J3/97-248r2

Page 1 of 7
Date: 30 October 1997
To: J3
From: Van Snyder

Subject: Edits for procedure pointers
References: 97-147 97-169 97-174r1 97-190 97-218r2 (syntax)

Notes to /data — Questions, and things I’ve done since the meeting:

The apparent reason to prohibit non-intrinsic elemental procedures to be actual arguments is that
some implementors might put the loop at the call, and some might produce two procedures for
each elemental procedure definition — one that takes a descriptor, and has a loop inside, to be
used in elemental circumstances, and one that doesn’t take a descriptor, doesn’t have a loop inside,
and that’s used in scalar circumstances. This doesn’t seem to affect either pointer association
or argument association — the correct procedure could be associated so long as elemental-ness is
required to match. This requires a constraint that if an elemental non-intrinsic is a target (or actual
argument), the pointer-object (or called procedure) must have explicit interface (or at least a note
explaining that this is implied by the requirment for elemental-ness to match).

Are elemental procedure pointers OK? If so, the third constraint after R519C (in [59:124]), and the
one at [113:54], need to be deleted, and the rules about pointer assignment should allow assigning
an elemental intrinsic procedure to a non-elemental pointer. The same logic applies to non-intrinsic
elemental actual arguments, but we shouldn’t change those rules now, even if there’s not really a
technical problem, without a full J3 vote.

Should the two sentences beginning “If proc-interface consists...” that immediately precede Note
5.b be moved to be after R519B and changed to be constraints?

“type” changed to “type and kind type parameters” immediately before Note 5.b.

Deleted two constraints that were earlier added at [204:31+] and [204:33+] because they should
have said “disassociated” instead of “undefined,” but variable references are already covered by
“thou shalt not dereference NULL or undefined pointers” rules.

End of notes to /data.

Changes are w.r.t. 97-007r1. Page and line numbers are displayed in the margin.

Add “(5.1.2.10)"after “EXTERNAL attribute”

[part of R207] or procedure-declaration-stmt
[part of R425] or PROCEDURE ( [ proc-interface | ) m
B, POINTER :: proc-identity-list

A name is specified to have the EXTERNAL attribute if it appears in a type declaration
statement having the EXTERNAL attribute specification, an EXTERNAL statement (12.3.2.2), a
PROCEDURE declaration statement (5.2), or as a specific procedure name in an interface body

[2:36]
[10:9+]
[38:40+]

[58:28-30]



J3/97-248r2
Page 2 of 7

(12.3.2.1).

If a name that has the EXTERNAL attribute also has an explicit type or appears as a function
name in a function reference (12.4) or interface body (12.3.2.1) it is an external function or dummy
function.

If a name has the EXTERNAL attribute or is the name of an accessible module procedure it may
be used as an actual argument, as a procedure name in a procedure reference (12.4), or as the
target of a procedure pointer assignment (7.5.2).

5.2 Procedure declaration statement
[Note to editor: re-number subsequent sections]

A procedure declaration statement declares a procedure pointer, a dummy procedure, or an external

procedure.

[Note to editor: Syntax rule numbers are to be inserted between present rules R519 and R520.]

R519A procedure-declaration-stmt ~ is PROCEDURE ( [ proc-interface ] ) m

B [[, attr-spec ] ... ::] proc-identity-list

R519B proc-interface is abstract-interface-name

or lype-spec

Constraint: abstract-interface-name must be the name of an abstract interface (12.3.2.1.3)

R519C proc-identity is name [ => NULL() ]

Constraint: No attributes other than access-spec, INTENT, POINTER, SAVE and OP-
TIONAL shall be specified for proc-identity.

Constraint: If a proc-identity has an accessibility attribute, or an INTENT attribute, or the
SAVE attribute, the POINTER, attribute shall also be specified for that proc-
identity.

Constraint: If proc-identity has the POINTER attribute, proc-interface shall not describe an
elemental procedure.

Constraint: If => appears in proc-identity, name shall have the POINTER attribute.

Constraint: proc-identity shall not be the name of an accessible module procedure.

The following table indicates the category of entity named by proc-identity:

Is the POINTER attribute | Is proc-identity the name

specified for proc-identity? | of a dummy argument? Then proc-identity is:
Yes Yes or No Procedure pointer
No Yes Dummy procedure
No No External procedure

Appearance of proc-identity in a PROCEDURE statement specifies the EXTERNAL attribute
(5.1.2.10) for that name.

Appearance of an intrinsic procedure name in a PROCEDURE statement causes that name to

[59:12+]



J3/97-248r2
Page 3 of 7

become the name of a procedure pointer or external procedure, and thus the intrinsic procedure of
the same name is not available in the scoping unit.

If proc-interface consists of abstract-interface-name, proc-identity has an explicit interface, and shall
be used only to identify procedures having characteristics given by the named abstract interface.

If proc-interface consists of type-spec, proc-identity shall be used only to identify functions that have
the result type and kind type parameters given by type-spec.

In contrast to the EXTERNAL statement, it is not possible to use a PROCEDURE statement to
identify a BLOCK DATA subprogram.

! Using abstract procedure definitions in Note 12.x:

!-— Some external or dummy procedures with explicit interface.
PROCEDURE (REAL_FUNC) :: BESSEL, GAMMA

PROCEDURE (SUB) :: PRINT_REAL

!-— Some procedure pointers with explicit interface,
!-- one initialized to NULL().

PROCEDURE (REAL_FUNC), POINTER :: P, R => NULL()
PROCEDURE (REAL_FUNC), POINTER :: PTR_TO_GAMMA

!'-— A derived type with a procedure pointer component ...
TYPE STRUCT_TYPE

PROCEDURE (REAL_FUNC), POINTER :: COMPONENT
END TYPE STRUCT_TYPE

TYPE(STR

. and a variable of that type.
UCT_TYPE) :: STRUCT

!-— An external or dummy function with implicit interface
PROCEDURE (REAL) :: PSI

[sentence that begins “This also...”]
.... This also applies to PROCEDURE, EXTERNAL, and INTRINSIC statements.

Constraint:

Each allocate-object shall be a non-procedure pointer or an allocatable array.

Constraint:

Each allocate-object shall be a non-procedure pointer or an allocatable array.

Constraint:

Constraint:

If pointer-object is a data object, variable shall have the TARGET or POINTER

attribute.
If pointer-object is a data object or a procedure pointer that has a result type,

target shall be of the same type, kind type parameters, and rank as the pointer.

Note 5.b

Note 5.¢

[59:17]

[81:36]
[84:23]

[113:3-4]



J3/97-248r2
Page 4 of 7

Constraint: The target shall not be a non-intrinsic elemental procedure.

[Note to editor: Delete the first sentence (It’s covered by a constraint) and replace it with this stuff,
then start a new paragraph with “If the target is not ....”]

If pointer-object is a procedure pointer, target shall be the specific name of an external, module,
dummy, or intrinsic procedure, a procedure pointer, a reference to a function that returns a proce-
dure pointer, or a reference to the NULL intrinsic function. The only intrinsic procedures permitted
are those listed in 13.13 and not marked with a bullet (e). If the specific intrinsic procedure name
is also a generic name, only the specific intrinsic procedure is associated with pointer-object.

If pointer-object is a procedure pointer that has an explicit interface, the characteristics listed in
12.2 shall be the same for pointer-object and target, except that a target having an interface to a
pure procedure may be assigned to a pointer-object having an interface to a procedure that is not
pure, and a target that is an elemental intrinsic procedure may be assigned to a pointer-object.

[inside note 7.46]

! P is a procedure pointer and BESSEL is a

! procedure with compatible interface (see note 5b)
P => BESSEL

! Likewise for a structure component
STRUCT J COMPONENT => BESSEL

Constraint: A variable that is an input item shall not be a procedure pointer.

Constraint: An expression that is an output item shall not have a value that is a procedure
pointer.

Add 7, a dummy procedure pointer” after ”procedure”.

12.2.1.2 Characteristics of dummy procedures and dummy procedure pointers.

[Remove the word MODULE.]

[replace second line of R1202] or procedure-stmt

[add a line to R1203] or INTERFACE PROCEDURE ()

Constraint: If interface-stmt is INTERFACE PROCEDURE(), each interface-specification
shall be an interface-body.

[replace R1206]
R1206 procedure-stmt is [ MODULE ] PROCEDURE procedure-name-list

[Delete]

[113:5+4]

[113:7]

[113:34+]

[151:12+]
[151:14+]

[198:8]
[198:18]
[199:33]

[199:40]

[199:41+]

[200:8]

[200:14-16]



J3/97-248r2
Page 5 of 7

Constraint: A procedure-name shall have an explicit interface and shall refer to a procedure [200:22-24]
pointer, external procedure, dummy procedure, or accessible module procedure.
Constraint: If MODULE appears, procedure-name shall refer to an accessible module proce-
dure.
Constraint: A procedure-stmt is allowed only if the interface block has a generic-spec.
Constraint: In all interface blocks that have the same generic identifier in any specification
part, a procedure-name shall not be specified more than once in a procedure-stmt,
nor be the same as a specific procedure name that appears in a function-stmt or
subroutine-stmdt.

[after note 12.6] [201:464]
An interface block introduced by INTERFACE PROCEDURE() is an abstract interface block;
it defines abstract interfaces (12.3.2.1.3).

[after note 12.9] [203:18+]
12.3.2.1.3 Abstract interfaces

The name given in a subroutine-stmt or function-stmt in an abstract interface block is the name of

an abstract interface. Abstract interface names are in the same class as type names (14.1.2).

! Example abstract interfaces. Note 12.x
INTERFACE PROCEDURE()
! REAL_FUNC IS ABSTRACT INTERFACE NAME
FUNCTION REAL_FUNC (X)
REAL, INTENT(IN) :: X
REAL :: REAL_FUNC
END FUNCTION REAL_FUNC
! SUB IS ABSTRACT INTERFACE NAME
SUBROUTINE SUB (X)
REAL, INTENT(IN) :: X
END SUBROUTINE SUB
END INTERFACE

REAL_FUNC and SUB can be used as abstract-interface-name in a procedure declaration state-
ment.

[End note]

[Move 203:33-34 here.] [203:28-29]
[Move notes 12.10 and 12.11 (203:39-44) here].

It is generally better practice to declare an external or dummy procedure using a PROCEDURE [203:33-44]
declaration statement, as this allows the interface to be specified in the same place. Note 12.y

[Change second “procedure” to “procedure or procedure pointer”.] [204:28]



J3/97-248r2

Page 6 of 7
[add a line to R1210] or variable ( [ actual-arg-spec-list | )
Constraint: variable shall be a procedure pointer, or a structure component that is a procedure
pointer.
Constraint: A reference to variable shall not appear as a subroutine reference.
[add a line to R1211] or CALL variable ( [ actual-arg-spec-list | )
Constraint: variable shall be a procedure pointer, or a structure component that is a procedure
pointer.
Examples of procedure reference using procedure pointers.
P => BESSEL
WRITE (%, *) P(2.5) ! —— BESSEL(2.5)

S => PRINT_REAL
IF (ASSOCIATED(S)) CALL S(3.14)

12.4.1.2 Actual arguments associated with dummy prodedures or dummy procedure
pointers

If the dummy argument is a procedure pointer, the associated actual argument shall be a procedure
pointer, a reference to a function that returns a procedure pointer, or a reference to the NULL
intrinsic function.

If the dummy argument is a dummy procedure, the associated actual argument shall be the specific
name of an external, module, dummy, or intrinsic procedure, a procedure pointer, or a reference
to a function that returns a procedure pointer. The only intrinsic procedures permitted are those
listed in 13.13 and not marked with a bullet (e). If the specific name is also a generic name, only
the specific procedure is associated with the dummy argument.

If an external procedure name or a dummy procedure name is used as an actual argument, it shall
have the EXTERNAL attribute.

If the dummy argument has an explicit interface, the characteristics listed in 12.2 shall be the same
for the associated actual argument and the corresponding dummy argument, except that an actual
argument having an interface to a pure procedure may be associated with a dummy argument
having an interface to a procedure that is not pure, and an actual argument having an interface to
an elemental intrinsic procedure may be associated with a dummy argument having an interface
to a procedure that is not elemental.

If the dummy argument has an implicit interface and either the name of the dummy argument is
explicitly typed or the dummy argument is referenced as a function, the dummy argument shall
not be referenced as a subroutine, and the actual argument shall have the same result type as the
dummy argument.

[204:31+]

[204:33+]

[205:23+]

Note 12.15a

[208:16:30]



J3/97-248r2
Page 7 of 7

If the dummy argument has an implicit interface, and a reference to the dummy argument appears
as a subroutine reference, the actual argument shall not be a function, or a procedure pointer that
has a result type.

POINTER shall be a pointer and may be of any type, or a procedure pointer. Its [238:17-21]
pointer association status shall not be undefined.
TARGET (optional) shall be a pointer or target. If POINTER is a data entity, TARGET
shall have the same type, type parameters and rank as POINTER. If
POINTER is a procedure pointer, TARGET shall be a procedure, or
procedure pointer, for which pointer assignment (7.5.2) to POINTER
would be permitted. If TARGET is a pointer then its association
status shall not be undefined.

Case (ii): If POINTER is a procedure pointer and TARGET is an external procedure, [238:254]
module procedure, intrinsic procedure, or dummy procedure, the result is true if
POINTER is associated with TARGET.

Case (iii): If POINTER is a procedure pointer and TARGET is a procedure pointer, the
result is true if POINTER and TARGET are associated with the same procedure.

[Note to editor: re-number subsequent cases.]




