J3/97-251

Page 1 of 8
Date: 30 October 1997
To: J3
From: Van Snyder

Subject: Alternative to 97-248 — Edits for procedure pointers
References: 97-147 97-169 97-174r1 97-190 97-218r2 (syntax) 97-248 (edits)

This paper proposes an alternative syntax for procedure pointers, and edits that implement it. It’s
based exclusively on extending the EXTERNAL attribute and statement.

Yes, I know we considered this and rejected it in /data, and passed something different in plenary,
but we weren’t writing edits at the time. I think we only narrowly rejected using EXTERNAL
in favor of inventing something new. Upon finishing 97-248r1, I realized the only thing that can
be done with EXTERNAL that couldn’t be done with PROCEDURE is to declare that a block
data program unit is part of the program. So it seemed we might want to add that capability
to PROCEDURE, and then deprecate EXTERNAL. But if we do that, then why not change the
spelling back to EXTERNAL so old codes still work? This paper is the result of taking that thought
process to its logical conclusion.

I think this integrates better than 97-248.

Changes are w.r.t. 97-007rl. Page and line numbers are displayed in the margin. There are several
J3 notes (indicated in the margin) to which special attention should be directed.

Add “(5.1.2.10)"after “EXTERNAL attribute”

[part of R425] or EXTERNAL [(proc-interface) | m
B, POINTER :: proc-identity-list

[Complete replacement just to alphabetize the right-hand-sides while adding EXTERNAL]
RA426 component-attr-spec is ASYNCHRONOUS

or DIMENSION (component-array-spec)

or EXTERNAL

or POINTER

Constraint: If a component has the EXTERNAL attribute it shall also have the POINTER
attribute

Delete “, EXTERNAL,”

Constraint: If a name has the EXTERNAL attribute, the only other attributes allowed are
access-spec, INTENT, OPTIONAL, POINTER and SAVE.

Constraint: If an entity has the EXTERNAL atribute, and in addition it has an accessibility
attribute, or an INTENT attribute, or the SAVE attribute, it shall also have the
POINTER attribute.

[2:36]
[38:404]

[38:41-43]

[39:18+]

[48:8]
[48:22-4]

J3/97-251
Page 2 of 8

Delete “, an external name”
Replace “the POINTER” by “either the POINTER or the EXTERNAL”

A name is specified to have the EXTERNAL attribute if it appears in an EXTERNAL statement
(5.2) or in a type declaration statement having the EXTERNAL attribute specifier.

A name that is specified to have the EXTERNAL attribute must be an external procedure, or a
procedure pointer, or a block data subprogram.

A name that has the EXTERNAL attribute and also has an explicit type, or that appears as a
function name in a function reference (12.4), or that appears as a function name in an interface
body (12.3.2.1), is an external function or dummy function.

A name that is not the name of a block data subprogram and has the EXTERNAL attribute, or
is the name of an accessible module procedure, or appears as a procedure name in a procedure
reference (12.4) or an interface body, may be used as an actual argument (12.4.1.2), as a procedure
name in a procedure reference (12.4), or as the target of a procedure pointer assignment (7.5.2).

If we add “accessible module procedure” to the list in the first paragraph in this section, we needn’t
mention it in the previous paragraph.

A name for which the EXTERNAL attribute has been declared in a given scoping unit or that is a
use-associated entity with the EXTERNAL attribute shall not also appear as a specific procedure
name in an interface body that is in or accessible to the scoping unit.

If a name has both the EXTERNAL and the POINTER attributes, it is a procedure pointer.
If a name has the EXTERNAL attribute, an intrinsic procedure of the same name is not available
in the scoping unit.

!-— An external or dummy function with implicit interface
REAL, EXTERNAL :: PSI

[Preferred replacement for above. Does this work?]

A name is specified to have the EXTERNAL attribute if it appears in an EXTERNAL statement,
in a type statement with the EXTERNAL attribute specifier, as a procedure name in an interface
body, or is the name of an accessible module procedure. The EXTERNAL attribute is implied and
may be confirmed by explicit specification if the name is not the name of an internal procedure,
and it appears as a procedure name in a procedure reference (5.4).

The EXTERNAL attribute shall be specified by an EXTERNAL statement only if the name is
the name of an external or dummy subroutine, or a block data program unit. The EXTERNAL
attribute shall be specified by the EXTERNAL attribute specifier in a type statement only if the
entity is an external or dummy function.

A name that has the EXTERNAL attribute and also has an explicit type, or appears as a function-
name in a procedure reference, is a function name.

A name that is not the name of a block data subprogram and has the EXTERNAL attribute may

[48:34]
[48:37]
[58:28-30]

J3 note

Index term

Note 5.¢

[58:28-30]

J3/97-251
Page 3 of 8

be used as an actual argument (12.4.1.2), as a procedure name in a procedure reference (12.4), or
as the target of a procedure pointer assignment (7.5.2).

If a name has both the EXTERNAL and the POINTER attributes, it is a procedure pointer. Index term
If a name has the EXTERNAL attribute, an intrinsic procedure of the same name is not available

in the scoping unit.

!-— An external or dummy function with implicit interface Note 5.c
REAL, EXTERNAL :: PSI

Other simplifications may arise elsewhere by using the alternative wording. J3 note

5.2 EXTERNAL statement [59:12+4]
[Note to editor: re-number subsequent sections]

An EXTERNAL statement specifies the EXTERNAL attribute for a list of names, or declares
procedure pointers.

[Note to editor: Syntax rule numbers are to be inserted between present rules R519 and R520.]

R519A external-stmt is EXTERNAL [(proc-interface) | m
B [[, attr-spec] ... ::] proc-identity-list
R519B proc-interface is abstract-interface-name

Constraint: abstract-interface-name must be the name of an abstract interface (12.3.2.1.3)
R519C proc-identity is name [=> NULL()]

Constraint: If => NULL() appears then the POINTER attribute shall be specified for the
corresponding name.
The following table indicates the category of entity named by proc-identity:

Is the POINTER attribute | Is proc-identity the name

specified for proc-identity? | of a dummy argument? Then proc-identity is:

Yes Yes or No Procedure pointer

No Yes Dummy procedure

No No External procedure or
Block data subprogram

If proc-interface is present, proc-identity has explicit interface, and shall be used only to identify
procedures having characteristics given by the named abstract interface.

If proc-interface is absent but proc-identity appears in a type declaration statement, proc-identity
has implicit function interface, and shall be used only to identify functions that have the declared
result type.

The appearance of the name of a block data program unit in an EXTERNAL statement confirms
that the block data program unit is a part of the program.

For explanatory information on potential portability problems with external procedures, see section Note 5.a

J3/97-251
Page 4 of 8

C.9.1.

!-— An external or dummy procedure with unspecified interface, or a
!-- block data subprogram
EXTERNAL :: FOCUS

!-— An external or dummy function with implicit interface
REAL, EXTERNAL :: PSI

! Using abstract procedure definitions in Note 12.x:

!-— Some external or dummy procedures with explicit interface.
EXTERNAL (REAL_FUNC) :: BESSEL, GAMMA

EXTERNAL (SUB) :: PRINT_REAL

!-— Some procedure pointers with explicit interface,
!-- one initialized to NULL().

EXTERNAL (REAL_FUNC), POINTER :: P, R => NULL()
EXTERNAL (REAL_FUNC), POINTER :: PTR_TO_GAMMA

!'-— A derived type with a procedure pointer component ...
TYPE STRUCT_TYPE

EXTERNAL (REAL_FUNC), POINTER :: COMPONENT
END TYPE STRUCT_TYPE

!-— ... and a variable of that type.
TYPE(STRUCT_TYPE) :: STRUCT

Should we allow or prohibit procedure pointers to appear in COMMON blocks?

Constraint: Each allocate-object shall be a non-procedure pointer or an allocatable array.

Constraint: Each allocate-object shall be a non-procedure pointer or an allocatable array.

[Note to editor: Replace first sentence with this stuff, then start a new paragraph with “If the
target is not”]

If pointer-object is a procedure pointer, target shall be the name of an accessible external, module,
dummy or intrinsic procedure, a procedure pointer, a reference to a function that returns a proce-
dure pointer, or a reference to the NULL intrinsic function. The only intrinsic procedures permitted
are those listed in 13.13 and not marked with a bullet (e). If the specific intrinsic procedure name
is also a generic name, only the specific intrinsic procedure is associated with pointer-object.

Note 5.b

[71:2+4]
J3 note

[81:36]
[84:23]

[113:7]

J3/97-251
Page 5 of 8

If pointer-object is a procedure pointer that has explicit interface, target shall have the same char-
acteristics.

If pointer-object is a procedure pointer that has function interface, target shall have the same result
type.

If pointer-object is not a procedure pointer, target shall have the same type parameters as pointer-
object.

[inside note 7.46]

! P is a procedure pointer and BESSEL is a
! procedure with compatible interface (see note 5.b)
P => BESSEL

! Likewise for a structure component
STRUCT J COMPONENT => BESSEL

Constraint: A variable that is an input item shall not be a procedure pointer.

Constraint: An expression that is an output item shall not have a value that is a procedure
pointer.

Change title to 12.2.1.1 Characteristics of dummy data objects other than procedure
pointers.

Change title to 12.2.1.2 Characteristics of dummy procedures and dummy procedure
pointers.

A procedure or procedure pointer has function interface if it has explicit interface and is a
function, or its name is explicitly typed, or a reference to its name appears as a function reference.

Remove the word MODULE.

[replace second line of R1202] or procedure-stmt

[add a line to R1203] or INTERFACE PROCEDURE ()

Constraint: If interface-stmt is INTERFACE PROCEDURE(), each interface-specification
shall be an interface-body.

[replace R1206]
R1206 procedure-stmt is [MODULE] PROCEDURE procedure-name-list

Constraint: A procedure-name shall have explicit interface and shall refer to an accessible
procedure pointer, external procedure, dummy procedure or module procedure.

Constraint: If MODULE appears, procedure-name shall refer to an accessible module procedure.

Constraint: A procedure-stmt is allowed only if the interface block has a generic-spec.

[113:34+]

[151:12+]
[151:14+]

[198:12]
[198:18]
[199:5+]

[199:33]
[199:40]

[199:41+]

[200:8]

[200:22-24]

J3/97-251
Page 6 of 8

Constraint: In all interface blocks that have the same generic identifier in any specification
part, a procedure-name shall not be specified more than once in a procedure-stmt,
nor be the same as a specific procedure name that appears in a function-stmt or
subroutine-stmdt.

[after note 12.6] [201:464]
An interface block introduced by INTERFACE PROCEDURE() is an abstract interface block;

it defines abstract interfaces.

[after note 12.9] [203:18+]
12.3.2.1.3 Abstract interfaces

The name given in a subroutine-stmt or function-stmt in an abstract interface block is the name of
an abstract interface. Abstract interface names are in the same class as type names (14.1.2)

! Example abstract interfaces. Note 12.z
INTERFACE PROCEDURE()
! REAL_FUNC IS ABSTRACT INTERFACE NAME
FUNCTION REAL_FUNC (X)
REAL, INTENT(IN) :: X
REAL :: REAL_FUNC
END FUNCTION REAL_FUNC
! SUB IS ABSTRACT INTERFACE NAME
SUBROUTINE SUB (X)
REAL, INTENT(IN) :: X
END SUBROUTINE SUB
END INTERFACE

Delete section 12.3.2.2. Change all references to it to refer to 5.2. [203:19-44]
Change second “procedure” to “procedure or procedure pointer”. [204:28]
[add a line to R1210] or variable ([actual-arg-spec-list |) [204:31+]
Constraint: variable shall be a procedure pointer, or a structure component that is a procedure

pointer.
Constraint: A reference to variable shall not appear as a subroutine reference. Needed?

Constraint: The pointer association status of variable shall not be undefined.

[add a line to R1211] or CALL variable ([actual-arg-spec-list |) [204:33+4]
Constraint: variable shall be a procedure pointer, or a structure component that is a procedure
pointer.

Constraint: The pointer association status of variable shall not be undefined.

Examples of procedure reference using procedure pointers. [205:234]

Note 12.14a

J3/97-251
Page 7 of 8

P => BESSEL
WRITE (%, *) P(2.5) ! —-— BESSEL(2.5)

S => PRINT_REAL
IF (ASSOCIATED(S)) CALL S(3.14)

12.4.1.2 Actual arguments associated with dummy prodedures or dummy procedure
pointers

If the dummy argument is a procedure pointer, the associated actual argument shall be a procedure
pointer.

If the dummy argument is a dummy procedure, the associated actual argument shall be the specific
name of an external, module, dummy, or intrinsic procedure, or a procedure pointer. The only
intrinsic procedures permitted are those listed in 13.13 and not marked with a bullet (o). If the
specific name is also a generic name, only the specific procedure is associated with the dummy
argument.

If an external procedure name or a dummy procedure name is used as an actual argument, its
interface shall be explicit or it shall be declared in an EXTERNAL or PROCEDURE statement.

If the dummy argument has explicit interface, the characteristics listed in 12.2 shall be the same
for the associated actual argument and the corresponding dummy argument, except that an actual
argument having an interface to a pure procedure may be associated with a dummy argument
having an interface to a procedure that is not pure, and an actual argument having an interface to
an elemental intrinsic procedure may be associated with a dummy argument having an interface
to a procedure that is not elemental.

If the dummy argument has implicit interface and either the name of the dummy argument is
explicitly typed or the dummy argument is referenced as a function, the dummy argument shall
not be referenced as a subroutine, and the actual argument shall have the same result type as the
dummy argument.

If the dummy argument has implicit interface, and a reference to the dummy argument appears as
a subroutine reference, the actual argument shall not have function interface.

POINTER shall be a pointer and may be of any type, or a procedure pointer. Its
pointer association status shall not be undefined.

TARGET (optional) shall be a pointer or target. If POINTER is a data entity, TARGET
shall have the same type, type parameters and rank as POINTER. If
POINTER is a procedure pointer, TARGET shall be a procedure, or
procedure pointer, for which pointer assignment (7.5.2) to POINTER
would be permitted. If TARGET is a pointer then its association
status shall not be undefined.

[208:16:30]

[238:17-21]

J3/97-251
Page 8 of 8

Case (ii): If POINTER is a procedure pointer and TARGET is an external procedure, [238:254]
module procedure, intrinsic procedure or dummy procedure, the result is true if
POINTER is associated with TARGET.

Case (iii): If POINTER is a procedure pointer and TARGET is a procedure pointer, the
result is true if POINTER and TARGET are associated with the same procedure.

[Note to editor: re-number subsequent cases.]

