
 J3/97−216r2
 page 1 of 16
 To: X3J3
 From: JOR (Bleikamp)
 Subject: Syntax and Edits for Async I/O
 Date: Aug 25, 1997

 | Issues resolved in this revision:

 | − changed READ/WRITE statements ASYNCHRONOUS specifer
 | to ASYNCHRONOUS="YES|NO" form, to avoid ambiguity.
 |
 | − scrapped old text about what variables could not be
 | defined, referenced, passed as actual arg, etc., due
 | to problems describing which variables the restrictions
 | applied to. Replaced this with a new term, the
 | "pending I/O storage sequence", a NON−contiguous collection
 | of storage units, the actual memory being referenced by the
 | I/O list items.
 |
 | Also added a new term, "pending I/O storage sequence
 | AFFECTOR". An affector variable is a
 | variable in a scoping unit where at least one
 | executable statement
 | was executed while the I/O operation is pending, and any
 | "use" of a variable in that scoping unit (if it had been
 | executed, due to optimizater hoisting the "use" of the
 | variable), would have referenced or defined any storage
 | unit in the pending I/O storage sequence.

 Remaining issues:
 | − Finish the edits for affector variables, and prohibiting
 | copyin/copyout procedure calls of affector variables while
 | the pending I/O is active.

 "Notes to the reader" are not notes to be included in the
 standard.

 Text to be included in the standard is either "quoted" or
 indented.

 −
 Note: Non−normative NOTES to be included in the standard are
 delimited by dashed lines.
 −

 J3/97−216r2
 page 2 of 16
 Edits to 96−007R1:

 In rule R214 (specification−stmt), add:
 or asynchronous−stmt

 In rule R426 (component−attr−spec), add:
 or ASYNCHRONOUS

 In rule R503 (attr−spec), add:
 or ASYNCHRONOUS

 and add a new section (page 57):
 5.1.2.12 ASYNCHRONOUS attribute

 | All variables which are pending I/O storage sequence affectors
 | (9.4.1.10) shall have the ASYNCHRONOUS attribute in a scoping
 | unit in which they appear, if:
 | 1) they appear in an executable statement or in a
 | specification expression, and
 | 2) any executable statement in that scoping unit is executed
 | while an asynchronous data transfer operation is pending.

 −
 Note: the ASYNCHRONOUS attribute helps a processor determine
 which variables are associated with a pending I/O storage
 sequence (the actual memory locations to which asynchronous I/O
 is being performed). This information is used to disable certain
 code motion optimizations.
 −

 − − − − − − this following block is no longer part of the edits
 A variable that :
 1) appears in an asynchronous data transfer statement
 input/output list, or

 2) is in a namelist group that is used in an asynchronous
 data transfer statement, and is read or written
 by that data transfer statement, or

 3) is specified in a SIZE= specifier in an asynchronous
 data transfer statement

 and all variables associated, via argument or sequence
 association, with such a variable shall have the ASYNCHRONOUS
 attribute, or shall be a subobject of an object with the
 ASYNCHRONOUS attribute, in a given scoping unit, if :

 1) the variable is referenced, defined, or used as
 an actual argument in a scoping unit other than the
 scoping unit containing the asynchronous
 data transfer statement, and

 2) any executable statement in such a scoping unit
 might be executed while the asynchronous
 data transfer operation is pending.

 J3/97−216r2
 page 3 of 16
 − − − − − − this preceeding block is no longer part of the edits

 If a variable with the ASYNCHRONOUS attribute (implicitly or
 explicitly) is passed as an actual argument,
 the corresponding dummy argument shall have the ASYNCHRONOUS
 attribute.

 −
 Note: A data transfer operation is pending when a
 READ or WRITE statement with an ASYNCHRONOUS=
 specifier with a value of YES has been executed, but the
 corresponding wait operation has not yet been executed.
 −

 The ASYNCHRONOUS attribute may be specified for any
 variable, whether or not that variable appears in an
 asynchronous data transfer statement.

 −
 Note: Any variable is permitted to have the asynchronous
 attribute so users can remove ASYNCHRONOUS= specifiers from
 data transfer statements, or change the value of ASYNCHRONOUS=
 specifers to NO, without having to remove the ASYNCHRONOUS
 attribute from variables used in the asynchronous I/O lists.
 −

 −
 Note: The ASYNCHRONOUS attribute is similar to the VOLATILE
 attribute provided by some processors, and is intended to
 facilitate traditional code motion optimizations in the
 presence of asynchronous input/output.
 −

 | Add a new section, 5.2.10 (and renumber 5.2.10 and later
 sections):

 | 5.2.10 ASYNCHRONOUS statement

 R5xx asynchronous−stmt is ASYNCHRONOUS [::]
 <object−name−list>

 The ASYNCHRONOUS statement specifes the ASYNCHRONOUS
 attribute for a list of objects.

 In rule R905 (OPEN statement connect−spec), add, after PAD=
 (on its own line)(pg. 140):
 or ASYNCHRONOUS = <scalar−default−char−expr>

 J3/97−216r2
 page 4 of 16

 Add section 9.3.4.11 (page 142/143):

 9.3.4.11 ASYNCHRONOUS= specifier in the OPEN statement

 The <scalar−default−char−expr> shall evaluate to
 | YES or NO. If an ASYNCHRONOUS= specifier with a value of YES
 | is specified, then READ and WRITE statements for the opened unit
 | may include an ASYNCHRONOUS= specifier with a value of YES in
 | the control information list. An ASYNCHRONOUS= specifier with
 | a value of NO is always permitted in READ and WRITE statements.

 | The presence of an ASYNCHRONOUS= specifier with a value of
 | YES in a READ or WRITE statement permits, but does not
 require, a processor to perform the data transfer
 asynchronously. The WAIT, CLOSE, and file positioning
 | statements may be used to wait for pending asynchronous data
 transfer operations to complete, and the INQUIRE statement may
 | be used to inquire whether or not pending asynchronous data
 transfer operations have completed.

 Note to the reader: the above rules imply only external unit
 input / output (not including the "*" unit) may specify an
 ASYNCHRONOUS= specifier for READs and WRITEs, since internal
 files and the "*" external unit are not OPENed.

 In section 9.3.5 (CLOSE statement), page 143, add the
 following paragraph and
 notes after line 5:

 Execution of a CLOSE statement causes the processor to
 | wait for all pending asynchronous data transfer operations for
 the specified unit to complete.

 If a CLOSE statement is executed for a unit with
 | pending asynchronous data transfer operations, that CLOSE
 statement is considered to be the corresponding wait operation
 for the READ or WRITE statements that initiated those
 pending asynchronous data transfer operations, and the CLOSE
 statement is considered to be a data transfer statement
 for purposes of end of file, end of record, and error
 processing.

 In rule 912 (io−control−spec) (page 144), add:

 | or ASYNCHRONOUS=<scalar−default−char−initialization−expr>
 or ID = <scalar−default−int−variable>

 J3/97−216r2
 page 5 of 16
 Add the following constraints after the constraint on line
 19, page 145:

 Constraint: An ASYNCHRONOUS= specifier shall be present
 if an ID= specifier is present.

 Constraint: An ASYNCHRONOUS= specifier shall not be
 specified with a value of YES if the <io−unit> is an
 <internal−file−unit> or "*".

 Constraint: The <scalar−default−char−initialization−expr> in
 an ASYNCHRONOUS= specifier shall have the value YES or NO.

 Note to the reader: an ID=
 specifier, typically used in a corresponding WAIT statement,
 is NOT required in an asynchronous READ or WRITE statement.
 The user would have to CLOSE the unit (or execute another
 wait operation) before referencing any storage locations in
 an input list or namelist, and to NOT define any storage
 locations referenced by an output list or namelist in an
 output statement. This allows a knowledgeable user to
 READ or WRITE massive amounts of data to a file, without
 ever waiting for completion, as long as they close the file
 or perform some other wait operation before modifying or
 referencing any storage locations referenced by an
 input / output list or namelist.

 In section 9.4.1.9 (page 147), first sentence, insert

 synchronous

 before "nonadvancing", and add the following as the last
 sentence of that paragraph:

 | If an ASYNCHRONOUS= specifier with a value of YES is present
 | in a non−advancing input statement, the storage units specified
 | in the SIZE= specifier become defined with the count of
 | characters transfered when the wait operation corresponding
 | to the non−advancing input statement is executed.

 −
 Note: A CLOSE, INQUIRE or a file positioning statement,
 as well as a WAIT statement, can be a wait operation
 (9.3.5).
 −

 J3/97−216r2
 page 6 of 16
 Insert a new section:

 9.4.1.10 Asynchronous specifier

 | An ASYNCHRONOUS= specifier with a value of YES indicates
 that this data transfer operation can be performed
 asynchronously. Records read or written by asynchronous
 data transfer statements are read, written, and
 processed in the same order as they would have been if the
 data transfer statement did not contain the ASYNCHRONOUS
 specifier.

 | An ASYNCHRONOUS= specifier with a value of YES shall not
 be present in a READ or WRITE statement unless the OPEN
 statement for the unit referenced in the READ or WRITE
 | statement contained an ASYNCHRONOUS= specifier with a
 | value of YES.

 | When a data transfer statement with an ASYNCHRONOUS=
 | specifier with a value of YES is executed, the set of
 | storage units specified by the item list or namelist in the
 | data transfer statememt, as well as the storage units
 | specified by the SIZE= specifier, is called the
 | "pending I/O storage sequence" for this asynchronous data
 | transfer statement.

 | −
 | Note: a "pending I/O storage sequence" is not necessarily
 | a contiguous set of storage units.
 | −

 | In a scoping unit containing a data transfer statement with
 | an ASYNCHRONOUS= specifier with a value of YES, all variables:
 | 1) contained in the input/output list, or
 | 2) contained in a namelist specified in the data transfer
 | statement, or
 | 3) in a SIZE= specifier,
 | implicitly receive the ASYNCHRONOUS attribute.

 | A "pending I/O storage sequence affector variable" is a
 | variable appearing in a scoping unit where at least one
 | executable statement is executed while an asynchronous I/O
 | operation is pending, and:
 | 1) any reference or definition of the variable in that
 | instance of that scoping unit references or defines
 | any storage unit in the pending I/O storage sequence for
 | a pending asynchronous data transfer operation, or
 | 2) the variable appears as an actual argument of a procedure
 | which:
 | a) is referenced while an asynchronous data transfer
 | operation is pending, or
 | b) initiates an asynchronous I/O operation that is still
 | pending when that procedure returns
 | and the variable is associated or partially associated
 | with any storage unit in the pending I/O storage sequence
 | for that asynchronous data transfer operation.

 J3/97−216r2
 page 7 of 16

 | Some pending I/O storage sequence affector variables are
 | required to have the ASYNCHRONOUS attribute, as described in
 | section 5.1.2.12.

 **** need some text about the pending I/O storage sequence
 **** ceasing to exist, sort of as described in 14.7.6.

 **** need to describe which procedure calls are prohibited
 **** when a pending data transfer exists, to avoid problems
 **** with copyin/copyout.

 **** need to force a dummy arg which is assumed−shape to be
 **** associated with the actual arg when the async attribute
 **** is present and the actual arg is not a array section with
 **** a vector valued subscript.

 **** All the edits about READ I/O lists becoming undefined
 **** until the wait operation need to be rewritten to
 **** take account of the storage units instead.

 **** All the edits about WRITE I/O list variables not
 **** being redefinable until the wait operation need to be
 **** rewritten to take account of the storage units instead.

 − − − − − − The following text is no longer part of the edits
 When a data transfer statement with an ASYNCHRONOUS=
 specifier with a value of YES is executed, the program
 shall not execute
 any statements that would cause any variable in the
 input / output list, namelist, or the variable specified
 in a SIZE= specifier to become undefined as described in
 14.7.6, until the corresponding wait operation is performed.
 When a namelist group name is specified in an input data
 transfer statement with an ASYNCHRONOUS= specifier with a
 value of YES, any variables in the namelist group that are
 not defined by an input data transfer statement are not
 subject to the restrictions described in this paragraph.
 − − − − − − The preceeding text is no longer part of the edits

 −
 Note: This restriction prohibits, among other things,
 a RETURN statement, which causes some local stack variables
 to become undefined, from being executed when asynchronous
 I/O is pending for those local variables.
 −

 J3/97−216r2
 page 8 of 16
 − − − − − − this following block is no longer part of the edits
 When a data transfer statement with an ASYNCHRONOUS=
 | specifier with a value of YES is executed, the program shall
 not execute any statements that would cause the pointer
 association status of any variable in the input / output
 list, namelist, or a variable specified in the SIZE=
 specifier to change, or would cause any such variable to
 become associated with a different target, as described in
 14.6.2, until the corresponding wait operation is performed.
 When a namelist group name is specified in a data transfer
 | statement, variables in the namelist group not defined
 by the input data transfer statement are not subject to the
 restrictions described in this paragraph.
 − − − − − − this preceeding block is no longer part of the edits

 −
 | Note: The restrictions in this section ensure that certain
 | variables (the memory locations associated with those
 variables actually) referenced in asynchronous data transfer
 statements must still exist when the corresponding wait
 operation is performed, including the implicit CLOSE for open
 units when a program terminates.
 −

 − − − − − − this following block is no longer part of the edits
 When an input data transfer statement with an
 | ASYNCHRONOUS= specifier with a value of YES is executed,
 the input list or namelist items, and the variable specified
 in the SIZE= specifier, if any, become undefined until the
 corresponding wait operation is executed (9.3.5, 9.5).
 When a namelist group name is specified in an input data
 transfer statement, variables in the namelist group not
 defined by the data transfer statement do not become undefined.

 When a data transfer statement with an
 | ASYNCHRONOUS= specifier with a value of YES is executed, the
 item list or namelist items shall not be redefined until the
 corresponding wait operation is executed (9.3.5, 9.5).
 − − − − − − this preceeding block is no longer part of the edits

 − − − − − − this following block is no longer part of the edits
 After a READ or WRITE statement with an ASYNCHRONOUS=
 | specifier with a value of YES is executed, but before the
 corresponding wait operation is executed, the program shall
 | not invoke any procedure where any variable or subobject
 thereof:

 1) in the input list or namelist, or
 2) specified in a SIZE= specifier,

 is passed as an actual argument, unless :

 1) the actual argument is not an array element where the
 corresponding dummy argument is an array, and
 the actual argument passed does not include any storage
 location defined or referenced by the data transfer
 statement, or

 J3/97−216r2
 page 9 of 16

 2) both the actual argument and the corresponding dummy
 argument have the ASYNCHRONOUS attribute, the actual
 argument is not an array section with a vector valued
 subscript, and

 (a) both the actual argument and corresponding
 dummy argument have the POINTER attribute, or

 (b) the corresponding dummy argument is an assumed shape
 array, or

 (c) the actual argument is a whole array that is
 explicit shape, assumed−size, or allocatable, and
 the corresponding dummy argument is explicit shape
 or assumed size.

 −
 Note: This restriction prevents interactions between
 actual arguments passed with so−called
 copyin/copyout semantics and asynchronous I/O.
 −
 − − − − − − this preceeding block is no longer part of the edits

 Insert a new section 9.4.1.11:

 9.4.1.11 ID= specifier

 The ID= specifier identifies a variable that is
 assigned a processor dependent value during the
 execution of an asynchronous data transfer statement.
 This value can be used in a WAIT statement to force
 the processor to wait for a particular data transfer
 operation to complete.

 In section 9.4.4, list item (5), change "namelist" to

 namelist, except that if an ASYNCHRONOUS= specifier
 | with a value of YES was also present, the entities
 specified in the input/output list or namelist become
 undefined

 In section 9.4.4, list item (8), change "defined" to

 defined, except that a variable specified in a SIZE=
 specifier becomes undefined if an ASYNCHRONOUS=
 specifier with a value of YES was also specified

 J3/97−216r2
 page 10 of 16

 − − − − − − this following block is no longer part of the edits
 In section 9.4.4.4, page 152, before the paragraph that
 starts "On output ...", insert the following paragraphs:

 | If an ASYNCHRONOUS= specifier with a value of YES is
 specified on an input statement, the list items or namelist
 variables, and the variable specified in the SIZE= specifier,
 if any, become undefined until the corresponding wait
 operation is executed (9.3.5, 9.5). When a namelist group
 name is specified in an input data transfer statement,
 variables in the namelist group not defined by the input
 statement do not become undefined.
 − − − − − − this preceeding block is no longer part of the edits

 − − − − − − this following block is no longer part of the edits
 In section 9.4.4.4, page 152, after the paragraph that
 starts "On output ...", insert the following paragraphs:

 | If an ASYNCHRONOUS= specifier with a value of YES is specified
 on an output statement, the list items or namelist variables
 shall not be redefined until the corresponding wait operation
 is executed (9.3.5, 9.5).
 − − − − − − this preceeding block is no longer part of the edits

 | If an ASYNCHRONOUS= specifier with a value of YES is
 specified in a data transfer statement, data transfers may
 occur during execution of the statement, during execution
 of the corresponding wait operation, or anywhere in−between.
 The data transfer operation is considered to be a pending
 data transfer operation until a corresponding wait operation
 is performed.

 When a data transfer operation is performed asynchronously,
 any errors that would have caused the ERR= branch on a
 synchronous READ or WRITE to be taken, and the IOSTAT
 variable to be defined with a non−zero value, may instead
 occur during execution of the corresponding wait operation
 (a WAIT, CLOSE, INQUIRE or file positioning statement) and
 take the ERR= branch of that wait operation instead. If an
 ID= specifier is not present in the initiating READ or WRITE
 statement, the errors may occur during the execution of any
 subsequent data transfer statement for that same unit,
 and not just during the corresponding wait operation.

 J3/97−216r2
 page 11 of 16

 Insert a new section 9.5, and renumber every section
 thereafter appropriately:

 9.5 WAIT statement

 Execution of a WAIT statement causes the processor to
 wait for one of more previously initiated (pending)
 asynchronous data transfers to complete.

 R919 <wait−statement> is WAIT (<wait−spec−list>)

 R920 <wait−spec> is [UNIT =]
 <external−file−unit>
 or IOSTAT =
 <scalar−default−int−variable>
 or ERR = <label>
 or END = <label>
 or EOR = <label>
 or ID = <scalar−default−int−variable>

 Constraint: A <wait−spec−list> shall contain exactly one
 <external−file−unit> specifier, and may contain at most
 one of each of the other specifiers.

 Constraint: If the optional characters UNIT= are
 omitted from the unit specifier, the unit specifier
 shall be the first item in the <wait−spec−list>.

 (note to Richard Maine: insert other appropriate
 constraints, similar to the position−spec constraints,
 and one for the END=label branch target)

 The IOSTAT=, ERR=, and END= specifiers are described in
 x, x, and x respectively.

 If an ID= specifier is not present, the processor waits
 for all pending data transfers on the specified unit to
 complete, if any. If an ID= specifier is present, the
 processor waits for the corresponding READ or WRITE
 operation to complete. The corresponding READ or WRITE
 operation is that READ or WRITE that returned the same
 value for the ID= specifier for the specified unit.
 The value specified for the ID= specifier shall be a
 value returned by a READ or WRITE statement for the
 specified unit, for which a corresponding wait
 operation has not been executed.

 The data transfer operation specified in the
 corresponding READ or WRITE statement may happen when
 the WAIT statement is executed, when the corresponding
 READ or WRITE statement was previously executed, or
 anytime in−between. The WAIT statement is considered
 to be a data transfer statement for purposes of end of
 file, end of record, and error processing.

 J3/97−216r2
 page 12 of 16

 −
 Note: The CLOSE , INQUIRE, and file positioning
 statements, as well as the WAIT statement, can be a
 "wait" operation.
 −

 −
 Note: If an asynchronous READ attempts to read beyond
 the end of a file, then the end of file condition may
 occur either during execution of the READ statement or
 during execution of the corresponding wait operation.
 If the end of file condition occurs during the wait
 operation, and there is not an END= or IOSTAT= specifier
 in the statement that is the corresponding wait
 operation, then program execution terminates. Error
 conditions are handled in a similar manner.
 −

 and renumber all subsequent rules.

 In the old section 9.5 (File Positioning statements), add
 the following after the last sentence in that section:

 Execution of a file positioning statement causes the
 processor to wait for all pending data transfer
 operations for the specified unit to complete.

 If a file positioning statement is executed for a unit
 with pending data transfer operations, that statement
 is considered to be the corresponding wait operation
 for the READ or WRITE statements that initiated the
 pending data transfers, and is also considered to be a
 data transfer statement for purposes of end of file,
 error, and end of record processing.

 In section 9.6.1, add the following to rule 924:
 or ID = <scalar−default−int−variable>
 or PENDING = <scalar−default−logical−variable>
 or ASYNCHRONOUS = <scalar−default−char−variable>

 and add these constraints around line 40 on page 156:
 Constraint: The ID= and PENDING= specifiers shall not
 appear in an INQUIRE statement if the FILE = specifier
 is present.

 Constraint: If an ID= specifier is present, a PENDING=
 specifier shall also be present.

 J3/97−216r2
 page 13 of 16

 On page 159, add section 9.6.1.23
 9.6.1.23 ID= and PENDING= specifiers in the INQUIRE
 statement
 If an ID= specifier is not present in an INQUIRE
 statement, the variable specified in the PENDING=
 specifier is assigned the value true if there are any
 pending asynchronous data transfers for the specified
 unit that have not completed. If an ID= specifier is
 present, the variable specified in the PENDING=
 specifier is assigned the value true if the data
 transfer identified by the ID= specifier for the
 specified unit has not yet completed. In all other
 cases, the variable specified in the PENDING= specifier
 is set to false.

 When the variable specified in the PENDING= specifier is
 set to false, then any pending data transfer operations
 for this unit are considered to have completed, and
 this INQUIRE is the corresponding wait operation for
 the corresponding READ or WRITE statements. When an
 ID= specifier is present, the corresponding operation
 is the READ or WRITE statement identified by the unit
 and ID= specifier value. When an ID= specifier was not
 present, then this INQUIRE statement is the
 corresponding wait operation for all pending data
 transfer operations for the specified unit. When an INQUIRE
 statement is considered to be a wait operation, it is also
 considered to be a data transfer statement for purposes
 of end of file, end of record, and error processing.

 On page 159, add section 9.6.1.24

 9.6.1.24 ASYNCHRONOUS= specifier in the INQUIRE statement

 The <scalar−default−char−variable> in the ASYNCHRONOUS=
 specifier is assigned the value "YES" if the file is connected
 | and was opened with an ASYNCHRONOUS= specifier with a value
 of "YES"; otherwise, it is assigned the value "NO".

 In section 9.6.1.14 (page 158), add the following sentence as the
 last sentence of the paragraph.

 If there are pending data transfer operations for the
 specified unit, the value assigned to the variable specified
 in a NEXTREC= specifier is computed as if all the pending
 data transfers had already completed.

 Note to the reader: the POSITION= specifier does not appear
 to need any edits.

 J3/97−216r2
 page 14 of 16

 Note to the reader. In section 14, we discuss events
 causing definition and undefinition of variables. In item
 (3) of 14.7.5, we discuss when input causes an item to be
 defined, in terms of when the data is transferred, so no
 edit is needed in (3). Note that the second part of (3)
 applies to internal units, which cannot be read from or written
 to asynchronously.

 In section 12.3.1.1, add this item under the list (2)
 (f) A dummy argument that has the ASYNCHRONOUS attribute, or

 and delete the trailing " or" from item (e) in that list.

 In section 14.7.5, item (5), change "an input/output
 statement" to "an input/output statement without an
 | ASYNCHRONOUS= specifier, or an input/output statement
 | with an ASYNCHRONOUS= specifier with a value of NO".

 In section 14.7.5, item (8), change "statement" to
 | "statement without an ASYNCHRONOUS specifier or with an
 | ASYNCHRONOUS= specifier with a value of NO".

 − − − − − − this following block is no longer part of the edits
 In section 14.7.5, insert this new item (9), and renumber
 the remaining items:
 (9) Execution of a READ statement containing both an
 | ASYNCHRONOUS= specifier with a value of YES and a SIZE=
 specifier may cause the variable specified in the SIZE=
 specifier to become defined, or the corresponding wait
 operation may cause that variable to become defined.
 Either the READ statement or the corresponding wait
 operation will cause that variable to become defined.

 In section 14.7.6, item (4), change "input/output statement"
 to "input/output statement or its corresponding wait
 operation".

 In section 14.7.6, item (5), change "input/output statement"
 to "input/output statement or its corresponding wait
 operation".

 In section 14.7.6, item (7), change "input statement" to
 "input statement or its corresponding wait operation".
 − − − − − − this preceeding block is no longer part of the edits

 In section 14.7.6, add a new item (16) (the editor may
 relocate to another part of the list if desired):

 | Execution of a READ statement with an ASYNCHRONOUS= specifier
 | with a value of YES causes all variables in the item list or
 namelist, and the variable specified in the SIZE= specifier,
 if any, to become undefined. Variables in a namelist group
 | specified in such a READ statement that are not defined
 by the data transfer statement do not become undefined.

