
J3/98-107
page 1 of 7

Subject: HPF Version of C Interoperability
Author: Jerry Wagener

Date: 11 Dec 1997

The following six pages comprise section 11.4 of the HPF-2 document, which describes
one approach to Fortran - C interoperability.

At the Nov’97 J3 meeting, section B.3 of the Ada-95 standard was distributed as paper J3/
97-254 (11 pages); it describes Ada - C interoperability.

J3/97-154 (50+ pages) is the latest version of the Fortran - C interoperability Technical Re-
port produced for WG5 by Michael Hennecke.

A number of technical problems with J3/97-154 have been identified (J3/97-187r1, J3/97-
188r1); in addition there are conceptual concerns with this approach (e.g., J3/97-189). Both
J3/97-254 and the attached six pages offer additional approaches that could be considered
for Fortran 2000 requirement R.9 (Interoperability with C).

��� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

PROGRAM MY�TEST

INTERFACE

EXTRINSIC��HPF���SERIAL�� SUBROUTINE GRAPH�DISPLAY�DATA�

INTEGER� INTENT�IN� �� DATA��� ��

END SUBROUTINE GRAPH�DISPLAY

END INTERFACE

INTEGER� PARAMETER �� X�SIZE � 	
��� Y�SIZE � 	
��

INTEGER DATA�ARRAY�X�SIZE� Y�SIZE�

HPF� DISTRIBUTE DATA�ARRAY�BLOCK� BLOCK�

 Compute DATA�ARRAY

���

CALL DISPLAY�DATA�DATA�ARRAY�

END PROGRAM MY�TEST

 The definition of a graphical display subroutine�

 In some implementation�dependent fashion�

 this will plot a graph of the data in DATA�

EXTRINSIC��HPF���SERIAL�� SUBROUTINE GRAPH�DISPLAY�DATA�

INTEGER� INTENT�IN� �� DATA��� ��

INTEGER �� X�IDX� Y�IDX

DO Y�IDX � LBOUND�DATA� ��� UBOUND�DATA� ��

DO X�IDX � LBOUND�DATA� 	�� UBOUND�DATA� 	�

���

END DO

END DO

END SUBROUTINE GRAPH�DISPLAY

���� C Language Bindings

A common problem faced by Fortran users is the need to call procedures written in other
languages� particularly those written in C or ones that have interfaces that can be described
by C prototypes� Although many Fortran implementations provide methods that solve this
problem� these solutions are rarely portable�

This section de�nes a method of specifying interfaces to procedures de�ned in C that
removes most of the common obstacles to interoperability� while retaining portability�

������ Speci�cation of Interfaces to Procedures De�ned in C

If a user wishes to specify that a procedure is de�ned by a C procedure� this is speci�ed with
an extrinsic�spec�arg of LANGUAGE � �C�� or an extrinsic�kind�keyword of C� as speci�ed in
Section ��

For C subprograms for which EXTRINSIC �LANGUAGE � �C�� has been speci�ed� the
constraints associated with the syntax for attr�spec�extended �H����	 are extended as fol

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� C LANGUAGE BINDINGS ���

lows�

Constraint� A LANGUAGE � �C� function shall have a scalar result of type integer� real or
double precision�

Constraint� A dummy argument of a LANGUAGE � �C� procedure shall not be an assumed�
shape array� shall not have the POINTER attribute� shall not have the TARGET

attribute� nor shall it have a subobject that has the POINTER attribute�

Constraint� The bounds of a dummy argument shall not be speci�ed by speci�cation ex�
pressions that are not constant speci�cation expressions� nor shall the character
length parameter of a dummy argument of such a procedure be speci�ed by a
speci�cation expression that is not a constant speci�cation expression�

Constraint� A dummy�arg�list of a LANGUAGE � �C� subroutine shall not have a dummy�arg

that is � or a dummy procedure�

The value of the scalar�char�initialization�expr in the EXTERNAL NAME speci�er gives the
name of the procedure as de�ned in C� This value need not be the same as the procedure
name speci�ed by the function�stmt or subroutine�stmt� If EXTERNAL NAME is not speci�ed�
it is as if it were speci�ed with a value that is the same as the procedure name in lower case
letters�

Advice to users� Note that the EXTERNAL NAME speci�er does not necessarily specify
the name by which a binder knows the procedure� It speci�es the name by which
the procedure would be known if it were referenced by a C program� and the HPF
compiler is required to perform any transformations of that name that the C compiler
would perform�

The EXTERNAL NAME speci�er also allows the user to specify a name that might not
be permitted by an HPF compiler� such as a name beginning with an underscore� or
as a way of enforcing the distinction between upper and lower case characters in the
name� �End of advice to users�	

The extrinsic�spec�arg of LANGUAGE � �C� helps a compiler identify a procedure that
is de�ned in C so that it can take appropriate steps to ensure that the procedure is invoked
in the manner required by the C compiler�

Advice to implementors� A vendor may feel compelled to provide support for more
than one C compiler� if di
erent C compilers available for a system provide di
erent
procedure calling conventions or di
erent data type sizes� For instance� a vendor�s
compiler may provide support for a value of GNU C in the LANGUAGE� speci�er� or
it may provide support through the use of compiler switches� �End of advice to

implementors�	

������ Speci�cation of Data Type Mappings for C

The extrinsic dummy argument feature� consisting of the MAP TO� LAYOUT� and PASS BY

attributes� is the principal feature that facilitates referencing procedures de�ned in C from
within Fortran programs� Together� these attributes allow the user to specify conversions
required to associate the actual arguments speci�ed in the procedure reference with the

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

formal arguments de�ned by the referenced procedure� In particular� the MAP TO attribute
indicates the type of the C data to which the HPF data shall be converted by the compiler�
the PASS BY attribute indicates whether a C pointer to the dummy argument needs to be
passed� the LAYOUT attribute indicates for an array whether the array element order needs
to be changed from Fortran�s array element ordering to C�s�

For C� the constraints associated with attr�spec�extended� map�to�spec� layout�spec� and
pass�by�spec �H		
��H		
�
 are further extended as follows�

Constraint� The MAP TO attribute shall be speci�ed for all dummy arguments and function
result variables of a LANGUAGE � �C� explicit interface�

Constraint� The map�to�spec associated with a dummy argument shall be compatible with
the type of the dummy argument� �See below for compatibility rules�

Constraint� A LAYOUT attribute shall only be speci�ed for a dummy argument that is an
array�

Constraint� A LAYOUT attribute shall not be speci�ed for an assumed�size array�

If the compiler is capable of representing letters in both upper and lower case� the value
speci�ed for amap�to�spec� layout�spec or pass�by�spec is without regard to case� Any blanks
speci�ed for a map�to�spec� layout�spec or pass�by�spec shall be ignored by the compiler for
the purposes of determining its value�

An implementation shall provide a module� ISO C� that shall de�ne a derived type�
C VOID POINTER� The components of the C VOID POINTER type shall be private�

Advice to users� The C VOID POINTER type provides a method of using void �

pointers in a program� but does not give the user any way of manipulating such a
pointer in the Fortran part of the program� since I�O cannot be performed on an
object with private components outside the module that de�nes the type� neither can
the components or structure constructor of such a structure be used outside of the
module that de�nes the type� �End of advice to users�

The values permitted for a map�to�spec for LANGUAGE � �C� are �INT�� �LONG��
�SHORT�� �SIGNED CHAR�� �FLOAT�� �DOUBLE�� �LONG DOUBLE�� �CHAR�� �CHAR PTR��
�VOID PTR�� or a comma�separated list� delimited by parentheses� of any of these values�
The HPF types with which these are compatible are shown in the table below�

A map�to�spec that is a parenthesized list of values is compatible with a dummy argu�
ment of derived type if each value in the list is compatible with the corresponding component
of the derived type�

When the PASS BY attribute is used� the values permitted for a pass�by�spec are �VAL��
���� or ����� If no PASS BY attribute is speci�ed� then PASS BY ��VAL�� is assumed� If a
pass�by�spec of VAL is speci�ed� the dummy argument shall not have the INTENT�OUT� or
INTENT�INOUT� attribute speci�ed� If a value of ��� or ���� is speci�ed for the pass�by�spec�
an associated actual argument shall be a variable�

The value of the map�to�spec speci�ed for a dummy argument in the interface body of a
procedure for which a LANGUAGE� speci�er whose value is C appears shall be such that at least
one of the permitted mapped�to types is the same as the C data type of the corresponding
formal argument in the C de�nition of the procedure �or a type that is compatible with
one of the permitted mapped�to types
� The C data type of a function in the C de�nition

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� C LANGUAGE BINDINGS ���

of a procedure shall be one of the permitted mapped�to types �or a type that is equivalent
to the permitted mapped�to types� speci�ed for the function result variable in the interface
body of a function with the LANGUAGE� speci�er whose value is C� If a subroutine has been
speci�ed with a LANGUAGE� speci�er whose value is C� the C de�nition of the procedure shall
be speci�ed with a data type of void�

The permitted mapped�to types for scalar dummy arguments of intrinsic type or of the
derived type C VOID POINTER� are shown in the following table�

MAP TO Compatible C Type if PASS BY

With �VAL� ��� ����

�INT� INTEGER int int� int��

�LONG� INTEGER long long� long��

�SHORT� INTEGER short short� short��

�SIGNED CHAR� INTEGER signed char signed char� signed char��

�FLOAT� REAL float float� float��

�DOUBLE� REAL double double� double��

�LONG DOUBLE� REAL double double� double��

�CHAR� CHARACTER��� char char� char��

�CHAR PTR� CHARACTER char� char�� char���

�VOID PTR� C VOID POINTER void� void�� void���

The permitted mapped�to types of an array are the same as the permitted mapped�
to types of a scalar variable of that type followed by a left bracket ���� followed by the
extent of the corresponding dimension of the dummy argument� followed by a right bracket
�	�� for each dimension of the array� If no value is speci�ed for the LAYOUT attribute� the
corresponding dimensions of the dummy argument are determined from right to left	 if the
value C ARRAY is speci�ed for the LAYOUT attribute� the corresponding dimensions of the
dummy argument are determined from left to right�

The value permitted for a LANGUAGE � �C� layout�spec is C ARRAY�

The permitted mapped�to types of a scalar variable of derived type are the structures
whose corresponding members are of one of the permitted mapped�to types of the compo�
nents of the derived type�

If there is a mismatch between the precision� representation method� range of permitted
values or storage sequence between the type of the dummy argument and the permitted
mapped�to type of the dummy argument� the compiler shall ensure that� for the duration
of the reference to a procedure de�ned with a LANGUAGE� speci�er whose value is C� the
dummy argument is represented in a manner that is compatible with the expectations of
the C processor for an object of the permitted mapped�to type� Upon return from the
procedure� the compiler shall ensure that the value of an actual argument that is a variable
is restored to the speci�ed type and kind�

If the range of permitted values of the type and mapped�to type di
er and the value of
the actual argument or some subobject of the actual argument is not within the permitted
range of the mapped�to type� the value of the associated dummy argument or subobject
becomes unde�ned� Conversely� if the value of the dummy argument or some subobject of
the dummy is not within the permitted range of values of the associated dummy argument�
and the associated actual argument is a variable� the value of the associated actual argument
or subobject of the actual becomes unde�ned�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

��� SECTION ��� APPROVED EXTENSIONS FOR HPF EXTRINSICS

Advice to users� These rules were created to ensure the portability of interoperability�
However� it should be noted that for large objects� a signi�cant overhead may be
incurred if there is a mismatch between the representation method used for the data
type versus the representation method used for the permitted mapped�to type� �End
of advice to users��

Advice to users� In some cases� this may cause the value of the actual argument to
change without the value being modi�ed by the procedure referenced� For example�

PROGRAM P

INTERFACE

EXTRINSIC�LANGUAGE��C�� SUBROUTINE C�SUB�R�I�

REAL�KIND��	
D
��� MAP�TO��FLOAT��� PASS�BY����� �� R

INTEGER� MAP�TO��INT��� PASS�BY����� �� I

END SUBROUTINE C�SUB

END INTERFACE

REAL�KIND�
	
D
�� RR

RR � �	
D

 �	
D��

I � ���������

PRINT �� RR

CALL C�SUB�RR� I�

PRINT �� RR

END PROGRAM P

void c�sub�float �r� int �i�

�

�

might print

�	

�

�	

although the value of �r is not modi�ed in c sub� Similarly� the value of I might
become unde�ned after the reference to c sub� although �i is not modi�ed�

Although it is good practice to avoid specifying a mapped�to type of float for a
dummy argument of any type other than default real� or a mapped�to type of double
for a dummy argument of any type other than double precision real� selecting an
appropriate dummy argument type for objects requiring a mapped�to type int or
long might not be so simple� �End of advice to users��

If no layout�spec is speci�ed for a dummy array argument� the array element order shall
be the same as that speci�ed by Fortran� If the value of layout�spec speci�ed is C ARRAY�
the array element order of the array shall be transposed for the duration of the reference
to the procedure�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

����� FORTRAN LANGUAGE BINDINGS ���

�������� Examples of Data Type Mappings

Some examples should help to clarify what sorts of C procedure de�nitions would be per�

mitted given an interface body in a Fortran program� For example� the following interface

body

INTERFACE

EXTRINSIC��C�� SUBROUTINE C�SUB�I� R� DARR� STRUCT�

INTEGER� MAP�TO��INT�� �� I

REAL� MAP�TO��FLOAT��� PASS�BY����� �� R

REAL�KIND�	
�D���� MAP�TO��DOUBLE�� �� DARR�	��

TYPE DT

SEQUENCE

INTEGER �� I� J

END TYPE DT

TYPE�DT�� MAP�TO���INT� LONG���� PASS�BY����� �� STRUCT

END SUBROUTINE C�SUB

END INTERFACE

could correspond to a C procedure that has the prototype

void c�sub�int i� float r�� double darr�	�
� struct �int i� long j� ��

In the following example of the LAYOUT attribute�

PROGRAM P

INTERFACE

EXTRINSIC��C�� SUBROUTINE C�SUB�A� B�

INTEGER� MAP�TO��INT�� �� A�����

INTEGER� MAP�TO��INT��� LAYOUT��C�ARRAY�� �� B�����

END SUBROUTINE C�SUB

END INTERFACE

INTEGER �� AA������ BB�����

CALL C�SUB�AA� BB�

END PROGRAM P

void c�sub�int a��
��
� b��
��
�

the correspondence between elements of AA and a� and elements of BB and b is

AA�	�	� a��
��
 BB�	�	� b��
��

AA���	� a��
�	
 BB���	� b�	
��

AA�	��� a�	
��
 BB�	��� b��
�	

AA����� a�	
�	
 BB����� b�	
�	

���� Fortran Language Bindings

When the language speci�ed in an extrinsic de�nition is Fortran the rules are basically the

same as those for HPF because HPF is based on the Fortran standard� There are a few

issues to consider in this case�

�

�

�

�

�

�

�

�

	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

�	

�

��

��

��

��

��

��

��

��

