
J��������
Page � of �

Date� �� January ����
To� J�
From� Van Snyder
Subject� Tutorial on Object Oriented Programming in Fortran
References� ��	��
� ��	���� ��	���� ��	���� ��	��
� ��	
��� ��	

�� ��	���� ��	���

� Introduction

Object oriented programming is a method for abstract data type programming that rests on four
software construction principles� Encapsulation� inheritance� polymorphism� and� sometimes� dynamic
binding�

Encapsulation means that one exploits the properties of an abstract data type without depending on
its implementation� An abstract data type consists of a de�nition of a structure to represent data �a
Fortran type�� together with a set of operations�

An object in the object oriented programming sense is an instance of the data structure � a Fortran
object � together with the operations of the type of the object�

Operations of the type are implemented by procedures� A procedure that is unavoidably associated
with a type� that is� one that is inevitably accessible if the type is accessible� is called a type bound

procedure� In other literature� a type bound procedure is known as a primitive operation of the
type or a method�

The mechanism of re	use in object oriented programming is to derive a new abstract data type� called
an extended type or child type from an existing abstract data type� called a parent type� In the
process� the extended type inherits the data structure and operations from the parent� The extended
type may de�ne additional components� or additional operations� New operations of the extended type
that have the same name as operations inherited from the parent� and for which the only di�erence
of characteristic is that �one or more� dummy arguments of the parent type are replaced by dummy
arguments of the extended type� are said to over�ride the parent type�s operations�

Inheritance provides a more structured and more incremental form of re	use than simple procedure
re	use�

The terms parent and child are relative� a child type can be the parent of other child types�

A parent type� together with all descendant types� is called a class of types� or more simply a class�
The parent type of all types within a class is called the base type of the class�

An important principle of object oriented programming is that data entities may be allowed to rep	
resent di�erent types of objects from the same class at di�erent moments� This is a form of data
polymorphism� A data entity that is only permitted to contain objects of a single type is called a
monomorphic entity�

Procedure polymorphism is used to allow a single name to refer to di�erent procedures� depending
on the type of the actual arguments� This facility is particularly powerful when used in conjunction
with data polymorphism�

The process of deciding which of several procedures to invoke is called dispatch or binding� Static
dispatch or static binding means it is possible to deduce the type of arguments� and therefore the
particular procedure� from the text of the program� This is the variety of procedure polymorphism
provided by generic interface blocks in Fortran� Dynamic dispatch or dynamic binding means
that the decision which procedure to invoke is delayed until the moment the procedure invocation
is executed� Dynamic dispatch is used when a procedure that has monomorphic dummy arguments



J��������
Page 
 of �

is invoked with polymorphic actual arguments� Since polymorphic data objects can contain objects
having types within a class� dynamic dispatch decides which of several over	riding procedures to invoke�

� Encapsulation

The unit of encapsulation in Fortran in the module� No changes to the syntax and semantics of
modules are necessary in order to support object oriented programming� but one change may be useful
and desirable� See paper ��	���� Enhancing Modules II � Extensibility for object oriented programming�

� Inheritance

Inheritance consists of two parts� viz� data inheritance and procedure inheritance�

��� Data inheritance

The mechanism of data inheritance presently proposed to be implemented into Fortran is type ex�
tension� A new Fortran type is constructed from an existing one by adding zero or more components�
The J��data subgroup have agreed on speci�cations and syntax for data type extension� and J� have
accepted these�

An extensible type that is not the extension of another is declared by adjoining the EXTENSIBLE

attribute to its declaration� e�g�

TYPE� EXTENSIBLE �� POINT

PRIVATE� REAL �� X� Y

END TYPE POINT

declares an extensible type named POINT that has two private components�

A child type is declared by adjoining the EXTENDS attribute� with an �argument� consisting of the
parent type� to the type declaration� e�g�

TYPE� EXTENDS�POINT� �� COLOR�POINT

PRIVATE� INTEGER �� COLOR

END TYPE COLOR�POINT

declares an extended type COLOR POINT that is a child of type POINT� A child type has exactly one
parent type� This is called single inheritance�

A child type has all of the components of the parent type� and additional ones may be declared� In
this example� objects of type COLOR POINT have X and Y components inherited from type POINT� and a
COLOR component� Objects of child type are considered also to have a component having the same name
as the parent type� See papers ��	��� and ��	��
 for more details� including speci�cations� syntax and
semantics of type constructors�

Extended types can be further extended�

In extensible types� as for Fortran	�� types� the default component visibility is PUBLIC�

��� Procedure inheritance

Procedure inheritance rests on type bound procedures� The term type bound implies at least that if
the type is accessible� then the type bound procedures are accessible as well� It may eventually have



J��������
Page � of �

other implications that are still controversial within the J��data subgroup�

Type bound procedures are declared within the body of a type declaration by using one of three
statements� A PROCEDURE statement creates a generic name by which a collection of speci�c procedures
is known� similar to the way that generic interface blocks function in Fortran	��� The di�erences will
be explained later� In addition to generic procedure names� one can declare generic operators using an
OPERATOR�de�ned�operator� statement� or de�ne assignment using an ASSIGNMENT��� statement� In
each case� the set of speci�c procedures follows ��� An example of type bound procedure declarations
is

TYPE T

CONTAINS

PROCEDURE P �	 P
� P�� P�

OPERATOR�
� �	 REAL�MINUS�T� T�MINUS�REAL� T�MINUS�T

ASSIGNMENT��� �	 T�EQUALS�T

END TYPE T

The speci�c procedure to use for each reference is determined using existing Fortran	�� rules for generic
procedure dis	ambiguation�

When an extended type is declared it inherits all of the type bound procedures of its parent� Some
or all of the speci�c procedures bound to the parent type can be over	ridden by providing speci�c
procedures that have arguments of the extended type where an inherited procedure has arguments of
the parent type� Additional procedures that do not over	ride procedures inherited from the parent
type can be declared to be type bound to the extended type�

If a procedure from the parent type is over	ridden in an extended type� the over	riding procedure is
used for that operation on the extended type�

�	
	� Over�ride semantics

The precise meaning of over	riding is still a subject of controversy within the J��data subgroup�

One point of view is that type bound procedures have a dummy argument that is distinguished as the
receiver of a message sent to an object requesting that some action be taken� This is the point of view
one adopts when programming in C��� Smalltalk� Objective	C� Oberon and numerous other object
oriented programming languages�

In this case� when a child type inherits a type bound procedure from its parent� the type of the receiver
is considered to be of the child type� for purposes of generic dis	ambiguation and type checking� If
a procedure has additional arguments of the parent type� the essential feature is that they have that
type� Therefore� when the procedure is inherited into a child type� the types of additional arguments
of the parent type are not considered to become of the child type� An over	riding procedure in the
child type would be required to have a receiver of the child type� and all other arguments of the same
type� All arguments must have the same type parameters and rank as for corresponding arguments of
the procedure to be over	ridden�

Another point of view is that the send	a	message	to	an	object paradigm is alien to Fortran� all dummy
arguments of type bound procedures should be co	equal� there should be no distinguished receiver
of a message� the Fortran	�� interpretation of procedure invocation should continue in the context of
object oriented programming� This is the point of view one adopts when programming in Ei�el� CLOS�
Haskell� Ada	�� and numerous other object oriented programming languages�

In this case� when a child type inherits a type bound procedure from its parent� the type of all arguments
of the parent type is assumed to be of the child type� for purposes of generic dis	ambiguation and type



J��������
Page � of �

checking� If a procedure has several arguments of the parent type� the essential feature is that they
have the same type� An over	riding procedure in the child type would be required to have arguments of
the child type in all positions where the over	ridden procedure has arguments of the parent type� and
in all other positions to have arguments of exactly the same type as the procedure to be over	ridden�
All arguments must have the same type parameters and rank as for corresponding arguments of the
procedure to be over	ridden�

Suppose one has bound a DISTANCE function to the type POINT declared above� using� e�g� PROCEDURE
DISTANCE �	 POINT DIST� and suppose POINT DIST is declared

REAL FUNCTION POINT�DIST � A� B � � TYPE�POINT�� INTENT�IN� �� A� B

POINT�DIST � SQRT� �B�X
A�X���� � �B�Y
A�Y���� �

RETURN

END FUNCTION POINT�DIST

This controversy concerns whether it would be more generally useful if POINT DIST is considered to
have one argument of type COLOR POINT and one of type POINT �the �rst point of view above� or
two arguments of type COLOR POINT �the second point of view above�� when it is inherited into type
COLOR POINT�

This controversy is also discussed in paper ��	

��

�	
	
 Function result type

If a function is inherited from a parent type� and the function result is monomorphic and of the parent
type� it cannot be considered to be monomorphic of the child type because the child type may have
additional components that the function inherited from the parent doesn�t compute�

It could be considered to be polymorphic in the class of the parent type �see section ��� or it could
be considered to be monomorphic of the parent type� The latter may compromise the usefulness of
polymorphic expressions�

� Polymorphism

��� Data polymorphism

The J��data subgroup have recommended and J� have accepted speci�cations and syntax to declare
polymorphic objects� that is� objects that may contain data of di�erent types within the same class at
di�erent instants� An example declaration for an object that could contain data of either of the types
POINT or COLOR POINT declared above is

OBJECT�POINT�� POINTER �� POINT�DATUM

Because data of di�erent types may require di�erent amounts of storage� polymorphic objects must be
declared with the POINTER attribute if they are not dummy arguments�

A polymorphic object may be allocated with the declared base type� e�g� ALLOCATE � POINT DATUM �

creates an object of type POINT� Pointer assignment may be used to assign a datum of any type in the
class�



J��������
Page � of �

��� Procedure polymorphism

When a procedure is invoked with monomorphic actual arguments corresponding to monomorphic
dummy arguments� the static �compile	time declared� types of the actual arguments must match the
types of the dummy arguments� as is presently the case for Fortran	��� The procedure to be invoked
can be selected by the compiler� and the correspondence of actual to dummy argument types can be
veri�ed by the compiler� The di�erence in the case of extensible types is that one interprets dummy
argument types to account for inheritance� as described in section ��
� This is one of the di�erences
between type bound procedure declarations and generic interface blocks� Leaving aside other issues for
now� one could consider the declaration PROCEDURE P �� P
� P�� P� above to be equivalent to

INTERFACE P

MODULE PROCEDURE P
� P�� P�

END INTERFACE P

When a child of type T� say type T�� is declared� the above interface is considered to be extended by
INTERFACE P

MODULE PROCEDURE P
�� P��� P��

END INTERFACE P

in which any of P
� etc� are the procedures P
 etc� inherited from type T with dummy argument�s� of
type T considered to be changed to be of type T�� or procedures that over	ride P
 etc�

When a procedure is invoked with monomorphic actual arguments corresponding to polymorphic
dummy arguments� the static �compile	time declared� types of the actual arguments must match or
be descendant from the declared class of the corresponding dummy arguments� As in the case of
monomorphic dummy arguments� the procedure to be invoked can be selected by the compiler� and
the correspondence of actual to dummy argument types can be veri�ed by the compiler�

When a procedure is invoked with polymorphic actual arguments corresponding to polymorphic dummy
arguments� the classes of the actual arguments must match or be descendant from the declared class
of the corresponding dummy arguments� As in the above cases� the procedure to be invoked can be
selected by the compiler� and the correspondence of actual to dummy argument classes can be veri�ed
by the compiler�

When a procedure is invoked with polymorphic actual arguments corresponding to monomorphic
dummy arguments� the compiler cannot always determine the procedure to be invoked� nor can it
verify completely the correspondence of actual argument types to dummy argument types � the best
it can do is to verify that the base type of the actual argument class is the same as or descendant from
the type of the dummy arguments� The compiler carries out all of the generic dis	ambiguation that
is possible �for those parts of the characteristic that can be statically determined�� and postpones the
remainder until the program runs� This is dynamic dispatch or dynamic binding� Since the inheritance
model for Fortran is speci�ed to be single inheritance� the run	time selection is always within one class�
No matter which model of procedure inheritance is used� the selection is determined using a single
type� In the �rst model� it is the type of the receiver� in the second� it is the type of a set of arguments�
This is called single dispatch�

� Abstract types

Most object oriented programming languages provide for abstract types� Abstract types are types for
which the characteristics of necessary type bound procedures are declared� but for which no procedures
are provided� In a graphical system� for example� the types POINT and COLOR POINT used above might
have an abstract DRAW procedure� Other types descendant from them� say CIRCLE and COLOR CIRCLE

would provide concrete DRAW procedures� Most languages prohibit creating objects of abstract type�



J��������
Page 
 of �

Some languages require descendants of abstract types to be concrete� others allow them to be abstract�
Some languages prohibit concrete types to have abstract descendants� others allow it�

The mechanism under consideration to indicate an abstract type is to provide NULL�abstract�interface�
name� after �	� rather than a concrete procedure name �abstract�interface�name is de�ned in paper
��	
��r
 for use with procedure pointers��

Since intrinsic assignment is de�ned by the standard� providing a null procedure name for a de�ned
assignment procedure� in which both arguments are of the type to which the assignment is bound�
serves to declare that intrinsic assignment doesn�t exist� It does not make the type abstract�

� Syntax of type bound procedure reference

In most object oriented programming languages that consider invocation of a type bound procedure to
be sending a message to an object� the syntax to reference a type bound procedure is the same as the
syntax to reference a component of a derived type� If U and V are two objects of the type POINT used
in an example above� the type bound DISTANCE function would be invoked by U�DISTANCE�V�� One is
expected to think of this as �Send a message to U asking it to compute its DISTANCE from V��

The advantage of this syntax is that the possibility for con�ict of names is reduced because a type
bound procedure name is visible only when quali�ed by an object of the type to which it is bound�

The disadvantages of this syntax are

� The correspondence between actual and dummy arguments is not as transparent as in the case of
the usual Fortran procedure reference syntax� If the �rst dummy argument of a speci�c procedure
corresponding to a type bound generic name is designated to be the receiver of the message� then
the �rst actual argument written within parentheses �V above� corresponds to the second dummy
argument in the procedure declaration� etc�

� Designating the �rst dummy argument� or any other dummy argument in a �xed position� to be
the receiver makes it di�cult to write a full spectrum of type bound operators�

� Allowing a speci�cation of which dummy argument is the receiver requires restrictions in order
to avoid ambiguities� Consider the following example�

TYPE �� T

CONTAINS� PROCEDURE P �	 P
� P�

���

TYPE�T� �� U

���

SUBROUTINE P
 � A� B �

TYPE�T�� RECEIVER �� A � First dummy argument corresponds to

� actual argument before the ���

REAL �� B

���

SUBROUTINE P� � A� B �

REAL �� A

TYPE�T�� RECEIVER �� B � Second dummy argument corresponds to

� actual argument before the ���

���

CALL U�P����� � Does this invoke P
 or P��



J��������
Page � of �

Whatever restrictions are put in place to avoid this ambiguity could not apply to type bound
operators or type bound de�ned assignment without severly compromising their usefulness� Such
an inconsistency makes compilers expensive and slow� and discourages learning and use of the
language�

If the same syntax is used to reference type bound procedures and other procedures� the DISTANCE

function bound to type POINT would be invoked DISTANCE�U� V��

The advantages of this syntax are

� The positional correspondence between actual arguments and dummy arguments is not modi�ed
to account for a distinguished receiver of a message�

� The rules for reference to a procedure by way of a generic type bound name are the same as
the rules for reference to a procedure by way of a type bound operator or type bound de�ned
assignment� and the same as existing rules in Fortran	�� when inheritance is taken into account�

� Type bound procedures can be in the same generic set with procedures that are not type bound�
For example�

TYPE �� T

CONTAINS� PROCEDURE P �	 P
� P�

���

INTERFACE P � perhaps in a different scoping unit from the above

MODULE PROCEDURE P�

END INTERFACE

is reasonable and should be allowed� Unlike P
 and P�� P� is not a type bound procedure� and
therefore would not be inherited into types descendant from type T� and P� would not necessarily
be accessible everywhere that T is accessible� See paper ��	��� for another proposal to achieve
this e�ect�

The disadvantages of this syntax are

� There is more possibility for con�ict of names than in the previous case� This is a very small
e�ect� however� because type bound procedure names are generic� identical generic names are
not a problem� so long as characteristics are di�erent � the generic set is simply expanded� It
is reasonable to constrain a type bound procedure to have at least one dummy argument of the
type to which it is bound� Thus� con�icts of both name and characteristic are unlikely�

� Restrictions on argument types may be necessary or desirable to avoid ambiguities� Consider

TYPE� EXTENSIBLE �� T


CONTAINS� PROCEDURE P �	 P


���

SUBROUTINE P
 � A� B �� TYPE�T
� �� A� B

���

TYPE� EXTENDS�T
� �� T�

CONTAINS� PROCEDURE P �	 P�� P�

���

SUBROUTINE P� � A� B �� TYPE�T
� �� A� TYPE�T�� �� B

���



J��������
Page � of �

SUBROUTINE P� � A� B �� TYPE�T�� �� A� TYPE�T
� �� B

���

TYPE�T�� �� U� V

���

CALL P � U� V �

Does CALL P invoke P
� P� or P�� or is it prohibited� It is di�cult to argue that P� or P� is
the correct choice� One might argue by analogy with generic interfaces that include elemental
procedures that P
 is the correct choice� In the case when the actual arguments are not in the
same class� an analogous choice would not be so obvious�

The ambiguity can be avoided by prohibiting it� Monomorphic actual and dummy arguments of
extensible type must all be the same type� This is not a severe restriction on functionality because
a similar restriction when dummy arguments are polymorphic is not necessary� The ultimate e�ect
is that one sometimes �but not always� loses control over whether dynamic dispatch occurs�

� Why not use generic interface blocks to declare type bound pro�

cedures	

Essentially everything that is accomplished by declaring type bound procedures inside of type decla	
rations could be accomplished by using generic interface blocks� The advantages of the former are

� Admirable terseness�

� An obvious interpretation that the type bound procedures are inheritable� which would otherwise
require special rules � e�g� a procedure that appears in a generic interface block in the same
scoping unit as type T� and has monomorphic argument�s� of type T is a type bound procedure
of type T�

� An obvious interpretation that the type bound procedures are accessible everywhere the type is
�unless they�re private�� which would otherwise require special annotations or special rules � e�g�
type bound procedures can�t be separated from their type by an ONLY clause of a USE statement�


 Questions for J�

J��data are unable to resolve two questions� concerning which guidance from the full J� committee
would be helpful� The consequences of the choices are discussed in sections ��
�� and 
� respectively�

�� Should a type bound procedure have a distinguished receiver argument of the type to which it
is bound� which is the only argument that is considered to change to the child type when the
procedure is inherited�

Or

Should all monomorphic dummy arguments of the type to which a procedure is bound be con	
sidered to be changed to the child type when the type bound procedure is inherited�


� Should type bound procedures be invoked using the same syntax as for invoking a procedure
using a procedure pointer that is a component of the type�

Or

Should type bound procedures be invoked using the same syntax as is used for �ordinary proce	
dures� in Fortran	���



J��������
Page � of �

��� The author�s opinions

The author advocates the second choice for both questions above� Concerning the �rst question� the
author believes that it is more likely to be useful that several arguments of the type to which a procedure
is bound are the same type� and remain the same type as each other when the procedure is inherited�

Concerning the second question� the author believes nothing signi�cant is gained by developing nu	
merous new mechanisms so that invoking procedures using component reference syntax is useful� or�
conversely� nothing signi�cant is foregone by using existing mechanisms� Absent a compelling technical
reason to choose one over the other� simplicity argues for the second� One of the advantages of Fortran
as compared to other widely used languages is its relative simplicity� and relative ease to learn� These
virtues should be preserved�


