
J�������	
Page � of ��

Date� �� December ����
To� J�
From� Van Snyder
Subject� Enhancing Modules I 	 Separating interface from implementation
References� ��
���� ��
��
� ��
���

� Introduction

Six long
standing and well
known problems related to modules are solved by adding one keyword to the
language� and using it in four ways related to modules� procedures and types�

The additions proposed here advance the goals of the new work item instituted to enhance modules to support
construction of interval arithmetic and other data types�

Rather than write throughout �If this proposal were implemented� one could ���� this proposal is written as
though it were already implemented� Where practice is constrained by the current design of Fortran� �In
Fortran ������ is written�

��� Terminology

The module interface comprises those parts of a module by which its users are expected to communicate
with the facilities provided by the module� In Fortran ��� a module interface would comprise most entities
with PUBLIC visibility� It is generally agreed that it is �good practice� to attempt to keep interfaces stable�

The implementation of entities of a module comprises those parts of a module that its author would
like to be able to modify without a�ecting user�s of the module� In Fortran ��� the implementation of a
module would comprise all entities with PRIVATE visibility� procedure bodies� and� sometimes� the PRIVATE

components of PUBLIC types� It is generally agreed that it is �good practice� that users do not depend on the
implementations of entities of modules�

An opaque type is a type about which nothing other than its name is exposed to users of the type� Public
types with private components are sometimes called opaque types� but several operations permitted for objects
of these types require the compiler to know their sizes� changes to private components of public types can
therefore cause users of a module to be re
compiled� A better description of public Fortran �� types with
private components is �translucent types��

Encapsulation is the practice of packaging entities in such a way that users of a behavior of an abstract data
type cannot depend on its implementation� In Fortran� PRIVATE entities are used for encapsulation�

��� Separating interface and implementation

Separating interfaces of modules from implementations of entities of modules provides at least �ve bene�ts�

�� Bodies of procedures� and entities that are not intended to be known to users of modules� can be
changed without requiring users of those modules to be compiled� It has been argued that this goal can
be realized by su�ciently good �quality of implementation of compilers� �QOI�� Vendors are only now�
however� beginning to think about how to do so� Failure to separate interface from implementation� as a
facility of the language� has apparently made achieving this goal unnecessarily di�cult� and delayed its
realization�

�� Suppose a module X uses another module Y which in turn uses a third module Z in its implementation�
but not in its interface� It is not necessary to re
compile module X if module Z is changed�



J�������	
Page � of ��

�� Opaque types can be de�ned� without an additional new mechanism�

�� Providers of libraries of software could� in principle� remove their trade secrets from Fortran �� modules�
and publish only the remaining text� as authoritative documentation of the interface� Few or none take
the trouble to do so� Separate interfaces and implementations of modules� as a facility of the language�
allow exactly the same text to be used to declare the interface during development and for publication
of a module� with no additional e�ort or cost�

�� In languages that allow separating interface from implementation� a tactic that is occasionally used to
decrease the bulk of individual modules to more manageable size is to �cross use� interfaces� That is�
the interface of module A is USE�ed into the implementation of module B� and the interface of module
B is USE�ed into the implementation of module A� If interface and implementation are not separated�
such �cross use� introduces a circularity of dependence�

��� Separating implementation into several parts

Modules sometimes become too large to manage conveniently� and sometimes they become too large to compile�
Using Fortran �� facilities� it is sometimes impossible to split modules into several parts� and still preserve
encapsulation� It may be necessary to convert PRIVATE entities to PUBLIC entities in order to split a module
into separate parts of manageable size�

� Speci�cations for proposals

It is possible to provide for separate interface and implementation� and separate parts of implementation� with
only minor additions to syntax and semantics of modules� types and procedures� The proposals are designed�

� To achieve the goals set forth in the introduction�

� To preserve compatibility to existing Fortran standards�

� To introduce the smallest possible number of additional concepts� but

� Not to introduce any requirement to declare the interface to a procedure more than once�

The mechanisms proposed here allow program authors to package modules as several separate but dependent
parts� The main part corresponds to the present Fortran module� and can be used in exactly the same way�
including the possibility to write entire procedures in the main part�

To separate interface from implementation� and separate implementation into several parts� it is possible to�

� Declare the interfaces of procedures in the main part� but defer de�ning the procedures to separate
parts of the module� and

� Declare derived types in the main part� but defer de�ning some or all of their components to separate
parts�

The main part of a module is accessible by use association� separate parts are not� All entities of separate
parts are private entities of those separate parts 	 PUBLIC and PRIVATE are ignored in separate parts 	 and
are only accessible therein� and in separate parts thereof� This has two useful e�ects�

� A separate part of one module can access the main part of another by use association� and vice
versa
simultaneously� without causing circularity of dependence�



J�������	
Page � of ��

� One would not need to depend on QOI to be assured that a �compilation cascade� would not result from
changing the implementation of a public procedure� the de�nition of a type having private components�
a private entity declaration� or a module used in the separate part�

It is important to be able to declare separate but accessible procedures� including their interfaces� in the main
part� as opposed simply to declaring and de�ning a separate part of a module in which complete procedures
�interface and implementation� are written� The former advances all the goals set forth in the introduction�
while the latter advances only the goal set forth in section ���� Furthermore� if procedure interfaces appear
only where the procedure bodies are de�ned� then in modules that are split into several parts it would be
necessary to read all of the parts� not just the main part� to determine the set of visible entities of the module�
and their interfaces�

A separate part of a module can in turn have separate parts� This is useful for partitioning private entities of
large or complex modules into non
interacting subsets�

A part that has separate parts is called a senior part� A part that is a separate part of another part is called
a junior part� These terms are relative to each other� a part could be both a senior and a junior part�

A junior part is logically a continuation of its senior part� with the additional properties that a procedure
may be declared� or a type declared and partly de�ned� in the senior part� and the remainder of the de�nition
provided in the junior part� This is prohibited in the case of a single part�

The only entities of junior parts that are accessible in their senior part are those declared in the senior part�

Junior parts can communicate by using private data and private declarations of separate procedures in the
main part� It is better� however� to use an extra layer of separate parts� as this permits the interfaces to these
private procedures to change without a�ecting users of the main part�

Some compilers presently materialize some module procedures in
line instead of calling them� Procedures
wholly de�ned in the main part could continue to be processed in the same way� Super�cially� it appears that
putting procedure bodies into junior parts subverts this possibility� There are at least three methods� however�
to supply this functionality�

� Provide a compiler option that requests �aggressively in
line procedures in junior parts�� This means that
USE�ers of modules depend on junior parts� and therefore changes to junior parts require re
compiling
USE�ers� This subverts the �rst goal in section ���� but none of the other goals in the introduction� If it
hurts� don�t do it� At least you have a choice�

� It is unlikely that commercial software vendors will provide source text of the junior parts of their
modules� so their procedures can�t be in
lined in the above way� A semi
compiled form of a junior part
that could not easily be changed or examined by an end
user �something like ANDF� for example� would
allow in
lining procedures from junior parts� even if source text is not available�

� Foist the in
lining job �and attendant register allocation� etc�� jobs� onto the linker�

� Syntax to separate modules into parts

The facilities necessary and useful to separate modules into parts are

� Declaration that the body that corresponds to a procedure interface is de�ned in a speci�ed junior part�

� Declaration that an opaque type de�nition is completed in a speci�ed junior part�

� Declaration for a junior part�

� Declaration that a procedure body in a junior part completes a procedure declared in its senior part�



J�������	
Page � of ��

� Declaration that a type de�nition in a junior part completes an opaque type declaration� and perhaps
partial de�nition� begun in the senior part�

��� Declaring that a junior part exists

The region of a module part that follows a CONTAINS statement is herein called a contains division of the
module� A new statement� viz� SEPARATE �� junior�part�name introduces a separate division of a module
part� A separate or contains division continues from the statement that introduces it until the next SEPARATE�
CONTAINS or END MODULE statement� A module part may contain several separate divisions or several contains
divisions� in any order� Di�erent separate divisions of the same senior part may name the same junior part�
in which case they are considered to be concatenated� A junior part name is not a global name� It is local to
the junior part� and its senior part� It shall not be the same as its senior part�s name� Junior parts of distinct
senior parts are distinct� even if they have the same name�

�
�
� Declaring that a procedure body is separate

A syntactic structure identical to an interface body in a separate division indicates that the body of the
procedure is de�ned in the speci�ed junior part� For example

SEPARATE �� POINTS�A

REAL FUNCTION POINT�DIST � A� B �

TYPE�POINT� �� A� B

END FUNCTION POINT�DIST

Although syntactically identical to an interface body� the procedure interface declaration must have a critical
semantic di�erence in order to be useful� De�nitions� especially derived type de�nitions� that appear outside
of the interface declaration must be visible by host association� If the semantics of interface bodies are not
changed so as to allow visibility of derived type de�nitions by host association� these syntactically identical
structures must be called by a di�erent name� In the remainder of this document the term procedure

interface declaration is used�

All of the procedure characteristics shall be declared in the procedure interface declaration� Declarations that
do not contribute to the characteristics may be placed within the procedure interface declaration� and are
visible within the procedure when it is de�ned in the junior part�

A separate procedure is a module procedure�

�
�
� Declaring that a type de�nition is separate

A type declaration that appears in a separate division declares an opaque type� Zero or more components can
be declared� For example

SEPARATE �� S

TYPE �� OPAQUE�TYPE�NAME

� zero or more component declarations

END TYPE OPAQUE�TYPE�NAME

indicates that the remainder of the de�nition of type OPAQUE TYPE NAME is deferred to a junior part named S�

As is the case for non
opaque types� private components are not accessible by use association� but are visible
in the senior part in which the type declaration appears and all junior parts thereof�

The complete de�nition of an opaque type is visible only in the junior part in which the opaque type de�nition
is completed� and junior parts thereof� Elsewhere� because their sizes are invisible�



J�������	
Page � of ��

� Objects of opaque type shall be de�ned with the POINTER attribute�

� Allocation� deallocation� and intrinsic assignment are not de�ned�

� An object of opaque type shall neither appear as an input�item in a READ statement� nor be accessed
during namelist editing� nor shall an output�item in a WRITE� PRINT or INQUIRE statement have an
opaque type� unless an accesible interface speci�es derived type editing for the type�

Opaque types are not extensible�

The senior part that contains a separate procedure or type declaration is not required to be the main part of
a module�

��� Declaring a junior part

A junior part is introduced by a SEPARATE statement that gives the names of the senior and junior parts� It
is ended by an END SEPARATE statement E�g�

SEPARATE�POINTS� �� POINTS�A

���

END SEPARATE POINTS�A

declares that POINTS A is a junior part of POINTS�

��� De�ning a procedure declared in a senior part

The body for a procedure declared in a senior part and de�ned in a junior part is placed in a �contains division�
and introduced by an abbreviated procedure header that indicates it is a separate procedure� the category of
procedure� and its name� If it is a function� its result name may be declared in the senior part or the junior
part� but not both� This is logically a continuation of the interface in the senior part� not a host association
to it� Therefore� declarations in the procedure interface declaration in the senior part are accessible here� and
shall not be duplicated here� E�g�

SEPARATE�POINTS� �� POINTS�A

CONTAINS

SEPARATE FUNCTION POINT�DIST RESULT�HOW�FAR�

� don	t re
declare dummy arguments� or result type

���

END FUNCTION POINT�DIST

In a separate division of a junior part� it is possible to defer de�ning a procedure declared in a senior part to
an even more junior part� This is useful� for example� if one wants to use an intermediate junior part only
for the purpose of encapsulating private data and procedures shared by some subset of the procedures of the
module� but wants to put the procedures in separate junior parts� In this case� one uses only the procedure
header� without a body or END statement� e�g�

SEPARATE�POINTS� �� POINTS�A

SEPARATE �� EVEN�MORE�JUNIOR�PART

SEPARATE FUNCTION POINT�DIST � No body� because it	s in a �separate division�

���

SEPARATE�POINTS�A� �� EVEN�MORE�JUNIOR�PART



J�������	
Page 
 of ��

CONTAINS

SEPARATE FUNCTION POINT�DIST RESULT�HOW�FAR�

��� � Body required� because it	s in a �contains division�

END FUNCTION POINT�DIST

��� Completing the de�nition of an opaque type

The completion of a de�nition of an opaque type is indicated by adjoining a SEPARATE annotation onto a
declaration of the same type� before any separate or contains divisions� E�g�

TYPE� SEPARATE �� OPAQUE�TYPE�NAME

� invisible components� and invisible type bound procedure declarations

END TYPE OPAQUE�TYPE�NAME

indicates that invisible components of the type OPAQUE TYPE NAME are de�ned here� Since these components
are invisible to USE�ers or more senior parts� their declaration can�t a�ect the sizes of objects� There is no
point to declaring them to be PRIVATE� because only junior parts have access to the complete type de�nition�
and those junior parts also have access to private components�

A de�nition of an opaque type in a junior part is logically a continuation of the declaration in the main part�
no component names may be re
declared�

It is possible in a separate division of a junior part to de�ne some of an opaque type� and then defer completion
or further continuation to an even more junior part� E�g�

SEPARATE �� MORE�JUNIOR�THAN�S

TYPE� SEPARATE �� OPAQUE�TYPE�NAME

� Zero or more additional components�

END TYPE OPAQUE�TYPE�NAME

Additional components are visible at the point of continuation and in junior parts� but not in the senior part�
The size is still not known� so the restrictions for opaque types apply�

�
	
� Another use for the syntax to complete opaque types

Type
bound procedure declarations �see object
oriented programming proposals� can be added to a visible type
�opaque or not� completed or not�� by adjoining a SEPARATE annotation� This is an augmentation� equivalent
to extending generic interfaces� not an extension or replacement� The speci�c names and characteristics of
additional type
bound procedures shall not con�ict with other visible type
bound procedures�

Type
bound procedures added in this way are not inherited into extension types� or accessible by run
time
dispatch� It is not necessary to indicate� at the point of declaration and de�nition of the type� that there will
be additional type
bound procedures associated to the type�

This does not make the type opaque�

� An illustrative example

This example illustrates modules with main and separate parts� separate parts that have separate parts� and
opaque types�



J�������	
Page � of ��

module color�points

separate �� color�points�a

type �� color�point � opaque type completed in color�points�a

� No visible components

end type color�point

interface del� module procedure color�point�del� end interface

interface dist� module procedure color�point�dist� end interface

interface draw� module procedure color�point�draw� end interface

interface new� module procedure color�point�new� end interface

private color�point�del� color�point�dist� color�point�draw� color�point�new

subroutine color�point�del � p �

type�color�point�� pointer �� p

end subroutine color�point�del

real function color�point�dist � a� b �

type�color�point�� pointer �� a� b

end function color�point�dist

subroutine color�point�draw � p �

type�color�point�� pointer �� p

end subroutine color�point�draw

subroutine color�point�new � p �

type�color�point�� pointer �� p

end subroutine color�point�new

end module color�points

separate�color�points� �� color�points�a � Junior part

integer� save �� instance�count 
 �

type� separate �� color�point � completion of type declared in color�points part

real �� x� y

integer �� color

end type color�point

separate �� color�points�b

subroutine inquire�palette �p�

use palette�stuff

type�palette� �� p

end subroutine inquire�palette

contains

separate subroutine color�point�del � � p �

instance�count 
 instance�count 
 �

deallocate � p �

end subroutine color�point�del

separate function color�point�dist result�dist� � � a� b �

dist 
 sqrt� �b�x 
 a�x���� � �b�y 
 a�y���� �

end function color�point�dist

separate subroutine color�point�draw � � p �

���� call inquire�palette � p �� ���

end subroutine color�point�draw

subroutine color�point�new � � p �

instance�count 
 instance�count � �

allocate�p�



J�������	
Page � of ��

end subroutine color�point�new

end separate color�points�a

separate�color�points�a� �� color�points�b � Junior��� part

separate subroutine inquire�palette

� �use palette�stuff� not needed because it	s in the senior part

��� implementation of inquire�palette

end subroutine inquire�palette

end separate color�points�b

program main

use color�points

� components of �color�point� are not accessible here because �color�point�

� is opaque� �instance�count� and �inquire�palette� are not accessible here

� because they are not declared in the main part of �color�points�

type�color�point�� pointer �� C��� C�� � POINTER because it	s opaque

real �� RC

���

call new�c��� � color�point�new

���

call draw �c��� � color�point�draw

���

rc 
 dist�c��� c��� � color�point�dist

���

call del�c��� � color�point�del

���

end program main

� Rationales

��� Specifying in which junior part an entity is completed

There are two reasons to specify the junior part in which a procedure or type is completed�

�� It prevents providing more than one procedure body for a given declaration� or completing a type
de�nition more than once�

�� It helps a human �nd the body of a procedure or completion of a type� It is not unusual that ��� of the
lifetime cost of a program is incurred during maintenance� Anything in the language design that helps
the human during this phase reduces lifetime cost�

The attraction of not specifying the junior part in which an entity is completed is that it allows more freedom to
re
arrange the assignment of entities to junior parts without �potentially� requiring re
compilation of USE�ers
of the module�

��� Using SEPARATE instead of MODULE for junior part header

SEPARATE is used for a junior part header to emphasize that a junior part is not accessible by use association�



J�������	
Page � of ��

��� Procedure interfaces are not repeated in the junior part

Procedure interfaces are not repeated in the junior part because some people commented that the proposal
would not be acceptable if it required repeating procedure interface declarations� It also would require an
exception to the rule that no attribute can explicitly be declared more than once�

Others have remarked

� It is desirable to have interface declarations �nearby� during development�

� Copying interface declarations from the senior part to the junior part would not be an onerous burden
if one uses modern �cut and paste� editors�

� Copying interface declarations from the senior part to the junior part� and then making them into
comments� is not nearly so useful as having the compiler check them�

� Very few users of other languages that require separating interface from implementation �e�g� Modula
and Ada� complain about the burden to reproduce procedure interface declarations�

It is presently prohibited to repeat an interface declaration for a module procedure� for which consistency can
easily be checked� but allowed for an external procedure� for which consistency cannot easily be checked�

��� Separating interface from implementation instead of separating modules into pieces

� Separating interface from implementation solves all of the problems enumerated in the introduction�
Simply allowing one to separate modules into pieces addresses only one of the problems 	 facilitating
development and maintenance of large modules�

� If the several pieces of a module are to be allowed access to private entities of each other� it would be
necessary either that private entities be included in whatever data base the compiler produces as a result
of compiling a module �typically a �mod �le�� or separate data bases would be necessary to record the
public information and the private information about modules�

� If all of the pieces all symmetrically to have access to all of the others� it is not clear how to compile any
of them until all of the others have been compiled�

��� Why are junior parts allowed to have junior parts�

Junior parts are allwed to have junior parts for two reasons�

�� Except for the �header� and END statement� the syntactic structure of a junior part is identical to the
structure of a module� This makes it easier to explain and remember�

�� It provides a simple mechanism to partition and structure private parts of a module� One correspondent
explained the following situation�

A module that encapsulates a simulation of a physical process contains one interface to a procedure
that selects one of six models� depending on arguments� Each model is implemented by a distinct
private procedure� typically exceeding ���� lines in length� Each model procedure was developed and is
maintained by a distinct team�

If junior parts can have junior parts� interfaces to the model procedures� and any data shared between the
model procedures and the �steering� procedure can be placed in the same junior part as the �steering�
procedure� Otherwise� the interfaces to the model procedures must be placed into the main part �and



J�������	
Page �� of ��

probably declared to be private�� If model procedures communicate with the �steering� procedure by
way of module variables� those� too� would need to be placed in the main part� Changes to the interfaces
or shared data could cause re
compilation and re
certi�cation of USE�ers of the modules�

��	 Why are junior parts continuations
 not new scoping units�

If junior parts were new scoping units that accessed their senior parts by host association� instead of being
continuations� it would allow declaration of new entities using the same names as entities in the senior part�
This was rejected because such redeclarations are almost certainly errors� It also requires a di�cult explanation
for why the completion of a procedure or type begun in the senior part is not a new entity�

� Questions for J�

�� Should modules be changed in this general way�

�� Should modules be changed in this general way now 	 can this change reasonably be considered to be
within the scope of the charge to �enhance the language to make it possible for users to implement
abstract data types such as interval arithmetic using modules��

�� Should the junior part in which a procedure body or type completion appears be announced in the senior
part� That is� should a separate division be introduced by SEPARATE �� junior�part�name� or should a
senior part have only one separate division introduced by SEPARATE �� junior�part�name�list�

�� Should the junior parts of a senior part be announced at all� That is� should a senior part have a single
separate division introduced by SEPARATE�

�� Should procedure interface declarations be repeated in the junior part� The author�s preferences are� in
order of most
preferred
�rst�

�a� Procedure interface declarations shall be repeated in the junior part� and shall specify the same
characteristics as �better� be identical to� corresponding interface declarations in the senior part�

�b� A procedure interface declaration may optionally be repeated in the junior part� if so it shall specify
the same characteristics as �better� be identical to� the interface declaration in the senior part�

�c� Procedure interface declarations shall not be repeated in the junior part�


� Should junior parts be continuations of senior parts� or new scoping units that access the senior part by
host association�

�� Should the SEPARATE attribute be speci�ed on procedure and type de�nitions in the junior part that
complete one declared in the senior part� So long as a junior part is a continuation� not a new scoping
unit� this isn�t strictly necessary� A compiler �and human� could look in the senior part for an interface
or type declaration of the same name in a separate division that names the junior part�

�� Should completely opaque types be included in the present change�

�� Should section ����� be removed from this proposal�


