
J�������	
Page � of �

Date� � December ����
To� J�
From� Van Snyder
Subject� Enhancing Modules III � Miscellaneous

There are several module�related issues that have not yet 	or not recently
 been the topic of a paper�
These issues are presented here only to keep awareness of them� No concrete solutions are o�ered�

� PRIVATE and PUBLIC refer to names
 not to entities� Thus it is not possible separately to control
the visibility of speci�c and generic procedures
 or of several di�erent generic interfaces
 of the
same name�

� Module procedures have speci�c
 not generic interface� Accessing them by use association allows
greater possibility of con�ict with another procedure of the same name than would be the case if
they were de�ned to have generic interfaces�

� Addition of an annotation of a USE statement to indicate that resources used from the module
shall be quali�ed by the module name would reduce the need for renaming clauses� In addition

it would allow one to indicate
 at the points of usage
 the module from which an entity is USE�ed�
E�g� if one has USE POINTS� QUALIFIED
 declaring an object of type POINT would require using
POINTS�POINT� If the QUALIFIED annotation were absent from the USE statement
 one could
choose whether to use module entities with or without quali�cation� E�g� POINTS�POINT would
be allowed
 but not required�

� It is frequently useful to allow users of a module or type to reference data accessed from the
module
 or components of the type
 but not to change them� The present mechanism for this
functionality is to provide a public procedure to view a private datum
 but no public procedure
to change it� These procedures are usually trivial� One hopes that �Quality of implementation
of compilers� includes materializing these procedures in�line
 but it usually doesn�t� Another
drawback is that the lifetime cost of a program is roughly proportional to its bulk� Requiring
gratuitous procedure�i�cation of this functionality increases the bulk of programs
 and therefore
their cost�

Providing an un�symmetrical visibility attribute
 spelled READONLY in some proposals
 would allow
more e�cient programs
 even in �low quality� environments that don�t in�line trivial procedures

and reduce code bulk
 thereby presumably reducing programs� lifetime costs�


