J3/98-107
page 1 of 7

Subject: HPF Version of C Interoperability
Author: Jerry Wagener
Date: 11 Dec 1997

The following six pages comprise section 11.4 of the HPF-2 document, which describes
one approach to Fortran - C interoperability.

At the Nov’ 97 J3 meeting, section B.3 of the Ada-95 standard was distributed as paper J3/
97-254 (11 pages); it describes Ada - C interoperability.

J3/97-154 (50+ pages) isthe latest version of the Fortran - C interoperability Technical Re-
port produced for WG5 by Michael Hennecke.

A number of technical problems with J3/97-154 have been identified (J3/97-187r1, J3/97-
188r1); in addition there are conceptual concernswith thisapproach (e.g., J3/97-189). Both
J3/97-254 and the attached six pages offer additional approaches that could be considered
for Fortran 2000 requirement R.9 (Interoperability with C).

222 SECTION 11. APPROVED EXTENSIONS FOR HPF EXTRINSICS

PROGRAM MY_TEST
INTERFACE
EXTRINSIC('HPF', 'SERIAL') SUBROUTINE GRAPH_DISPLAY(DATA)
INTEGER, INTENT(IN) :: DATA(:, :)
END SUBROUTINE GRAPH_DISPLAY
END INTERFACE

INTEGER, PARAMETER :: X_SIZE = 1024, Y_SIZE = 1024

INTEGER DATA_ARRAY(X_SIZE, Y_SIZE)
'HPF$ DISTRIBUTE DATA_ARRAY(BLOCK, BLOCK)

! Compute DATA_ARRAY

CALL DISPLAY_DATA(DATA_ARRAY)
END PROGRAM MY_TEST

! The definition of a graphical display subroutine.
! In some implementation-dependent fashion,
! this will plot a graph of the data in DATA.

EXTRINSIC('HPF', 'SERIAL') SUBROUTINE GRAPH_DISPLAY(DATA)
INTEGER, INTENT(IN) :: DATA(:, :)
INTEGER :: X_IDX, Y_IDX

DO Y_IDX = LBOUND(DATA, 2), UBOUND(DATA, 2)
DO X_IDX = LBOUND(DATA, 1), UBOUND(DATA, 1)
END DO
END DO
END SUBROUTINE GRAPH_DISPLAY

11.4 C Language Bindings

A common problem faced by Fortran users is the need to call procedures written in other
languages, particularly those written in C or ones that have interfaces that can be described
by C prototypes. Although many Fortran implementations provide methods that solve this
problem, these solutions are rarely portable.

This section defines a method of specifying interfaces to procedures defined in C that
removes most of the common obstacles to interoperability, while retaining portability.

11.4.1 Specification of Interfaces to Procedures Defined in C

If a user wishes to specify that a procedure is defined by a C procedure, this is specified with
an extrinsic-spec-arg of LANGUAGE = 'C', or an extrinsic-kind-keyword of C, as specified in
Section 6.

For C subprograms for which EXTRINSIC (LANGUAGE = 'C') has been specified, the
constraints associated with the syntax for attr-spec-extended (H1102) are extended as fol-

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.4. C LANGUAGE BINDINGS 223

lows:

Constraint: A LANGUAGE = 'C' function shall have a scalar result of type integer, real or
double precision.

Constraint: A dummy argument of a LANGUAGE = 'C' procedure shall not be an assumed-
shape array, shall not have the POINTER attribute, shall not have the TARGET
attribute, nor shall it have a subobject that has the POINTER attribute.

Constraint: The bounds of a dummy argument shall not be specified by specification ex-
pressions that are not constant specification expressions, nor shall the character
length parameter of a dummy argument of such a procedure be specified by a
specification expression that is not a constant specification expression.

Constraint: A dummy-arg-list of a LANGUAGE = 'C' subroutine shall not have a dummy-arg
that is * or a dummy procedure.

The value of the scalar-char-initialization-expr in the EXTERNAL NAME specifier gives the
name of the procedure as defined in C. This value need not be the same as the procedure
name specified by the function-stmt or subroutine-stmt. If EXTERNAL_NAME is not specified,
it is as if it were specified with a value that is the same as the procedure name in lower case
letters.

Advice to users. Note that the EXTERNAL NAME specifier does not necessarily specify
the name by which a binder knows the procedure. It specifies the name by which
the procedure would be known if it were referenced by a C program, and the HPF
compiler is required to perform any transformations of that name that the C compiler
would perform.

The EXTERNAL NAME specifier also allows the user to specify a name that might not
be permitted by an HPF compiler, such as a name beginning with an underscore, or
as a way of enforcing the distinction between upper and lower case characters in the
name. (End of advice to users.)

The extrinsic-spec-arg of LANGUAGE = 'C' helps a compiler identify a procedure that
is defined in C so that it can take appropriate steps to ensure that the procedure is invoked
in the manner required by the C compiler.

Advice to implementors. A vendor may feel compelled to provide support for more
than one C compiler, if different C compilers available for a system provide different
procedure calling conventions or different data type sizes. For instance, a vendor’s
compiler may provide support for a value of GNU_C in the LANGUAGE= specifier, or
it may provide support through the use of compiler switches. (End of advice to
implementors.)

