

As we have already alluded, Fortran 95 and the Data Type Enhancements TR already have several limited
automatic initial and final operations: The initialization of allocatable arrays, allocatable components, and40

components with default initialization all require a kind of compiler-generated initial operation. Similarly,

From: Kurt W. Hirchert J3/97-209 (Page 2 of 4)
Subject: Constructors / Destructors Meeting 142

J3/97-209 (Page 2 of 4)

the automatic deallocation of allocatable arrays and allocatable components require a kind of compiler-
generated final operation. Thus, our preliminary specification is that user-supplied initial operations are
executed under the same circumstances that allocatable components and components with default initialization
are initialized, and user-supplied final operations are executed under the same circumstance that allocatable
components are automatically deallocated.5

 Additional Specification: Ordering

If a type has both a user-supplied initial operation and allocatable components or components with default
initialization, the “system” initialization takes place prior to the execution of the initial operation.
Conversely, “system” deallocation of allocatable components takes place after any final operation for the same
type.

If a type with a user-supplied initial operation has components of types that also have user-supplied initial10

operations, the component initial operations are executed before the containing initial operation. Conversely,
component final operations are executed after containing final operations.

Similarly, base type initial operations are performed before extension type initial operations, and base type
final operations are performed after extension type final operations.

The interaction of explicit initialization and initial operations raises interesting issues. I believe that explicit15

partial initialization (i.e., explicit initialization of components) should be prohibited, because there is no
“right” ordering between such initialization and initial operations. (If the initialization is done before the
initial operation, the initial operation is likely to obliterate its effects. If the initialization is done after, i t
may invalidate the conditions established by the initial operation.) Explicit initialization of complete
elements may be reasonable, because the necessary conditions can be established in the construction of the20

initialization value, but if that value is then to be placed in the element by intrinsic assignment rather than
defined assignment, then the initial operation for element should be suppressed (because its effects would be
immediately overridden in an uncontrolled way. Thus, the initial operation on the initialization value would
effectively be the initial operation for that element. To keep initial and final operations properly paired, the
final operation for that initialization value should probably also be suppressed. There may still be problems25

getting things right when the initialization value is a symbolic constant rather than an immediately
constructed or computed value, so this area may require further thought.

Because of the possibility that initial and final operations reference entities outside of the components of the
representation, there is a potential need to control the relative order of the execution of the initial and final
operations of entities declared in the same scoping unit. One possible method is to say that initial operations30

are performed in declaration order and final operations in reverse declaration order.

 Additional Specification: Procedure Interfaces

The fact that default initialization and initial operations are applied to INTENT(OUT) dummy arguments,
creates a possible anomaly. To counter this problem, I suggest that final operations and automatic deallocation
of allocatable components be applied to corresponding actual arguments just prior to procedure invocation. In
order for the compiler to know that it needs to perform these operations, an explicit interface should be required35

in this case. (The allocatable components part of this may be a “hole” in the Data Type Enhancements pDTR
that we should note during the first ballot.)

It should be possible for function result variables initial operations to precede invocation of the function and for
the final operation to be deferred until after the function value has been used in the expression in which i t
appears.40

From: Kurt W. Hirchert J3/97-209 (Page 3 of 4)
Subject: Constructors / Destructors Meeting 142

J3/97-209 (Page 3 of 4)

 Additional Specification: Other

I would recommend that all outstanding final operations be executed if a STOP statement is executed.

It may be desirable that automatic initial and final operations not be performed in the scoping unit in which
the type is defined. This is somewhat inconsistent with default initialization and the handling of allocatable
components, but it allows for the creation of alternative initialization operations without paying the cost of an
unnecessary default initialization.5

 Related Issues: “Static” Storage

It is expected that in most implementations, default initialization and the initialization of allocatable
components for variable with the SAVE attribute will be done in the linker/loader rather than by execution of
code at run time. Similarly, the automatic deallocation of allocatable arrays and components with the SAVE
attribute is not strictly necessary, since execution is about to complete, anyway. Thus, the existing
implementation models for these features do not readily extend to applying user-supplied initial and final10

operations to variables with the SAVE attribute. Instead, there will either have to be additional support in
the linker for identifying initial operations to be performed at the start of execution, or the compiler will have
to use flags to recognize the first entry into each scoping unit so the initial operations of the SAVEd variables in
that scoping unit can be performed. (A single flag per scoping unit will suffice for all the SAVEd variable
initial operations in that scoping unit.) A “system” initial operation for these variables can be used to build up15

a list of final operations to be performed at program termination.

A similar issue is the handling of nonSAVEd variables in COMMON and modules. Although it is possible for
there to be multiple instances (serially) of a common block or a module, we have been careful to allow processors
to reuse a single instance, performing the initialization just once and deferring automatic deallocation to the
end (when it doesn’t really need to be done). With the introduction of user-supplied initial and final20

operations we must either perpetuate this situation even more explicitly, or “bite the bullet” and require the
processor to treat the logically separate instances as truly distinct. (If we follow the latter approach, I would
suggest we also clean up all the special cases we have created for modules and common blocks.) I lean toward
the “bite the bullet” approach, but am quite willing to take guidance from the committee on this issue.

 Looking Forward to Syntax

There are two probable alternatives approaches to the syntax: The first is to use yet another special generic ID25

to “name” such initial and final operations. The second is to put something in the type definition tha t
identifies its initial and final operations. (Note that in a parameterized derived type with KIND
parameters, there may be multiple initial operations and multiple final operations, one for each supported
combination of KIND parameters.)

The key issue is that once an initial or final operation has been associated with a type, it should not be possible30

to use visibility rules to prevent that operation from being performed for a particular entity. This tends to come
naturally with the second syntactic approach. It would require special rules for the first approach. Note tha t
this is similar to the property we want for defined assignment, so it is likely that we will want to use the same
syntactic/semantic approach to these operations as we use to “fix” defined assignment.

 Related Features

If you read the original WG5 requirement, you will find that it applies only to entities allocated in an35

ALLOCATE statement and that it allows the provision of “extra” arguments to ALLOCATE that would be

From: Kurt W. Hirchert J3/97-209 (Page 4 of 4)
Subject: Constructors / Destructors Meeting 142

J3/97-209 (Page 4 of 4)

passed through to the “constructor”. I believe that limiting this feature to entities created with an ALLOCATE
statement would have been unacceptable to many constituencies, including those interested in object-oriented
programming. However, we are left with the problem of addressing the functionality of those “extra”
arguments. I suggest two ways: First, now that we have allocatable dummy arguments, it is possible to write
procedures to one’s allocating. Such procedures can have as many extra arguments as one needs. Second, the5

examples in the requirement could have been well handled by derived type parameters. If these values are to
be specified in an ALLOCATE statement, we must once again revive the idea of extending the ALLOCATE
statement to non-KIND derived type parameters. Because that issue can be explored separately, I will do so,
but please bear in mind that I will be doing so not on its own merit, but as a means of completing this
requirement.10

It should be noted that in some cases, there are initial operations that apply to an entire type rather than to
individual objects of that type. For example, one may need to initialize some kind of dynamic dispatch table or
a storage management scheme for the abstraction. I am currently leaning towards providing this capability by
providing for initial and final operations associated with a module rather than specific instance of a type.
Such operations for the module containing the definition of a type would serve as the initial and final15

operations for that type. With some combinations of decisions on the issues in this document, it would be
possible to achieve the affects of such operations by declaring an extra type and an object of that type at the
beginning of the module, using the initial and final operations for that object as the module initial and final
operations. For other combinations, an additional feature may be required. I will defer further work on this
issue until we make those decisions and know whether we need an additional feature.20

Ω

