
Procedure Pointers 12 August J3 / 97-218r2 1

Date 13 August 1997
To: J3
From: /data
Subject Procedure pointer syntax

/data has reached consensus on both declaration and operational syntax for changeable
procedure identities.

Shaded parts are new.

In syntax rules, where we write “Add syntax” we frequently take the liberty to repeat the
left-hand-side and “is” instead of using “or” (without the left-hand-side) or re-writing the
entire rule, so the reader will be in context. The original content of the syntax rule is not to
be removed.

Named abstract interface declarations

An abstract interface is a variation on an interface block

Add syntax:
R1207 generic-spec is PROCEDURE()

Constraint
If generic-spec is PROCEDURE() then each interface-specification shall be an
interface-body.

Add explanatory text:
The name given in a subroutine-stmt or function-stmt in an interface-body in an
interface-block with generic-spec of PROCEDURE() is the name of an abstract
interface. Abstract interface names are in the same class as type names (14.1.2).

Add note:
! Example abstract interface.
interface procedure()

function real_func(x) ! real_func is abstract
! interface name

real, intent(in) :: x
real :: real_func

end function real_func
subroutine sub(x) ! sub is abstract interface

! name
real, intent(in) :: x

end subroutine sub
end interface

Procedure identifier declarations

Three varieties of procedure identifiers may be declared by using a PROCEDURE
statement:

Procedure Pointers 12 August J3 / 97-218r2 2

1. External procedures (not changeable)
2. Dummy procedures (not changeable)
3. Procedure pointers (changeable procedure identities)

Add syntax:
R207 declaration-construct is procedure-declaration-stmt

R425 component-def-stmt is component-proc-decl-stmt

R427Acomponent-proc-decl-stmt is PROCEDURE ([procedure-interface]) &
& , POINTER :: procedure-identity-list

R50w procedure-declaration-stmt is PROCEDURE ([procedure-interface]) &
& [[, procedure-attr-spec] ... ::] &
& procedure-identity-list

R50x procedure-interface is abstract-interface-name
or type-spec

Constraint:
abstract-interface-name shall be the name of an abstract interface.

R50y procedure-attr-spec is access-spec
or INTENT (intent-spec)
or POINTER
or SAVE

Constraint:
If access-spec or INTENT or SAVE is specified then POINTER shall also be
specified.

R50z procedure-identity is name [=> NULL()]

Constraint:
If => NULL() appears the POINTER attribute shall be specified.

Add explanatory text:
If POINTER is not specified the names declared are external procedures or dummy
procedures. If POINTER is specified the names declared are procedure pointers.

If procedure-interface consists of abstract-interface-name then the procedure-
identity has explicit specific interface given by the named abstract interface.

If procedure-interface consists of type-spec then the procedure-identity identifies a
function that has implicit interface and the specified return type.

If procedure-interface is absent then the procedure-identity identifies a subroutine
that has implicit interface.

Procedure Pointers 12 August J3 / 97-218r2 3

It is not possible to use a PROCEDURE statement to identify a procedure that is
ambiguous concerning whether it is a subroutine or function.

It is not possible to use a PROCEDURE statement to identify a BLOCK DATA
subprogram.

Add note:
!-- Some external or dummy procedures with explicit
!-- specific interface.
procedure(real_func) :: bessel, gamma
procedure(sub) :: print_real

!-- Some procedure pointers with explicit specific
!-- interface, one initialized to null.
procedure(real_func), pointer :: p, r => null()
procedure(real_func), pointer :: ptr_to_gamma
procedure(sub), pointer :: s

!-- A derived type with a procedure pointer component...
type struct_type

integer :: some_int
procedure(real_func), pointer :: component

end type struct_type

!-- ... and a variable of that type.
type(struct_type) :: struct

!-- An external or dummy function with implicit
!-- interface
procedure(real) :: psi

Procedure identifers can be in generic interface blocks

Consistent with the possibility to put dummy procedures into generic interface blocks,
procedure identifiers can be referenced (not declared) in generic interface blocks. Add
syntax:
R1202 interface-specification is PROCEDURE [::] procedure-name-list

Constraint:
procedure-name shall have an explicit interface and shall be a procedure pointer,
external procedure, dummy procedure or module procedure.

Functions that return procedure identifiers

Functions can return procedure identifiers, by defining the function or result name to be a
procedure pointer.

Assigning values to procedure pointers

Values are assigned to procedure pointers by using pointer assignment.

Procedure Pointers 12 August J3 / 97-218r2 4

Add a constraint after R737:
If pointer-object is a procedure pointer then target must have an interface
compatible to the interface for pointer-object, and must be the name of an
accessible external, module, dummy or intrinsic procedure (the same list of
intrinsics as are allowed to be actual arguments), a procedure pointer or a reference
to a function that returns a procedure pointer.

Add a note:
!-- Give p a non-null value. p must be a procedure
!-- pointer
p => bessel

!-- Likewise for a structure component.
struct%component => bessel

Testing procedure pointers

Procedure pointers can be tested using the ASSOCIATED intrinsic function.

!-- Test for equality.
if (associated(p,struct%component)) &
write(*,*) 'This should print.'

!-- Test for NULL
if (.not. associated(r)) &
write(*,*) 'This should print.'

Add text to the description of ASSOCIATED that allows TARGET to be the same kinds
of things allowed for target in a pointer-assignment-stmt (including accessible procedures).

Invoking procedures defined by procedure pointers

Procedures defined by procedure pointers are invoked by using a CALL statement or
function-reference.

Add syntax:
R1210 function-reference is variable ([actual-arg-spec-list])

Constraint:
variable shall be a procedure pointer to a function, or a structure component that is
a procedure pointer to a function.

Add syntax:
R1211 call-stmt is CALL variable [([actual-arg-spec-list])]

Constraint:
variable shall be a procedure pointer to a subroutine, or a structure component that
is a procedure pointer to a subroutine.

Add note:

Procedure Pointers 12 August J3 / 97-218r2 5

!-- Evaluate functions.
write (*,*) p(2.5) !-- bessel(2.5)
write (*,*) struct%component(2.5) !-- Also bessel(2.5)

!-- Some subroutine operations.
s => print_real
if (associated(s)) call s(3.14)

Using procedure identities as actual arguments

All procedure identities (external procedure identities, dummy procedure identities, or
procedure pointers) and procedure values (results of function evaluation) can be used as
actual arguments. Add text in 12.4.1.2 to allow this. Add a section 12.4.1.3 describing the
case when the dummy argument is a dummy procedure pointer (and re-number existing
12.4.1.3 ff).

Add note:
!-- Pass as an actual argument.
call integrate (p, 1., 2.)

!-- Invoke a function returning a proc value.
ptr_to_gamma => gamma
r => select_func(2, p, ptr_to_gamma) !-- r is now gamma

!-- A fairly complicated composition.
call integrate (select_func(1,p,r), 1., 2.)

! ...
contains

subroutine integrate (func, from, to)
procedure(real_func), intent(in) :: func
real, intent(in) :: from, to

if (.not. associated(func)) &
call abort('Oops.')

write (*,*) 'End values are ', &
 func(from), func(to)

return
end subroutine integrate

function select_func(n, proc1, proc2)
integer, intent(in) :: n
procedure(real_func), intent(in) :: proc1
procedure(real_func), intent(in) :: proc2
procedure(real_func), pointer :: select_func

select case(n)
case(1)

select_func => proc1
case(2)

select_func => proc2
case default

select_func => null()

Procedure Pointers 12 August J3 / 97-218r2 6

end select
return

end function select_func

Dummy arguments

Dummy arguments may be procedure pointers. The actual argument must also be a
procedure pointer.

Input / Output

Intrinsic input/output of procedure identities is prohibited. No text is needed w.r.t. derived
type I/O because of the presence of the POINTER attribute. Somewhere after R918 add

Constraint:
A variable that is an input item or output item shall not be a procedure pointer.

An expression that is an output item shall not have a value that is a procedure
pointer.