 J3/97−216r2
 page 15 of 16
 −−−
 Rationale for Asynchronous I/O: may be inserted in the
 appropriate annex if desired.

 Rather than limit support for asynchronous I/O to what has
 been traditionally provided by facilities such as BUFFERIN−
 BUFFEROUT, this standard builds upon existing Fortran syntax.
 This permits alternative approaches for implementing
 asynchronous I/O, and simplifys the task of adapting existing
 standard conforming programs to utilize asynchronous I/O.

 Not all processors will actually perform I/O asynchronously,
 nor will every processor that does, be able to handle data
 transfer statements with complicated I/O item lists in an
 asynchronous manner. Such processors can still be standard
 conforming. Hopefully, the documentation for each Fortran
 processor will describe when, if ever, I/O will
 be performed asynchronously.

 −−
 Conceptual Model

 This proposal allows for at least two different conceptual
 models for asynchronous I/O.

 Model 1: the processor will perform asynchronous I/O when the
 item list is simple (perhaps one contiguous named array) and the
 I/O is unformatted (possibly MAGTAPE). The implementation cost
 is reduced, and this is the scenario most likely to be
 beneficial on traditional "big−iron" machines.

 Model 2: The processor is free to do any of the following:
 on output, create a buffer inside the I/O library, completely
 formatted, and then start an async write of the buffer, and
 immediately return to the next statement in the program. The
 processor is free to wait for previously issued WRITEs, or not.
 OR
 pass off the I/O list addresses to another processor/process,
 that will process the list items independently of the processor
 which executes the user’s code.
 The addresses of the list items must be computed before the
 asynchronous READ/WRITE statement completes.
 There is still an ordering requirement on list item processing,
 to handle things like READ (...) N,(a(i),i=1,N).

 One source of confusion is the role of the ID= values and
 wait operations. The standard allows a user to issue a
 large number of asynchronous I/O requests, without waiting for any
 of them to complete, and then wait for any or all of them.
 It may be impossible, and undesirable to keep track of each of
 these I/O requests individually.

 J3/97−216r2
 page 16 of 16

 The proposed support does not require all requests to be
 tracked by the runtime library. When the user does NOT specify
 an ID= specifier on a READ or WRITE, the runtime is free to
 forget about this particular request once it has successfully
 completed. If it gets an ERR or END condition, the processor
 is free to report this during any I/O operation to that unit.

 When an ID= specifier is present, the processors runtime I/O
 library is required to keep track of any END or ERR conditions
 for that specific I/O request.
 However, if the I/O request succeeds without any exceptional
 conditions occuring, then the runtime can forget that
 ID= value if it wishes. Typically, I expect a runtime to only
 keep track of the last request made, or perhaps a very few.
 Then, when a user WAITs for a particular request, either the
 library knows about it (and does the right thing w.r.t. error
 handling, etc.), or will assume it is one of those requests
 that successfully completed and was forgotten about (and will
 just return without signaling any end/err conditions). It is
 incumbent on the user to pass valid ID= values. There
 is no requirement on the processor to detect invalid ID= values.

 There is of course, a processor dependent limit on how many
 outstanding I/O requests which generate an END or ERROR condition
 can be handled before the processor runs out of memory to keep
 track of such stuff.

 The restrictions on the SIZE= variables are designed to allow
 the processor to update such variables at any time (after the
 request has been processed, but before the WAIT operation),
 and then forget about them. That’s why there is no SIZE=
 specifier allowed in the various WAIT operations. Only
 exceptional conditions (errors or EOFs) are expected to be
 tracked by individual request by the runtime, and then
 only if an ID= specifier was present.

 The END= and EOR= specifiers have not been added to all
 statements which can be WAIT operations. Instead, the IOSTAT
 variable will have to be queried after a WAIT operation to handle
 this situation. This choice was made because we expect the WAIT
 statement to be the usual method of waiting for I/O to complete
 (and WAIT does support the END= and EOR= specifiers).
 This particular choice is philosophical, and was not based on
 significant technical difficulties.

 Note that the requirement to set the IOSTAT variable correctly
 requires an implementation to remember which I/O requests got
 an EOR condition, so that a subsequent wait operation will
 return the correct IOSTAT value. This means there is a
 processor defined limit on the number of outstanding non−advancing
 I/O requests which got an EOR condition (constrained by available
 memory to keep track of this info, similar to END/ERR conditions).

