
NISTIR ����

A Fortran �� Interface for OpenGL

William F� Mitchell
U� S� Department of Commerce
Technology Administration
National Institute of Standards and Technology
Information Technology Laboratory
Gaithersburg� MD ����� USA

March ���	





A Fortran �� Interface for OpenGL

William F� Mitchell�

Information Technology Laboratory

National Institute of Standards and Technology

Gaithersburg� MD �����

william�mitchell�nist�gov

Abstract

It is important to provide a good fortran interface to OpenGL and related libraries

for scienti�c visualization in mathematical software� OpenGL currently provides a fortran

interface which can be used by fortran �� or fortran �� programs� However� this interface

relies upon several extensions to the fortran �� standard� By using the new features of

fortran �� it is possible to de�ne an interface to OpenGL that does not depend on any

extensions to the standard and provides access to the full functionality of OpenGL� This

document de�nes such an interface�

� Introduction

Most mathematical software for scienti�c computing is written in fortran� and most scienti�c
computing applications require �D graphics for visualization� It is therefore important to pro�
vide a good fortran interface to OpenGL and related libraries� OpenGL ��� currently provides
a fortran interface �	� which can be used by fortran 

 or fortran �� programs� However� this
interface relies upon several extensions to the fortran 

 standard� Although some of these
extensions are commonly used by fortran compilers e�g�� real��� real��� integer��� and
some have been made standard in fortran �� ��� e�g�� include� identi�ers up to �	 charac�
ters� underscore character in identi�ers�� others are not widely supported e�g�� logical���
integer��� integer��� identi�ers longer that �	 characters�� which makes OpenGL di�cult
or impossible to use from some fortran processors� Also� some of the OpenGL functionality
cannot be achieved by any fortran processor under the current fortran binding e�g�� arbitrary
length character string function result��

By using the new features of fortran �� it is possible to de�ne an interface to OpenGL that does
not depend on any extensions to the standard and provides access to the full functionality of
OpenGL� It can also increase the capability of robustness and portability in the user application
code� and increase the similarity between the fortran and C interfaces�

�Contribution of NIST� not subject to copyright in the United States� OpenGL is a registered trademark of

Silicon Graphics Computer Systems�

	



� W� F� Mitchell

This document de�nes a fortran �� interface for OpenGL� It is not intended to replace the
existing fortran interface henceforth referred to as the fortran 

 interface� at this time� since
the existing interface will be required on systems that are still using a fortran 

 compiler�
The fortran �� interface is intended to provide an alternative through which the fortran ��
programmer can achieve robustness and portability in an OpenGL application program� A
reference implementation of the fortran �� interface has been made available to the public at
http���math�nist�gov�f��gl�

The major di�erences between the fortran 

 and fortran �� interfaces are�

� The interface is accessed through modules� rather than include statements� Among other
advantages of modules� this provides explicit interfaces to the OpenGL procedures for
improved robustness�

� Kind type parameters are provided for matching fortran types to C types� This elimi�
nates the need for nonstandard ��byte� declarations� It also provides a mechanism for
transparently handling type mismatches on systems in which the fortran processor does
not support all the C types used by OpenGL� for increased portability�

� Fortran derived types are provided where C structs are used in the interface� This increases
the similarity between the fortran and C interfaces� and provides a mechanism through
which the implementor can encapsulate whatever interface data is required�

� The fortran functions corresponding to C functions that return a pointer to a character
string now return a pointer to an array of characters� This increases the similarity between
the fortran and C interfaces� and adds the capability of arbitrary length character string
return values�

� Extremely long names are truncated to �	 characters to comply with the fortran ��
standard� and the pre�x is changed to f��gl to avoid name space clashes with the OpenGL
library and fortran 

 interface�

This interface explicitly covers the OpenGL 	�	 core library� and the GLU library� The prin�
ciples laid out in this interface can also be applied to related libraries� toolkits� and OpenGL
extensions� Some entities from the OpenGL tk toolkit and the Graphics Library Utility Toolkit
GLUT� are used for illustration in this document�

� Interface De�nition

This section describes and discusses the fortran �� interface to OpenGL�

��� Modules

The fortran �� interface to OpenGL is accessed through modules� The modules provide access
to kind type parameters� de�ned constants� procedures� and derived types structures��



A Fortran �� Interface for OpenGL �

The module f��gl kinds contains the de�nitions of the kind type parameters as described in
Section ���� This module is not normally used directly in application code� but is inherited
through the other modules� The kind type parameters are de�ned as integers of default kind
with the parameter attribute�

The module f��gl provides access to the core OpenGL library procedures� de�ned constants�
and kind type parameters� It may also provide access to one or more OpenGL extensions� along
with the related de�ned constants and derived types�

Additional modules provide access to related libraries� and are given a descriptive name be�
ginning with f��� For example� module f��glu contains the procedures� de�ned constants and
derived types for the OpenGL Utility Library GLU��

��� Types

����� Numeric

The correspondence between fortran and C numeric types is achieved through use of kind type
parameters� The module f��gl kinds contains the de�nition of these parameters such that the
C representation of an entity of a given OpenGL type agrees with the fortran representation
of an entity of the corresponding type and kind whenever possible� When the corresponding
representation is not provided by the fortran processor� the lack of said representation remains
transparent to the user�

The OpenGL numeric types and the corresponding fortran �� typekind� are�

GLbyte integer�f�	glbyte


GLubyte integer�f�	glubyte


GLshort integer�f�	glshort


GLushort integer�f�	glushort


GLint integer�f�	glint


GLuint integer�f�	gluint


GLenum integer�f�	glenum


GLbit�eld integer�f�	glbitfield


GLsizei integer�f�	glsizei


GL�oat real�f�	glfloat


GLclampf real�f�	glclampf


GLdouble real�f�	gldouble


GLclampd real�f�	glclampd


The user�s code should always specify the kind parameter for all actual arguments passed to
OpenGL procedures to insure correspondence between C and fortran types and portability of
the user�s code�

� Variables should have the kind parameter in the declaration

� Constants should have the kind parameter attached e�g�� ��	 f�	glfloat�



� W� F� Mitchell

� Expressions should evaluate to a value with the appropriate kind parameter

The fortran standard does not specify what kinds are to be provided for each type� It is possible
that some OpenGL types do not have a corresponding typekind� on a given fortran processor�
On current systems this is highly unlikely for the �oat� double and long integer types� but
may occur with the short integer types� In this case� the implementation of the interface will
match fortran and C types in a manner that is transparent to the user� There are at least two
approaches that can be taken for this� In the �rst approach the interface accesses the OpenGL
library routine that accepts the available type� rather than the type expected according to the
procedure name� In the second approach the C procedure that is called by the fortran procedure
converts the arguments to the type speci�ed by the OpenGL de�nition� If there are any return
values of the missing type� they are converted to the available type before returning to the f��gl
procedure�

For example� suppose GLshort is a ��byte integer� GLint is a ��byte integer� and the fortran
compiler supports ��byte integers but not ��byte integers� and assume the fortran �� interface
is implemented by a set of �wrapper� functions� Then f�	glshort will be set to the same value
as f�	glint� which is the kind parameter such that integer�f�	glint
 is a ��byte integer�
Consider an invocation of f�	glVertex�s� In the �rst approach� the wrapper function simply
invokes glVertex�i� In the second approach� the C procedure invoked by the f��gl procedure
will accept an argument of type GLint� convert it to type GLshort� and invoke glVertex�s�

For the user�s application code� this is all transparent� The user declares the argument to
be of type integer�f�	glshort
� If the equivalent of a GLshort is supported by the fortran
processor� then the short integer is used� if not� then the equivalent of GLint is used with one of
the above methods for handling mismatched type� The user�s code works in both environments
unchanged�

Note that the equivalent of GLbyte probably a 	�byte integer� may be supported by the fortran
processor� may require promotion to the kind f�	glshort� or may require promotion to the
kind f�	glint depending on what kinds of integers are supported by the fortran processor�

����� Logical

The OpenGL logical type and the corresponding fortran �� typekind� is�

GLboolean logical�f�	glboolean


The type GLboolean is typically a 	�byte entity with the value � representing false and nonzero
representing true� The fortran processor may or may not support a 	�byte logical type� The kind
parameter f�	glboolean� de�ned in module f��glkinds� is normally set to the kind parameter
for a 	�byte logical if it is supported� or the default kind parameter for logicals if it is not�
If the 	�byte logical is not supported� or the fortran representation of logical values does not
correspond to the C representation� then the interface routines will perform appropriate type
conversions similar to the type conversions described in the section on numeric types�



A Fortran �� Interface for OpenGL �

����� Character

Some procedures in related libraries and toolkits have character string arguments� These cause
no problem in the fortran �� interface� the dummy argument is given the type character�len��
�

OpenGL functions that return a character string are also no problem in fortran ��� In C the
resulting string can be arbitrarily long� In fortran� this is obtained by declaring the function
result to be a pointer to an array of type character�len��
� and allocating the pointer inside
the function� The user can obtain the number of characters using the size intrinsic function�
and� if the result is assigned to a pointer variable� can deallocate the memory�

����� Pointer

Some OpenGL procedures� or procedures in related libraries and toolkits� may require the user
to maintain the value of a C pointer� Fortran does not provide pointers in this sense� so this
use of pointers is restricted to obtaining a C pointer from an OpenGL procedure� and passing
it to another procedure as an actual argument� Thus what is required is a means of storing
the bit patterns contained in C pointer variables� The user may also copy a C pointer from
one variable to another� which precludes the use of numeric types which are allowed to change
the representation for example� by normalizing the exponent�� In the fortran �� interface
a su�ciently long character string is used to store the C pointer one byte at a time� The
required length is set in f�	glcptr in module f��gl kinds� This is typically � and � for ���bit
and ���bit addressing schemes� respectively� Thus a variable of type �C pointer� is declared
with character�f�	glcptr
� This is guaranteed to place the bytes in contiguous �character
storage units�� which are one byte units for the default character set on all known current
fortran processors� The bytes are stored in an order that makes the character string useful as
a C pointer�

Some applications require that a C pointer be compared to NULL� thus a null pointer value
must be provided� This is de�ned in module f��gl kinds as
character�f�	glcptr
 parameter �� f�	glnullptr � char�	
�������char�	


where the number of char�	
 is equal to f�	glcptr� the number of bytes to store a C pointer�

����� Structures

Some related libraries and toolkits de�ne structures that are used as arguments to the proce�
dures� The fortran �� interface de�nes derived types corresponding to these structures� The
name of the derived type is obtained from the name of the structure� subject to the same
name modi�cation rules used for the fortran �� procedure names in section ���� The derived
type de�nitions are contained in the module for the given library or toolkit� The components
of the derived type contain whatever information is required to ful�ll the speci�cation of the
procedures that operate on that type� Components that may be useful to the user are public�
but other components may be private� An example of where the components are useful to the
user is provided by the tk toolkit where a tk procedure sets the components of a derived type�
and a GLU procedure needs the values in the components�



� W� F� Mitchell

type �f�	tk rgbimagerec
 pointer �� image

image �� f�	tkRGBImageLoad� TABLE TEXTURE 


err � f�	gluBuild�DMipmaps�GL TEXTURE �D � f�	glint image�sizeX �

image�sizeY GL RGB GL UNSIGNED BYTE image�data


For functions that return a C pointer to the struct� the fortran �� function returns a for�
tran pointer of the derived type� If the C pointer is NULL� then the fortran pointer is nulli�
�ed disassociated�� so that the C test �if cptr �� NULL�� is achieved in fortran with �if
��not� associated�fptr

�� where cptr and fptr are pointer variables in C and fortran� re�
spectively�

For example� consider the GLU type gluQuadricObj� The fortran �� type

type f�	gluquadricobj

character�f�	glcptr
 �� addr

� there may be other components which may be private

end type f�	gluquadricobj

is de�ned in module f��glu� The function f�	glunewquadric would have the e�ect of

function f�	glunewquadric�


type�f�	gluquadricobj
 pointer �� f�	glunewquadric

allocate�f�	glunewquadric


f�	glunewquadric�addr � gluNewQuadric�


if �f�	glunewquadric�addr �� f�	glnullptr
 then

deallocate�f�	glunewquadric


nullify�f�	glunewquadric


endif

end function f�	glunewquadric

����� Void

Many OpenGL procedures use the type GLvoid for an argument that may be one of sev�
eral di�erent types� Generic interfaces provide this capability in fortran ��� Procedures with
a GLvoid argument have a generic interface with the usual name for the procedure as de�
�ned in section ���� to a set of speci�c routines� one for each type speci�ed by the OpenGL
de�nition� Additionally� it interfaces to a speci�c routine that accepts an argument of type
character�f�	glcptr
 to allow the GLvoid argument to be a C pointer returned by a prior
call to an OpenGL procedure�

Processors that do not support the short integers require additional work here� but it remains
transparent to the user� Consider the situation where the fortran processor does not support
the kind of integer that corresponds to GLshort� Then f�	glshort is the same as f�	glint� so
there is no speci�c routine for the type integer�f�	glshort
� If the user passes an argument



A Fortran �� Interface for OpenGL 


of type integer�f�	glshort
� then the speci�c routine that is called is the one with dummy
argument of type integer�f�	glint
� But� in all such core OpenGL and GLU routines there
is another argument that tells what type the GLvoid argument is to be interpreted as� If
that argument indicates that the user is passing a GL SHORT� but the speci�c routine for
integer�f�	glint
 is called because f�	glshort is the same as f�	glint� then the interface
will handle the mismatched types as described in section ����	� The situation is similar for
f�	glbyte� except that f�	glbyte could be either f�	glshort or f�	glint� depending on the
fortran processor�

��� Procedures

All OpenGL procedures are available in the fortran �� interface� The argument lists and return
values are identical� subject to the equivalences described in section ���� C functions of type void
are fortran subroutines� C functions of other types are fortran functions of the corresponding
type�

The procedure names in the fortran �� interface are derived from the C names as follows�

� The name is prepended with f�	� This insures there are no name space con�icts with
either the C library routines or the fortran 

 interface�

� Case is insigni�cant� This conforms to the fortran �� requirement that lower case letters
are equivalent to the corresponding upper case letters except in a character context�

� Any names that are longer than �	 characters after prepending with f�	 are truncated to
�	 characters� This conforms to the fortran �� requirement that the maximum length of
a name is �	 characters� There are no names that require truncating in the core OpenGL
and GLU libraries�

��� De�ned constants

All OpenGL de�ned constants are provided in module f��gl as integers with the appropriate
kind� the parameter attribute� and the same value as in the C interface�

The names for the fortran �� symbolic constants parameters� are derived from the OpenGL
de�ned constants as follows�

� Case is insigni�cant�

� Any names that are longer than �	 characters are truncated to �	 characters� There are
no names that require truncating in the core OpenGL and GLU libraries�

� Any names that are not unique after discarding case are replaced with a suitable descrip�
tive name� Speci�cally� the tk toolkit contains lower case key constants� TK a through
TK z� and upper case key constants� TK A through TK Z� In module f��tk the lower case
key constants are named TK LC A through TK LC Z� with LC standing for lower case�
There are no case dependent de�ned constants in the core OpenGL and GLU libraries�



� W� F� Mitchell

Note that the names are not prepended with f�	 because the symbolic constants are module
variables and there is no possibility of name space clashes�

��� Dummy procedures

Some routines in related libraries and toolkits take a procedure as an argument� These are
declared with the external attribute in the explicit interface provided with the fortran �� in�
terface� While it is considered by many to be more desirable to provide a complete interface
block for dummy procedures� this is not always possible because in some cases there is more
than one valid interface for the actual argument�

When the argument is used as a callback function� the procedure may allow NULL as the value of
the argument to indicate that the corresponding callback is to be disabled� For example� GLUT
uses this technique� When this is the case� the fortran �� interface for this library provides an
external procedure by the name library�pre�xnullfunc which can be passed in place of NULL�
For example� the fortran �� interface to GLUT provides the function f�	glutnullfunc� Each
library requires its own nullfunc procedure in order to preserve the independence of the modules
corresponding to each library�

��� Array arguments

The explicit interfaces of the fortran �� interface declare array arguments to be assumed�size
arrays� i�e�� declared with dimension��
� They are not assumed�shape arrays� declared with
dimension��
� because most fortran �� processors pass assumed�shape arrays as dope vectors
containing the dimensions of the array in addition to the starting address� The wrappers would
thus be more complicated� to extract the address from the dope vector� and less portable since
there is no standard for the dope vectors� There is no loss of functionality by using assumed�size
arrays�

� Implementation

In the fortran 

 binding� the user calls C functions from the fortran program� leading to
portability issues and the requirement for the binding to address the interfacing of fortran
and C procedures� The fortran �� interface to OpenGL does not address this issue� The
user interface is entirely on the fortran side of the fortran�C interface� therefore the fortran�C
interface is contained entirely inside the fortran �� interface to OpenGL� It is anticipated that
most vendor implementations will be for a speci�c system with speci�c fortran and C compilers�
The containment of the fortran�C interface leaves these implementors free to use whatever
system dependent techniques are required for the fortran�C interface without a�ecting the
interface to the user application code� In the case of an implementor attempting to provide
an implementation that is portable over several fortran�C�OS combinations� it is left to the
implementor to determine how to achieve portability� however the reference implementation
may be a useful guideline�



A Fortran �� Interface for OpenGL �

User

Interfaces

Module
Procedures

Fortran 77
wrappers

wrappers

OpenGL

Generic

New

library

code

Fortran 90Fortran 90 C C

Figure 	� Example implementation using wrappers�

There is no requirement on the actual architectural design of the fortran �� interface to OpenGL�
The only requirement is that the aforementioned modules be provided� and that they provide
access to the kind type parameters� procedures� symbolic constants� and derived types described
above� However it is anticipated that most implementations will simply provide �wrapper�
functions on top of an existing OpenGL implementation� Here the wrapper functions would
most likely fall on both the fortran and C sides of the interface� An example of how this might
be implemented is illustrated in �gure 	�

In this approach� the fortran �� names for all the OpenGL procedures are de�ned in generic
interfaces in module f��gl� Some of them are used simply to rename the existing fortran 


interface� Other generic interfaces may include interfaces to module procedures which call new
wrapper functions� In particular� this would be used when type conversions are used because
the fortran processor does not support the requested type or kind� when one of the arguments
is of type GLvoid with several valid types for that argument� or when one of the arguments is
a derived type�

In this example� module f��gl would also contain the de�nition of all the symbolic constants as
integers with the parameter attribute and would also use module f��gl kinds� which makes the
kind parameters available to any program unit that uses f��gl�

� Potential problems

��� Assumptions on compilers

The fortran �� interface to OpenGL is considerably more robust and portable than the fortran


 interface� however until there is a standard for inter�language calling sequences� it must be
assumed that the compilers provide a su�cient inter�language calling convention� Most fortran
�� and C compilers satisfy the following conventions� which are su�cient�

� the kinds of numeric types supported by the fortran processor contain at least the types
that the C compiler uses for GLint� GL�oat and GLdouble�



	� W� F� Mitchell

� the numeric types that the fortran and C compilers have in common have the same internal
machine representations�

� the fortran and C compilers use the same default character set�

� the fortran processor passes numeric arguments �by reference�� i�e�� such that the C
procedure receives a pointer�

� the fortran processor passes procedure arguments by passing the starting address of the
procedure� i�e�� such that the C procedure receives a pointer to a function�

� the fortran and C compilers use the same mechanism for transferring arguments between
routines� for example pushing them on a runtime stack in the order they appear in the
argument list�

Some other assumptions on the compilers can be avoided by using type conversions on both
sides of the interface when problems exist�

� assumptions on character string arguments can be avoided by converting the character
string to an array of integer�f�	glint
 or f�	glbyte if the kind is equivalent to
GLbyte� on the fortran side� and back to a character string on the C side�

� assumptions on the existence of a 	�byte logical in the fortran processor can be avoided by
converting the logical to an integer�f�	glint
 on the fortran side� and to a GLboolean
on the C side�

��� Expression actual arguments

Some OpenGL and GLU procedures internally set a pointer to one of the arguments so that the
argument can be used by a di�erent procedure called later� In this case it is important that the
actual argument not be an expression� which will generate a temporary variable that will no
longer exist after returning from the called procedure� Note that array sections and constants
are expressions in this context� The user should be warned of this situation� The OpenGL core
and GLU procedures e�ected by this are glBitmap� glFeedbackBu�er� glSelectBu�er� gluNurb�
sCurve� gluNurbsSurface� gluPwlCurve� and gluTessVertex�

��� Unsigned int

Fortran does not provide unsigned integer types� signed integers of the same size are used for
these types� The fortran intrinsic function ibset can be used for setting values in which the
leading bit is a 	� For example� the hexadecimal pattern �						A can be set in either an
assignment statement or an initialization expression using ibset as follows�
integer�f�	gluint
 �� u � ibset��	��
 � use bit pattern for �	 and set ��st bit

Unsigned integers can also be set in a data statement using BOZ notation�
integer�f�	gluint
 u

data � u � z��						A�



A Fortran �� Interface for OpenGL 		

��� Array order

The user should remember that fortran stores multidimensional arrays in column major or�
der� whereas C stores them in row major order� Some multidimensional fortran arrays may
require transposition� The exception is the transformation matrices passed to glLoadMatrix
and glMultMatrix which� as a �x� array� are assumed to be in column major order�

� System installation

The location of the software for the fortran �� interface to OpenGL is system dependent� The
OpenGL documentation provides this information for the user�

��� Libraries

The fortran �� interface procedures may be placed in either the same libraries as the OpenGL
procedures libGL� libGLU� etc�� or in separate libraries libf��GL� libf��GLU� etc���

��� Module �les

Many fortran �� compilers generate a �le containing module information� The name of the �le is
usually the module name followed by a compiler dependent su�x� for example f��gl�mod� If the
compiler generates module �les� these are located in the same directory as the OpenGL include
�les e�g�� gl�h�� Some fortran �� compilers provide a command line option for specifying the
location of module �les e�g�� �I�� with other compilers the module �les will have to be copied
or linked� to the user�s source code directory�

� Reference implementation

A reference implementation of the fortran �� interface for OpenGL is available in the software
package called f��gl available from http���math�nist�gov�f��gl� Version 	�� of the reference
implementation covers the OpenGL 	�� core� GLU� tk� GLUT� and some extensions� A future
release will extend this to OpenGL 	�	�

References

�	� Allen Akin� OpenGL FORTRAN Binding Proposal�
http���www�sgi�com�Technology�openGL�fortran�html

��� ANSI� American National Standard for Programming Language � Fortran � Extended� ANSI�
New York� 	����



	� W� F� Mitchell

��� Jackie Neider� Tom Davis and Mason Woo� OpenGL Programming Guide� Addison�Wesley�
	����


