
J�������	
Page � of �

Date� � December ����
To� J�
From� Van Snyder
Subject� Enhancing Modules II � Extensibility for object	oriented programming
References� ��	��
� ��	���� ��	���� ��	
�� ��	��

� Introduction

The bene�t that most distinguishes object oriented programming from other methodologies is that one
may modify� replace or extend the behavior of an object by creating a new one that inherits properties
from the original one� and one may then extend� replace� or add new behaviors� without modifying the
original object�

This permits one to retain con�dence in the integrity of the implementation of the original object�
whereas modifying an object in order to extend its behavior would compromise that con�dence�

One of the principles of �good� software engineering is that users of a resource �procedure� type�
or datum� should not depend on the implementation of that resource� The PRIVATE statement and
attribute enforce this discipline in Fortran ��� When a type is extended� however� it is usually useful
if procedures that over	ride a behavior of a parent type to provide di�erent behavior for objects of the
extension type� or that provide new behavior� have access to private resources of the parent type� Given
the facilities of modules in Fortran ��� and presently proposed extensions to support object oriented
programming� one could implement an extension type in one of two ways�

In a di
erent module� Access to the module in which the parent type is implement is gained by use
association� entities with private visibility are not accessible�

By modifying the module containing the parent type� Private resources are accessible� modi	
fying the module compromises the con�dence one places in the integrity of the implementation of
the parent type� and causes otherwise unnecessary re	compilation and re	certi�cation cascades�

Neither alternative is acceptable�

The second is not possible if one must extend a type for which source code is not available�

In C�� and Java� this unavoidable tension between users and extenders of a type is relieved by
providing a third type of visibility� protected visibility� that is not presently provided by Fortran�

Visibility in C�� and Java is based on classes� which are roughly equivalent to derived types in Fortran�
with the added facility to de�ne procedures inside of them� Fortran has modules� which C�� and Java
lack� and visibility control in Fortran is based on modules� Components of a base type having protected
visibility in C�� or Java are accessible in extension types� but not to other users� The C�� equivalent
of module variables is static class members� There is no proposal to implement anything equivalent
to C�� static class members into Fortran� and this is not necessary� To provide the equivalent of
protected visibility for extensible type components� and for module variables� while simultaneously
preserving encapsulation� it is su�cient to�

� Allow extending a module without modifying it�

� Allow control of which modules are extensible�

� Allow extension modules access to private resources of the extended module�



J�������	
Page 
 of �

� Prohibit users of extensible or extension modules to gain access to private entities of the modules�

A change to modules that is parallel in functionality� syntax and semantics to changes to types that are
already under way to provide object oriented programming features is proposed� Without this change
it will be di�cult e�ectively to exploit object oriented programming features presently planned to be
introduced into Fortran�

Rather than write throughout �If this proposal were implemented� one could ���� this proposal is
written as though it were already implemented� Where practice is constrained by the current design
of Fortran� �In Fortran ������ is written�

� Speci�cations for proposals

Module extensibility is based on the same principles as type extensibility� By analogy with extensible
types� a module that is extended is called a parent module and its extension is called a child module�

A child module has access to all entities of its parent module� including entities with private visibility�
by host association� If the facility advocated in ��	�� to divide modules into main and separate parts
is implemented� a child module would have access only to the main part of its parent module� The
inaccessibility of the separate parts of the parent module would provide visibility control similar to
C�� private visibility�

Super�cial examination of ��	�� may suggest that child modules are redundant to separate parts of
modules�

A child module is di�erent from a separate part of a module in the following ways�

� A child module can be accessed by use association� a separate part cannot�

� A main part can declare an interface for a procedure contained in a separate part� A parent
module can not declare an interface for a procedure contained in a child module�

A child module is similar to a separate part in the following ways�

� All entities� including private entities� that are accessible in or part of a parent module are
accessible in its child module� as though by host association� The relation between parent and
child modules provides a facility very much like protected visibility in C�� or Java�

� Entities of a child module are not accessible in its parent module�

Neither a parent module nor a child module shall access the other by use association � this would cause
a circularity of dependence�

If the proposal advocated in ��	�� to divide modules into main and separate parts is implemented�
parent and child modules may independently be composed of main parts and separate parts�

� Syntax for extensible and extension modules

Extensible and extension modules are analogous to extensible and extension types� As such� the same
syntactic modi�cations are applied to MODULE statements as are applied to TYPE statements �see O	O
proposals��

An extensible type is declared by adjoining an EXTENSIBLE attribute to a TYPE declaration� e�g� TYPE�
EXTENSIBLE �� POINT� By analogy� an extensible module is declared by adjoining the same attribute
keyword� and using the same punctuation� e�g� MODULE� EXTENSIBLE �� POINTS�



J�������	
Page � of �

An extension type is declared by adjoining an EXTENDS�parent�type� keyword to a TYPE declaration� e�g�
TYPE� EXTENDS�POINT� �� COLOR POINT� By analogy� an extension module is declared by adjoining
the same attribute keyword� and using the same punctuation� e�g� MODULE� EXTENDS�POINTS� ��

COLOR POINTS�

For consistency� modules that are neither extensible nor extensions can be declared using syntax anal	
ogous to syntax for type and object declarations� e�g� MODULE �� M�

� An illustrative example

This example illustrates extensible modules and extension modules�

module� extensible �� points � an extensible module

type� extensible �� point � an extensible type� see O�O proposals �	�
��� �	���

private� real �� x� y

contains

procedure dist �� point�dist

procedure draw �� point�draw

end type point

private point�dist� point�draw � accessible only by using dist and draw

real function point�dist � a� b �

type�point� �� a� b

point�dist � sqrt� �b�x � a�x���� � �b�y � a�y���� �

end function point�dist

subroutine point�draw � p �

type�point� �� p

� Whatever is necessary to draw a monochrome point�

end subroutine point�draw

end module points

module� extends�points� �� color�points � an extension module

type� extends�point� �� color�point � extension of type �point�

private� integer �� color

contains

procedure draw �� color�point�draw � DRAW is visible to USE�ers

end type

private color�point�draw

subroutine color�point�draw � p �

type�color�point�� pointer �� p

� Whatever is necessary to draw a color point�

end subroutine color�point�draw

end module color�points