11.4.2 Specification of Data Type Mappings for C

The extrinsic dummy argument feature, consisting of the MAP_TO, LAYOUT, and PASS BY
attributes, is the principal feature that facilitates referencing procedures defined in C from
within Fortran programs. Together, these attributes allow the user to specify conversions
required to associate the actual arguments specified in the procedure reference with the

224 SECTION 11. APPROVED EXTENSIONS FOR HPF EXTRINSICS

formal arguments defined by the referenced procedure. In particular, the MAP_TO attribute
indicates the type of the C data to which the HPF data shall be converted by the compiler;
the PASS BY attribute indicates whether a C pointer to the dummy argument needs to be
passed; the LAYOUT attribute indicates for an array whether the array element order needs
to be changed from Fortran’s array element ordering to C’s.

For C, the constraints associated with atir-spec-extended, map-to-spec, layout-spec, and
pass-by-spec (H1102-H1105) are further extended as follows.

Constraint: The MAP_TO attribute shall be specified for all dummy arguments and function
result variables of a LANGUAGE = 'C' explicit interface.

Constraint: The map-to-spec associated with a dummy argument shall be compatible with
the type of the dummy argument. (See below for compatibility rules.)

Constraint: A LAYOUT attribute shall only be specified for a dummy argument that is an
array.

Constraint: A LAYQUT attribute shall not be specified for an assumed-size array.

If the compiler is capable of representing letters in both upper and lower case, the value
specified for a map-to-spec, layout-spec or pass-by-spec is without regard to case. Any blanks
specified for a map-to-spec, layout-spec or pass-by-spec shall be ignored by the compiler for
the purposes of determining its value.

An implementation shall provide a module, IS0_C, that shall define a derived type,
C_VOID_POINTER. The components of the C_VOID_POINTER type shall be private.

Advice to users. The C_VOID POINTER type provides a method of using void *
pointers in a program, but does not give the user any way of manipulating such a
pointer in the Fortran part of the program, since 1/O cannot be performed on an
object with private components outside the module that defines the type, neither can
the components or structure constructor of such a structure be used outside of the
module that defines the type. (End of advice to users.)

The values permitted for a map-to-spec for LANGUAGE = 'C' are 'INT', 'LONG',
'SHORT', 'SIGNED_CHAR', 'FLOAT', 'DOUBLE', 'LONG_DOUBLE', 'CHAR', 'CHAR_PTR',
'"VOIDPTR', or a comma-separated list, delimited by parentheses, of any of these values.
The HPF types with which these are compatible are shown in the table below.

A map-to-spec that is a parenthesized list of values is compatible with a dummy argu-
ment of derived type if each value in the list is compatible with the corresponding component
of the derived type.

When the PASS BY attribute is used, the values permitted for a pass-by-spec are 'VAL',
"' or 'xx' If no PASS BY attribute is specified, then PASS BY ('VAL') is assumed. If a
pass-by-spec of VAL is specified, the dummy argument shall not have the INTENT(QUT) or
INTENT (INOUT) attribute specified. If a value of '"#' or '"#*' is specified for the pass-by-spec,
an associated actual argument shall be a variable.

The value of the map-to-spec specified for a dummy argument in the interface body of a
procedure for which a LANGUAGE= specifier whose value is C appears shall be such that at least
one of the permitted mapped-to types is the same as the C data type of the corresponding
formal argument in the C definition of the procedure (or a type that is compatible with
one of the permitted mapped-to types). The C data type of a function in the C definition

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.4. C LANGUAGE BINDINGS 225

of a procedure shall be one of the permitted mapped-to types (or a type that is equivalent
to the permitted mapped-to types) specified for the function result variable in the interface
body of a function with the LANGUAGE= specifier whose value is C. If a subroutine has been
specified with a LANGUAGE= specifier whose value is C, the C definition of the procedure shall
be specified with a data type of void.

The permitted mapped-to types for scalar dummy arguments of intrinsic type or of the
derived type C_VOID _POINTER, are shown in the following table.

MAP_TO Compatible C Type if PASS_BY

With TVAL' Tx! Tk !
"INT' INTEGER int int* int*x*
'LONG' INTEGER long long* long**
'SHORT' INTEGER short shortx* short*x*
'SIGNED_CHAR' | INTEGER signed char | signed char* | signed char*x*
'FLOAT' REAL float floatx* floatx**
'DOUBLE’ REAL double doublex* doublex*x*
'LONG_DOUBLE' | REAL double doublex* doublex*
"CHAR' CHARACTER(1) char char* char**
'"CHAR PTR' CHARACTER charx* charx** char**x*
'VOIDPTR' C_VOID_POINTER | void# void*x* void*x*x*

The permitted mapped-to types of an array are the same as the permitted mapped-
to types of a scalar variable of that type followed by a left bracket ([), followed by the
extent of the corresponding dimension of the dummy argument, followed by a right bracket
(1), for each dimension of the array. If no value is specified for the LAYOUT attribute, the
corresponding dimensions of the dummy argument are determined from right to left; if the
value C_ARRAY is specified for the LAYOUT attribute, the corresponding dimensions of the
dummy argument are determined from left to right.

The value permitted for a LANGUAGE = 'C' layout-spec is C_ARRAY.

The permitted mapped-to types of a scalar variable of derived type are the structures
whose corresponding members are of one of the permitted mapped-to types of the compo-
nents of the derived type.

If there is a mismatch between the precision, representation method, range of permitted
values or storage sequence between the type of the dummy argument and the permitted
mapped-to type of the dummy argument, the compiler shall ensure that, for the duration
of the reference to a procedure defined with a LANGUAGE= specifier whose value is C, the
dummy argument is represented in a manner that is compatible with the expectations of
the C processor for an object of the permitted mapped-to type. Upon return from the
procedure, the compiler shall ensure that the value of an actual argument that is a variable
is restored to the specified type and kind.

If the range of permitted values of the type and mapped-to type differ and the value of
the actual argument or some subobject of the actual argument is not within the permitted
range of the mapped-to type, the value of the associated dummy argument or subobject
becomes undefined. Conversely, if the value of the dummy argument or some subobject of
the dummy is not within the permitted range of values of the associated dummy argument,
and the associated actual argument is a variable, the value of the associated actual argument
or subobject of the actual becomes undefined.

226

SECTION 11. APPROVED EXTENSIONS FOR HPF EXTRINSICS

Advice to users. These rules were created to ensure the portability of interoperability.
However, it should be noted that for large objects, a significant overhead may be
incurred if there is a mismatch between the representation method used for the data
type versus the representation method used for the permitted mapped-to type. (End
of advice to users.)

Advice to users. In some cases, this may cause the value of the actual argument to
change without the value being modified by the procedure referenced. For example,

PROGRAM P
INTERFACE
EXTRINSIC(LANGUAGE='C') SUBROUTINE C_SUB(R,I)
REAL(KIND(1.0D0)), MAP_TO('FLOAT'), PASS_BY('*') :: R
INTEGER, MAP_TO('INT'), PASS_BY('*') :: I
END SUBROUTINE C_SUB
END INTERFACE
REAL (KIND(0.0DO)) RR

RR = 1.0D0 + 1.0D-10
I = 123456789
PRINT =, RR
CALL C_SUB(RR, I)
PRINT =, RR

END PROGRAM P

void c_sub(float *r, int *i)
{
}

might print

1.00000000010000000
1.00000000000000000

although the value of *r is not modified in c_sub. Similarly, the value of I might
become undefined after the reference to c_sub, although *i is not modified.

Although it is good practice to avoid specifying a mapped-to type of float for a
dummy argument of any type other than default real, or a mapped-to type of double
for a dummy argument of any type other than double precision real, selecting an
appropriate dummy argument type for objects requiring a mapped-to type int or
long might not be so simple. (End of advice to users.)

If no layout-spec is specified for a dummy array argument, the array element order shall

be the same as that specified by Fortran. If the value of layout-spec specified is C_ARRAY,
the array element order of the array shall be transposed for the duration of the reference
to the procedure.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.5. FORTRAN LANGUAGE BINDINGS 227

11.4.2.1 Examples of Data Type Mappings

Some examples should help to clarify what sorts of C procedure definitions would be per-
mitted given an interface body in a Fortran program. For example, the following interface

body

INTERFACE
EXTRINSIC('C') SUBROUTINE C_SUB(I, R, DARR, STRUCT)
INTEGER, MAP_TO('INT') :: I
REAL, MAP_TO('FLOAT'), PASS_BY('#') :: R
REAL(KIND(1.0D0O)), MAP_TO('DOUBLE') :: DARR(10)
TYPE DT
SEQUENCE
INTEGER :: I, J
END TYPE DT
TYPE(DT), MAP_TO('(INT, LONG)'), PASS_BY('*') :: STRUCT
END SUBROUTINE C_SUB
END INTERFACE

could correspond to a C procedure that has the prototype
void c_sub(int i, float r*, double darr[10], struct {int i, long j} *)
In the following example of the LAYOUT attribute,

PROGRAM P
INTERFACE
EXTRINSIC('C') SUBROUTINE C_SUB(A, B)
INTEGER, MAP_TO('INT') :: A(2,2)
INTEGER, MAP_TO('INT'), LAYOUT('C_ARRAY') :: B(2,2)
END SUBROUTINE C_SUB
END INTERFACE

INTEGER :: AA(2,2), BB(2,2)
CALL C_SUB(AA, BB)
END PROGRAM P

void c_sub(int a[2]1[2], b[2]1[2])

the correspondence between elements of AA and a, and elements of BB and b is

AA(1,1) alo][0] BB(1,1) b[0][0]
AA(2,1) al0][1] BB(2,1) b[1][0]
AA(1,2) al1][0] BB(1,2) b[0][1]
AA(2,2) al1][1] BB(2,2) b[1][1]

11.5 Fortran Language Bindings

When the language specified in an extrinsic definition is Fortran the rules are basically the
same as those for HPF because HPF is based on the Fortran standard. There are a few
issues to consider in this case:

