
J��������
Page � of 	�

Date� �� January ����
To� J�
From� Werner W Schulz� email� wws���cam�ac�uk
Subject� Object	oriented Programming in F
���� Inheritance and Polymorphism
References� ������ ���
��

Contents

� An Overview 	
��� Goals and Constraints �

��
 A Look at other OOP Languages �
��� Which route for OOP in F
���� �
��� Notation �

	 Class
 A new Programme Unit �

�� Rules and Comments �

�
 Optional additions to the CLASS syntax �

�� Usage and Semantics of Classes and Objects �

�� Extending OOP to existing Fortran �

�� Other Issues �

� Inheritance and Polymorphism ��
��� The subtyping problem ��
��
 Mytype �

��� Bounded matching �

��� Hash	types ��

� Critical Comments ��
��� Criticism of CLASS ��
��
 Proposals ����� and ���
�� ��
��� The Point Class Example �

� The Module
 Problems and Solutions ��
��� A Fortran Environment ��
��
 Module Extensions ��

 Conclusion ��

A Glossary of Terms ��

List of Figures

� The proposed CLASS construct� �

 Animal class and herbivore subclass where plant is a subclass of food� � � � � � � � � � � � ��
� Singly	linked Node class with MYTYPE� ��
� Doubly	linked Node class� ��
� Animal class and herbivore subclass revisited� �

 List class without binary methods� ��
� The extensible TYPE as proposed in ��� �in shortened form�� � � � � � � � � � � � � � � � � � ��
� The Point�D class in the proposed CLASS syntax� �
� The Point�D class in the proposed CLASS syntax� ��
�� Using Point classes with homogeneous and heterogeneous datastructures� � � � � � � � � � ��

J��������
Page 	 of 	�

� An Overview

Object	oriented programming �OOP� has become a powerful method of software engineering� Construc	
tion� extension� and maintenance of large programmes bene�t from reusability and stability of code as
well as better real	world modelling� The main techniques of OOP are known as data abstraction and
encapsulation �information hiding�� inheritance and polymorphism� The addition of OOP facilities is
arguably the most important and complex requirement for F
����

Fortran has been and still is the language of choice for many scientists and engineers but a language
like C�� has made some inroads despite the complexity and the lack of a standard�� Fortran is rather
late in adopting an OOP approach� a standard including OOP and �rst compliant compilers will only
appear in about four years time� F
��� must come up with a convincing design of OOP to make up for
this lost time� to reverse some of the trends of recent years and to continue the direction set by Fortran
�� towards a more modern� �exible and safer language�

In the following chapters I want to present a comprehensive OOP proposal for F
���� One of the
reasons for writing this proposal is my concern that F
��� might only o�er a slimmed	down version of
OOP while later revisions will complete the task� In my view there is no need for such a half	hearted
approach and it could be detrimental to Fortran� I could only establish that polymorphismand inheritance
are required but there seem to be no detailed speci�cations outlining any minimal requirements and
options for OOP in Fortran as one would expect for such a complex issue� Only a �white paper� by W�
Clodius �
� lists and discusses some of the important topics and possible choices�

After reviewing some guiding principles the syntax for a CLASS is proposed while detailed comments
justify the choices� Various related issues and options are discussed� and other OOP proposals and options
are compared with the proposed CLASS construct� Some ideas about modules and an �environment� are
discussed� The reader is referred to the appendix for the de�nitions of terms that will help to avoid
possible misunderstandings�

��� Goals and Constraints

OOP will be a completely new feature in Fortran though object	based programming can be achieved using
MODULE� TYPE and overloading via INTERFACE� The challenge facing F
��� is to implement a well	designed
OOP construct under the constraint of backward compatibility and the limited schedule for discussing
and drafting a new standard�

A good design must re�ect the underlying concepts of OOP� should be simple to understand and
easy to use� promote software quality and good programming habits� enforce safety� and pay attention
to e�ciency� As a result F
��� should be able to present itself and be recognized as a �rst	rate modern�
�exible and safe programming language that is useful as a teaching language as well as a practical tool
for large	scale software engineering� The design should convince people who left or are about to leave
Fortran for languages like C�� to stay with Fortran�

OOP is often discussed in the message passing model� This model re�ects the encapsulation properties
well and is used in other areas like parallel programming�

Polymorphism is the crucial feature of OOP as it determines the usefulness and �exibility of the
OOP design but this requires a careful discussion and implementation� Research into OOP over the last
years has clari�ed many issues and proposed new solutions to handle polymorphism well� F
��� is in the
fortunate position to implement OOP at this stage and should take full advantage of these results in its
design ����

A simple and transparent design is very important� OOP can be di�cult to grasp in all its implications�
hence syntax and semantics of the OOP features should work together and ease the burden of learning
and applying OOP� The syntax should clearly mark that a new and distinct construct is present� the
proper choice of names in the syntax is equally important as a close correspondence to everyday usage
and practice in other OOP languages will make life easier� A clearly structured syntax will also enhance
the readability of codes� Measures for automatic code documentation should be taken�

The default behaviour should re�ect and support forcefully the concepts of OOP� e�g� data encapsu	
lation means that access to objects is through a rather small and well	de�ned interface and the internal
details are completely hidden� Explicit memory management should be kept minimal� The design should
also eliminate features that are easily abused or circumvented� The ability to write generic programmes
is very useful� and OOP without genericity lacks an important ingredient for abstraction� These qualities
will also enhance the safety of the codes�

�A draft for a C�� standard has recently been submitted�

J��������
Page � of 	�

Since errors at run	time may be di�cult to debug� OOP in F
��� should be strongly typed to discover
all errors associated with the types of operands at compile time� This should also allow better code
optimisation� Strong typing will impose restrictions on polymorphism and hence the �exibility of OOP�
Here one should strive to go as far as possible to allow an expressive form of polymorphism that is both
easy to grasp and can be type	checked� Strong typing is also a time	saving feature since it is well	known
that the cost of �xing an error rises strongly when detection is delayed�

The constraint of backward compatibility should not be used to compromise the OOP design since
this will have serious negative repercussions for the acceptance of F
��� and may hinder any serious
applications� F�� has already lost some compatiblity with F���F�� and this trend is to continue with
further revisions� To some extent this problem will be circumvented in my proposal by either excluding
the use of certain older Fortran elements or by advocating a style more in line with the one indicated by
the modern form of F���

The time constraint is a very limiting factor� OOP in F
��� has to borrow from existing languages
rather than starting from scratch� A selection of the most common ones will be discussed next� Fortu	
nately� recent research has cleared the di�cult area of inheritance and polymorphism enough to allow
Fortran to make a very clear and informed choice that was not available to nearly all the commonly used
OOP languages around and which led to some serious shortcomings�

As there is no time for beta	testing of any of the OOP features before the release of the F
��� standard
a cautious approach must be chosen in di�cult areas which imposes rather more than less restrictions on
some features� It will be much easier later on to relax these restrictions than to impose them�

F�� added the MODULE to the language� however� its current form is too restrictive for programming in
the large� Since OOP will a�ect the solution the future role for modules must be part of the discussion�
even if no particular steps are taken at this stage� Care should be taken not to overload the role of
modules with features that are better left to others� In my view this is particularly important and urgent
in the case of OOP� Several options how to extend modules will be discussed later�

��� A Look at other OOP Languages

C�� is arguably the most widespread OOP language though whether it is just used as a better C
or mostly for OOP remains unclear� OOP is supported by a class construct� multiple inheritance is
allowed� and genericity is provided through templates� The shortcomings of C�� are wellknown� and
C�� is certainly an example that one should not follow though some ideas concerning forms of visibility
�private�protected�friends� public� and some aspects of inheritance should be kept in mind� Java derives
from the C�C�� family but with a simpler syntax� Java is not type	safe� has no genericty but provides
modules called packages� E�ciency is low due to its interpreted code� the great plus is the portability of
Java� Polymorphism in C�� and Java is quite restricted�

Ei�el ��� and its o�spring� Sather ���� are� like Java� pure OOP languages based on classes� Ei�el�s
syntax is very elegant and supports a number of new ideas summarized as �design by contract�� Multiple
inheritance is allowed as are generic classes� Ei�el allows covariant changes of arguments and is therefore
not fully type	safe�� All of them know a construct self �or this� which refers to the current object� C��
and Sather are quite e�cient in their OOP implementations� Sather can actually be faster than C���

An interesting alternative is Beta �� which uni�es class� type and method into a so	called pattern�
thereby bringing procedural programming and OOP together� Beta also supports concurrency and mod	
ules �fragments� but its type system is currently not completely safe�

ADA�� ��� provides OOP in a very di�erent way� including the notation� ADA�� is a complex
language with strengths� e�g� it supports programming in the large through packages �modules� with
separate interfaces and was designed with safety in mind� OOP is supported through packages� child
packages� tagged �or extensible� and generic types� ADA���s tagged types are wrapped inside packages
mimic classes� A notion of self does not exist� Inheritance and polymorphism are more restricted than
is necessary� ADA�� is not fully type	safe� Modula	� is close to ADA�� with a module construct and
record types to simulate classes�

Several other approaches to OOP �e�g� Self� are possible but these languages are often dynamically
typed�

��� Which route for OOP in F�����

All of the above languages have their speci�c de�ciencies� in the context of OOP the important topics
are the con�icting ones of type	safety and polymorphism�

�A proposal for remedy is made but its e�ect is not yet clear�

J��������
Page � of 	�

The ADA�Modula family started as a module language that added OOP by extending their record
types� Since F����� is in a similar position this would be one possible path to OOP for F
���� and the
current workproposal �CWP� ���� seems to lean in this direction� The alternative is to use a distinct class
construct� This approach is taken by most pure and hybrid OOP languages� and I will take this route
which in my view has advantages which will be discussed in the various chapters� the syntax is borrowed
to some extent from Ei�el�

��� Notation

The following notation is used throughout this paper�

� ��� � user	supplied names and statements

 ��� � optional declarations

� mutually exclusive options

 comments

In

����� with out spaces between equal brackets the outer bracket denotes an optional declaration
while the inner one is a syntactical part of the declaration� The syntax names will always be written in
capital letters such as CLASS while variables and other names appear in lower or mixed case� A more
general and uni�ed version of F�� notation� including a simpli�ed operator declaration� is used throughout
and should be adopted by F
���� Variables� procedures� called methods here� classes� etc� will use a very
similar syntax as in�

�type	declaration�
� attributes� �� �name�

 Examples�

REAL� PUBLIC� TARGET �� var

REAL� OPERATOR� DIMENSION��� �� ��X�� �vec��vec�� vector product

CLASS� ABSTRACT �� person

Declarations that can be followed by a list of names� e�g� ONLY� contain a colon� ����
From now on when using the word �type� I am using the de�nition as given in the glossary� the

F����� construct of the same name is written TYPE�
The word parameter is sometimes used as a synonym for argument� Here I will not follow this

convention but I denote as parameter such types that parametrize classes and denote as arguments the
values that are passed to methods�

� Class� A new Programme Unit

The concept of OOP centres around the concept of a class� i�e� an entity that contains data �variables
de�ning a state� and methods �methods describing behaviour�� Objects are instances of classes and work
together by exchanging messages� Internal details of a class are completely hidden to the outside� The
notion of a class has no equivalent in Fortran though some similarities exist with the current TYPEs and
MODULEs�

I want to keep the proposed CLASS construct separate from TYPE for various reasons� some are listed
in a later chapter� the reason in this chapter is simply to concentrate on the features of CLASS that I
would like to see implemented in F
��� without worrying about TYPE at all� A discussion of CLASS vs�
TYE is postponed till later�

The syntax for the CLASS construct is given in Figure �� The public interface of CLASS� i�e� its type�
consists of �none� some� all of� its variables� some of its methods �at least one� including their arguments�
and the attributes of CLASS�

��� Rules and Comments

The various components of the syntax in Figure � are de�ned� rules stated and comments �Note� provided
for the underlying reasons� some of the comments re�ect my personal preferences� Some of the rules may
not be obvious at �rst since some important aspects such as polymorphismwill be dealt with later though
the Notes try to give a hint�

�� A CLASS is a programme unit with a name and optional attributes and can be compiled separately�
it can be part of a MODULE� in this case it can have the usual attributes PUBLIC or PRIVATE�

Note� A declaration of PUBLIC or PRIVATE refers to the visibility of the whole class outside the
module� not the visibility of class variables or methods inside the module�

J��������
Page � of 	�

CLASS
� FROZEN � ABSTRACT � �

� PRIVATE � PUBLIC � �� �class�name�

�parameters���

 USE �module�name�
�ONLY� �only�list�� �

IMPLICIT NONE

 INHERIT � �superclass�

parameters��

 RENAME � �renaming list��

 REDEFINE � �superclass�methods� � �

 CREATE � �init�method�s�� �

 �datatype�
��attributes�� �� �class�variable�
��value�� �

�datatype��� �class�method�
��attributes�� �� �method�name�
��arguments���

argument�declarations�

�method body��

END class�method �method�name� �

 datatype� INTEGER� REAL� ���� �classname�� MYTYPE� ��hash	type�

 class�method� FUNCTION� SUBROUTINE� OPERATOR� ASSIGNMENT

 attributes� INTEGER� REAL� MYTYPE� etc�

 PUBLIC� PRIVATE� ABSTRACT� etc�

END CLASS �class�name�

Figure �� The proposed CLASS construct�

� The body of a CLASS consists of variables� methods and instructions to inherit other CLASSes� use
MODULEs� and further declarations� IMPLICIT NONE is mandatory to avoid any undeclared class
variable� Global attribute statements should not be used� rather all attributes should be declared
with the variables and methods�

�� CLASSes de�ne a tree hierarchy of CLASSes through inheritance� the top of a �sub�tree is called
superclass� the branches subclasses� CLASS inherits from the superclass named in the INHERIT

statement all variables and methods� public� readonly or private� USE and CREATE statements are
not inherited�

Note� The hierarchy de�nes an order where � denotes the subclass � superclass relationship�

�� A class can use a module to access de�nitions� data and methods� The USE of modules is private to
the class� i�e� neither subclasses nor other units that have objects of the class can access the module
unless by explicit USE� USE appears before INHERIT�

Note� This restrictive use for MODULE is necessary to remain true to the principles of OOP� encap	
sulation and information hiding�

�� A CLASS can be inherited by default unless prevented by the attribute FROZEN�

� A class can be made abstract �deferred� by using the attribute ABSTRACT� FROZEN and ABSTRACT

are mutually exclusive attributes� An abstract class cannot be used to create an instance of that
class� i�e�

CLASS�A�abstract� �� A�object

is illegal� Compilers must issue an error message�

�� The de�nition of a method can be delayed through the ABSTRACT attribute until it is de�ned in a
subclass� Any class that contains an ABSTRACT method either by explicit declaration or through
inheritance is abstract and must contain the attribute ABSTRACT� An abstract methodmust explicitly
declare its interface� i�e� the arguments� only the body of the method is omitted� A concrete subclass
derived from an abstract superclass must rede�ne all abstract methods of its superclass�

J��������
Page of 	�

Note� These rules allow to change any abstract superclass into a concrete one without e�ecting the
subclass�

�� A CLASS can be parametrized as in this linked list�
CLASS �� list
T�

T �� value

list
T� �� next

���

END CLASS linklist

list
REAL� �� head linked list with real values

where T stands for any allowed type declaration in Fortran� T can be constrained by a bound� e�g�
T��Comparable �see below�� A subclass of a parametrized class must be parametrized as well with
a variable or explicit type�

Note� Square brackets �
 �� are introduced to provide a distinction between parametrized classes
and declaration of objects�

Note� Whether or not the POINTER attribute has to be added in dynamical structures will depend
on the way objects are implemented�

�� CREATE names a speci�c method �MYTYPE� FUNCTION �� �name�� which must be called when an
object is created �see below�� The named methods are available for this purpose even if declared
PRIVATE�

Note� Sometimes the only possible way of properly initializing an object is by call of a method
and not by initial values for variables� A subclass is di�erent from its superclass� its internal state
is probably di�erent as well and therefore does not inherit the CREATE statement� The method in
CREATE is still available as an ordinary method but should be PRIVATE to avoid misuse� This feature
is a must for good and safe software development�

Note� This has to �t together with item R�� �Constructors�Destructors� of the F
��� Workplan�

��� Inherited methods and variables from any superclass can be renamed in the subclass in the usual
way �using ��� to avoid name clashes or give more descriptive names� The new name must be used
from now on everywhere� e�g� in subclasses of this class� The RENAME statement can only follow
immediately after the INHERIT statement�

��� Inherited methods can be rede�ned� i�e� a body of executable statements is provided for the �rst
time �for abstract classes� or a new body for methods already de�ned in the superclass� The name
of these methods must appear in the REDEFINE list� and the rede�ned methods must appear within
the scope� The REDEFINE statement can only follow immediately after the INHERIT statement �see
Figure ��� Rede�ned methods must have a conforming interface with the superclass method� for
more details see the later chapter on polymorphism�

Note� Strictly speaking� REDEFINE is not necessary� but it reminds the programmer and enhances
readability�

�
� Inherited variables cannot be rede�ned� except changed to READONLY from PRIVATE or� when de	
clared with PARAMETER� the actual value can be reset�

��� The class variables can have various attributes� Variables have as default the new attribute
READONLY with PRIVATE as an alternative while PUBLIC is forbidden� Variables can have initial
values that will be used to initialize objects�

Note� One basic principle of OOP is to work only with objects and a small interface to inquire
about or change the object� A PUBLIC variable violates this principle and is therefore excluded�
This is no burden as READONLY is more than adequate in nearly all cases� READONLY is a practical
solution that avoids the burden of writing many access function if only PRIVATE were available� See
also below on referential invariance�

Note� READONLY will obviously also be useful within MODULE� the same name serves in a similar
fashion as a quali�er for �le access� and the INTENT�IN� again provides a similar functionality� It
is also an obvious help for optimisations�

��� Procedures are by default PUBLIC� this can be overridden using PRIVATE�

Note� Procedures are the only �recommended� way to change objects� hence they should be PUBLIC
by default� in contrast to the variables of a class� see also the next item�

J��������
Page � of 	�

��� FUNCTIONs without arguments should be declared and used without parentheses �as is possible with
SUBROUTINEs��

Important Note� Users of a FUNCTION do �and need� not know whether they access a variable or a
FUNCTION� In other words� all variables are shortcuts for get	functions which explains the READONLY
default before� and consequently the visible interface of a CLASS consists only of methods �or can
be treated as such�� Later modi�cations of the class implementation will not a�ect code that uses
the class which adds to the stability of the software� This property comes also under the name
referential invariance� This is also satisfying as it forms a bridge between practice and theory of
OOP� since the latter usually treats only the case of an interface consisting purely of methods�

�� A FUNCTION without arguments can be rede�ned to become a variable but not vice versa�

Note� If the class inherits a method that assigns a value to a variable then a rede�nition of this vari	
able as a FUNCTION causes havoc� A simple example is a class Polygon with a function NrCorners�
the subclass Rectangle can turn this function into a variable since the number of corners is now
�xed to four�

��� PRIVATE variables and methods are only visible within one instance of a CLASS� i�e� objects of the
same class cannot see the PRIVATE variables and methods of each other�

Note� This restriction is necessary though it causes problems for software design� A solution can
be provided by an extension of PRIVATE�

��� Variables within each class method are local to the method and cannot be SAVEd�

Note� The whole idea of an object runs contrary to the notion of saving local variables in class
methods and may cause serious problems for compilers� All properties should be derivable from
the class variables� If necessary� an extra �private� class variable will provide the needed facility in
a much cleaner way� Fortran�s rule of saving initialized variables does not apply in this case��

��� Within the CLASS methods one can refer to the current object using the special word SELF� This
makes it possible to refer to object within the class methods if it has to appear as an argument in
a method call inside the class� The use of SELF for any other purpose is forbidden�

Note� This makes SELF e�ectively a reserved word in F
��� but it is the only clean solution�

�� In a similar fashion the word SUPER refers to the superclass� Similar rules and recommendations as
in the case of SELF apply�

Note� When REDEFINE�ing methods the common situation occurs that only some extra statements
have to be added to the method of the superclass�

�� A word MYTYPE is introduced that allows to refer to the type of SELF as well as hash	types which
can refer to polymorphic variables� See below for reasons and examples�

� Rules about order of evaluation and precedence must be de�ned� E�g� X�add�Y��add�Z� should
mean �X�add�Y���add�Z� using standard Fortran rules though parentheses are recommended for
readability�

�� Some features are disallowed in CLASSes� They are BLOCK DATA� COMMON blocks� EQUIVALENCE�
ENTRY� SEQUENCE� SAVE� INCLUDE� In general� an approach similar to F or Elf of eliminating all
duplicate and unsafe forms should be used �enforced��

�� The root of the class hierarchy is called ANY or similar�

A clari�cation�
READONLY variables have been introduced to reduce the burden of writing safe classes� Some pure OOP
languages do not allow access to variables at all but require get	functions which are often trivial� To
avoid these trivial functions variables are made READONLY and are equivalent to public functions �without
argument list�� In the remainder of this proposal I will not distinguish between these variables and public
functions �without arguments�� The object type �or just type� of a class instance consist of all public
methods which includes the readonly variables� This equivalence will be important in two cases� a�
when discussing matching and polymorphism in a later chapter� and b� when creating composite classes
the meaning of READONLY can be inferred �recursively� from this equivalence� the visible variables and
methods of a READONLY object remain visible�

�This rule is rather debatable anyway since saving and initializing are very di�erent actions�

J��������
Page � of 	�

��� Optional additions to the CLASS syntax

Some OOP languages have added some useful features to their classes� Some are listed here�

�� Assertions �post	 and pre	conditions� invariants� are useful for documentation and especially during
code development and add to the reliablity of software� Recovery from unexpected results via
exception	handling is important in modern systems�

� Multiple inheritance by inheriting several classes but only when the need of this feature becomes
apparent and can be implementedwell� I have tried to design my proposal with this possible addition
in mind� Few additions or changes would be necessary to accomodate multiple inheritance�

�� Instructions supporting concurrent computing are a natural extension to OOP� ADA��� Ei�el and
Beta already support it�

�� Sometimes it is useful�necessary for performance that objects can have access to the private com	
ponents of other objects� One could extend the syntax of PRIVATE to PRIVATE��access�list��

where �access�list� contains a list of privileged classes including the current class itself whose
objects have access to the variable or method�

�� To allow for pure OOP the de�nition of CLASS could be extended to be a standalone programme
with no PROGRAM unit needed� This is quite useful in event	based programming� and nothing needs
to be added to the syntax�

��� Usage and Semantics of Classes and Objects

Classes and their instances� objects� are used in the following way�

� de�ning an object in a programme unit�

�class�name�

�parameters���
� attributes� �� �object�

��class�name�

�parameters���
� attributes� �� �object�

� initializing an object�

�object� � �class� no CREATE method defined

�object� � �class���createmethod�
��arguments���

� use of CLASS variables and methods�

�result� � �object���variable�

�result� � �object���function�
�arguments��

CALL �object���subroutine�
�arguments��

A class is simply accessed by its name� if it is contained within a module� the usual USE statement must
be made� Methods of a class are always quali�ed by the name of the object which must be declared� hence
there is no need to import a class� In the declaration of variables I have not followed the current usage
of TYPE since the class name makes perfectly clear what is meant and the extra CLASS is super�uous� I
also �nd this syntax more in line with the declaration of the intrinsic types �INTEGER� REAL� etc�� which
can be viewed as special classes �see below�� A di�erent reason is genericity which will be more di�cult
to achieve if types do not have a uniform syntax� No other language to my knowledge uses Fortran�s
notation� see e�g� ADA�

The essential steps of initialisation are creating an instance of the class� intialize with default values�
attach instance to object and� if de�ned� one of the creation methods must executed� The initialization
has to allocate memory if needed but there is no explicit reference to ALLOCATE� Details remain open since
they depend on the representation of objects and have to be harmonized with item R�� of the workplan�

Some important points I just present in the form of questions since it would lead to far to spell out the
detailed rules� They are also not essential for the parts that follow� These matters are mostly important
with respect to performance and memory management� Whatever solution is chosen the user should not
have to take care of memory management of objects�

What is the default representation of objects� Should objects be references to values or contain their
values� Does a composite object contain a subobject or only refer to it� Since OOP is characterized by a
very dynamical run	time structure with objects created on demand the preferred solution should be the
reference default� An attribute for objects that contain their values should then be added� �Ei�el uses
the name expanded� Fortran�s intrinsic types like REAL are expanded objects�� Hash	types are always

J��������
Page � of 	�

references �see below for de�nition�� Any reference should have the default value NULL� �The reference
model is used in most of my later examples��

What form should assignment take� What does equality mean� Should there be di�erent notations
for assignment and refering� Clodius �
� lists three di�erent possibilities for assignment with their con	
sequences for the semantics of an object� by reference� by value� and by functional access� Most OOP
languages use the �rst� by reference� Using references is the standard mechanism to allow for subsumption
�or its alternative� and sharing of objects� The danger with references is that the user can accidentally
modify an object� The alternatives are safer but su�er from other problems� mostly performance related�
I personally prefer the reference solution� The notation for assignments should use the familiar equal
sign as in a�b while for copies �assignment by value� the more verbose CALL a�COPY�b� should be used��

For objects that are references one needs mechanisms for copying� cloning and deep	cloning �for recursive
cloning��

Similar questions apply to the checking of equality which could mean that equal objects refer to the
same object or their values are equal� A deep	equal would recursively follow all references to check for
value equality�

��� Extending OOP to existing Fortran

The class construct must be extended to all intrinsic data types of Fortran� i�e� INTEGER� REAL� COMPLEX�
CHARACTER and LOGICAL� at least conceptually� to put them on the same basis as user	de�ned classes�
The language	intrinsic attributes and inquiry functions such as SIZE� KIND� RANGE� etc� are viewed as
methods of these prede�ned classes� e�g�

REAL�KIND�kind� �� x

REAL� DIMENSION���� �� b

kind�of�x � x�KIND

size�of�B � b�SIZE

This is an obvious property that F
��� must provide for seamless OOP� and it becomes essential for
generic classes� Several rather general classes are needed� for example� a class Numeric that contains the
standard arithmetic operations� a class Comparable with operations like �� ��� etc� This topic has not
been addressed by any other proposal as far as I know�

��� Other Issues

�� Access to class names� I have left out a way to compare an object�s class with a given class name
or another object�s class� This is usually not needed and considered bad programming�

� Type conversion� I have avoided ways of converting an object into an object of a di�erent class�
This is usually not needed and can easily be abused �see C���� The access methods� the initializing
statement and the constructs presented later on should be su�cient� Another reason against casts
is

�� Memory management� A proper implementation of OOP will require garbage collection� The user
should be saved from the explicit management of this chore as it complicates programming and is
too often impossible to achieve� A strongly	typed F
��� will allow garbage collection while type
casts are detrimental�

�� A class library� Introducing a CLASS syntax is just the �rst step to give Fortran users access to
OOP� A minimal library of classes is certainly necessary and should become part of Fortran as a
separate standard�

�� Documentation� When dealing with large programmes and a large number of classes �and modules�
tools to abstract and subsequently �nd them become important� It is useful to provide a non	
executable construct INDEX� �list of keys� to support additional tools with the documentation
chores�

� Support of IO for objects� This is important for real applications since one must be able to save
objects to �le and retrieve them�

�This seems to me to be more in line with the assignment rules in F����� for TYPEs with POINTER components�

J��������
Page �� of 	�

CLASS �� animal

SUBROUTINE eat� meal �

food �� meal

END SUBROUTINE eat

END CLASS animal

CLASS �� herbivore

INHERIT � animal

REDEFINE � eat

SUBROUTINE eat� meal �

plant �� meal

END SUBROUTINE eat

END CLASS herbivore

Figure
� Animal class and herbivore subclass where plant is a subclass of food�

� Inheritance and Polymorphism

Polymorphism is the ability of a variable name to become attached to objects of di�erent types�� which
are usually related as members of a subtree of the class hierarchy� This allows polymorphism to handle
heterogeneous datastructures in a way that is impossible with Fortran� The method for a particular item
in a polymorphic datastructure is determined at run	time via dynamic binding�

F
��� should be a statically type	checked �strongly typed� language� i�e� a compiler is able to assign
a type to every expression and check operations for type correctness with obvious bene�ts for safety and
optimisation� But strong	typing is by nature conservative� and this requires constraints upon the possible
form of polymorphism and hence upon the expressiveness of the language as compared with dynamically
typed ones� The exact interplay between inheritance and polymorphism under strong typing was not
well understood until recently� The only known strongly typed forms of polymorphism were thus much
more restrictive than is really necessary which explains the limitations of some popular OOP languages
like C��� Bruce et al� in a series of papers have developed a much more satisfying solution that is very
expressive and can still be completely type	checked ��� �� ��� This solution will also form the basis of my
proposal for polymorphism in F
���� This chapter is largely drawn form these papers� For a number of
useful de�nitions the reader is referred to the glossary�

��� The subtyping problem

I will illustrate the consequences of strong typing on a well	known example� while animals eat food the
subclass herbivores should only eat plants� The animal class in Figure
 is a typical example of how a user
would want to programme this problem in an OOP language� it is� however� at odds with the subtyping
rule �see Appendix A� which does not allow a covariant change of arguments �here plant �� food� in
the subclass methods� A common problem is the case of binary methods� e�g� addition of objects or
checking the equality of two objects�� Additional problems occur in an attempt to programme a linked
list and to reuse the code for a doubly	linked list ���� A more detailed discussion of binary methods can
be found in ����

Because binary methods and other examples of covariant argument change are so ubiquitous it is
obvious that di�erent rules have to be found to overcome this restriction� Essentially three solutions to
the problem exist which to do not avoid binary methods� more precise typings� multimethods or matching�
The advantages and disadvantages are discussed quite extensively in ���� and I want to concentrate on
the third solution� Matching ��� is the most promising and useful method in terms of both expressiveness
and simplicity and will be used in this proposal� To implement matching two new constructs are needed�
a MYTYPE construct and so	called hashed types� denoted ��type�� together with a syntax ���� to express
the hierarchical relationship of bounded matching to indicate the intention of the programmer� One
should note that ADA�� requires a similar decision by the programmer to mark variables for �Class	wide
Programming�� These new constructs are probably best introduced by example�

�The semantic version of polymorphism is treated here	 not the syntactical one known as overloading�
�Note that it is the type of the argument that causes the problem not the type of the method�

J��������
Page �� of 	�

CLASS �� Node

IMPLICIT NONE

Integer �� Value � �

MYTYPE �� next � NULL

FUNCTION GetNext

MYTYPE �� GetNext

GetNext � next

END FUNCTION GetNext

SUBROUTINE SetNext� NewNext �

MYTYPE �� NewNext

next � NewNext

END SUBROUTINE SetNext

SUBROUTINE AttachRight� NewNext �

MYTYPE �� NewNext

CALL SELF�SetNext� NewNext �

END SUBROUTINE AttachRight

END CLASS Node

Figure �� Singly	linked Node class with MYTYPE�

CLASS �� DblNode

IMPLICIT NONE

INHERIT � Node

REDEFINE � AttachRight

MYTYPE �� prev � NULL

FUNCTION GetPrev

MYTYPE �� GetPrev

GetPrev � prev

END FUNCTION GetPrev

SUBROUTINE SetPrev� NewPrev �

MYTYPE �� NewPrev

prev � NewPrev

END SUBROUTINE SetPrev

SUBROUTINE AttachRight� NewNext �

MYTYPE �� NewNext

CALL SELF�SetNext� NewNext �

CALL NewNext�SetPrev� SELF �

END SUBROUTINE AttachRight

END CLASS Node

Figure �� Doubly	linked Node class�

J��������
Page �	 of 	�

CLASS �� animal
myfoodtype��foodtype� parameter myfoodtype

SUBROUTINE eat� meal � constrained by foodtype

myfoodtype �� meal

���

END SUBROUTINE eat

END CLASS animal

CLASS �� herbivore
myfoodtype��planttype�

INHERIT � animal
myfoodtype�

���

END CLASS herbivore

Figure �� Animal class and herbivore subclass revisited�

��� Mytype

We need a way to indicate the automatic covariant change of types in subclasses� This is provided by the
MYTYPE construct�� An example will illustrate this in Figures � and �� other examples will follow later�

In the class Node MYTYPE is interpreted as Node while in the doubly	linked list as DblNode� and this
includes the inherited methods from Node� This means all the code from the linked	list is reused� only
AttachRight needs a modi�cation and SetPrev has to be added� Without a construct like MYTYPE one
could not reuse any of the code from Node� The binary methods AttachRight� SetPrev� SetNext do
not pose problems unless one tries to work with a mixture of singly and doubly	linked objects which does
not occur in practical work� DblNode is� however� not a subtype of Node anymore due to the presence of
MYTYPE� but DblNode still matches Node since it contains at least the methods of Node with the �same�
types where any appearance of MYTYPE is treated as the �same� type� This example should have made
obvious that the MYTYPE construct is extremely useful and re�ects very accurately certain relationships
when going from a superclass to a subclass�

��� Bounded matching

Dealing with heterogeneous datastructures is an important application for polymorphism� Usually these
structures are a collection of objects related with each other� e�g� a list of various windows on a computer
screen� or the content of a library with books� theses� journals� etc� Sometimes certain operations on
these collections are needed� set operations� binary search trees� etc� In the case of search trees the
objects must have the quality of being comparable� i�e� methods LessThan �or �� and IsEqual �or ���
returning logical results are needed� Again matching allows us to express exactly this quality� We can
give a bound on the type of the objects� like T �� Comparable� where Comparable consists of the
two mentioned methods and T is any type that has at least these methods� i�e� T matches Comparable�
In other words� a type parameter is restricted via matching� also called match	bounded polymorphism
or bounded matching ���� To see how bounded matching solves the animal class problem in Figure

 it is recoded in Figure �� If the body of eat remains unchanged no further action is necessary� A
herbivore
planttype� is now allowed to eat grass� fruit� etc� as long as these plants are matching
planttype� We could also declare a herbivore
fruit� that is only allowed to eat fruit� etc� The
new matching type in the subclass herbivore is applied to all occurences in the class and its inherited
methods and variables� Note that under subtyping polymorphism this example would not be possible
due to the subtyping rule for methods� In other words� myfoodtype has become a parameter that can
be de�ned di�erently for each subclass without invalidating the matching of types� One should note that
herbivore
planttype� is a subclass of animal
planttype� but not of animal
foodtype�� Bounded
matching provides the programmer with a powerful syntax that allows to write some form of generic
methods quite easily� Returning to the earlier case one can de�ne a CLASS �� Comparable which has
the methods LessThan and IsEqual� programme a sorting routine whose argument matches Comparable�
and one can now sort any �heterogeneous� collection of objects that match Comparable� e�g� this could
be applied to integer� real and character types�

�A more general form could be de
ned via LIKE��var�� with MYTYPE as the special case LIKE�SELF��

J��������
Page �� of 	�

CLASS �� List
T�

T �� val

MYTYPE �� next � NULL next automatically becomes List
T�

SUBROUTINE Insert� newval �

T �� newval

���

END SUBROUTINE Insert

SUBROUTINE Delete� oldval �

T �� oldval

���

END SUBROUTINE Delete

FUNCTION� LOGICAL �� Find� someval �

T �� someval

���

END FUNCTION Find

END CLASS List

Figure � List class without binary methods�

��� Hash	types

One can go one step further and introduce a new type construct� a so	called hash	type� written ��type��
An object will have type �T if it has any type that matches T� If T is an object type� then �T is also a type�
and if an object a has type S with S��T� then a has also type �T� We also have a form of subsumption with
hash	types� if S��T and a has type �S� then a has type �T� Hash	types can be used in type declarations as in

�T �� x

�S �� y S matches T� S��T

x � y a valid assignment

ADA�� introduces a similar type �T�Class� that denotes a class T and its subclasses�
There is no need to pass around parameters as in bounded matching� an advantage in situations where

one knows which type is to be matched� e�g� when dealing with various window types one can just write
FUNCTION Foo� w �

�Window �� w

���

END FUNCTION Foo

and Foo can only apply methods to w that match those of Window�
A parametrized class List
T�� de�ned with methods as in Figure could receive the actual type S�

making it a homogeneous list� or a hash	type �S� making it a heterogeneous list� Since hash	types are not
compatible with binary methods this obviously requires that List has none� in particular MYTYPE cannot
be present� otherwise only the homogeneous list is possible�

The examples in this chapter have shown that matching o�ers a great deal of expressiveness and
�exibility in designing classes in a way that most programmers would choose intuitively� The notion of
matching �see glossary� seems restrictive in that the type of the methods cannot be changed but MYTYPE
is allowed and provides the �exibilty that is most often needed� The current de�nition of a CLASS makes
sure that subclasses will always match the superclasses� i�e� inheritance is useful unlike under subtyping
where useful subclasses may be impossible� Binary methods still require some care but at least they can
be programmed in many cases of practical importance where subtyping would not allow them� Hash	
types provide an easy way of handling heterogeneous data structures while bounded matching together
with parametrized classes provides the tools to write generic classes� The proposed constructs� matching
including bounds and hash	types� are quite elegant and simple� provide strong styping and still o�er great
expressiveness to any user� In summary� this would make F
��� a safe and practical tool for programming
with more capabilities in the �eld of polymorphism than any widely used OOP language today can o�er�

J��������
Page �� of 	�

� Critical Comments

Only one proposal �CWP with actually two parts� ����� and ���
��� has been presented to and already
discussed by J�� It is actually this proposal that inspired me to present an alternative� Some criticisms
that can be applied to the CWP are already directly or indirectly given in earlier chapters� In this chapter
I will outline my main points of critique of the CWP and discuss the proposed CLASS construct�

��� Criticism of CLASS

�� A likely objection to CLASS is the introduction of a new word� CLASS� instead of using the available
TYPE� One reason for this choice was to introduce the proposal without making reference to TYPE

and prejudice it� F����� has already introduced some overlapping constructs like SELECT and
WHERE with IF blocks� NULL with NULLIFY� so that this argument has lost its strength� A second
reason is the use of names in the �eld of OOP� Class is the established name and the acceptance
of object	oriented Fortran also outside the Fortran community will be much easier when the names
are familiar� an argument that should not be overlooked� Thirdly� in a hybrid language like F
���
it is useful to keep procedural and object	oriented programming separate�

� A class in OOP is such an important concept that this should be re�ected in the language with its
own name� Replacing CLASS with the pair MODULE and TYPE is a bad linguistic feature� A class is
di�erent from a module� a class has behaviour and an internal state which cannot be separated�
Modules on the other hand are a tool of physically organizing code which includes limiting the
visibility of its content� There is no particular meaning attached to a module unlike a class �one
could merge two modules into one without any e�ect� the same process would change the meaning
of a class��

�� The proposed CLASS has strong features� Incorporating them into TYPE will con�ict with backward
compatibility which would probably require to cut down on the proposed properties and hence
weaken the OOP features in F
���� A strong CLASS construct is certainly preferable to a weak
TYPE�

�� Why using the hash	notation instead of pointers� A hash	type has pointer properties but the main
function is to indicate that it can only refer to objects of matching types while the word pointer
is much too closely associated with actual memory handling� Secondly the notation is concise and
will work as a parameter to generic classes which is impossible with a syntax that uses an explicit
POINTER attribute� On the proposed OBJECT see below�

MODULE modA

TYPE� EXTENSIBLE �� Atype

 data declarations

CONTAINS

PROCEDURE procA �� procB

END TYPE Atype

CONTAINS

SUBROUTINE procB� btype� other�arguments �

 body

END SUBROUTINE procB

END MODULE modA

USE modA

TYPE�Atype� �� x

CALL x�procA� other�arguments �

Figure �� The extensible TYPE as proposed in ��� �in shortened form��

��� Proposals
���
 and
�����

The CWP ��� proposes as a basic building block to extend TYPE with the syntax as given by the example
in Figure ��

J��������
Page �� of 	�

�� The current proposals does not promote an extensible TYPE into a programme unit� thus requiring
always the tandem MODULE and TYPE� as in ADA��� with the resulting duplication of hierarchies
as each sub	TYPE may be placed in a di�erent MODULE� This lack of a proper separation between a
MODULE and an extensible TYPE is a bad linguistic feature�

� I have some serious reservations about the syntax of the CWP� Two names have to be given to
name a method� for an extensible type �procA pointing to procB�� The doubling of names is more
confusing than helpful� It is argued that this syntax allows the user�programmer to gain a quick
view of the structure of the TYPE� This neglects� however� that the argument lists of the public
methods of a TYPE are also needed� Inheritance will �or should� usually lead to small classes that
are extended bit by bit� and modern Fortran support already shorter constructs� Hence the above
argument looses much of its strength� Similarities with ADA�� are quite obvious though ADA���s
syntax seems to be stronger and more consistent to me� e�g� the interfaces of methods are present
in the TYPE scope�

�� The second name of the method �nameB� is not protected against misuse unless the programmer
explicitly declares it private� This design enables shortcuts that are generally considered unsafe�
This unsafe design is exactly what should be avoided by default in any new feature in F
����

�� The user can use the overriden methods of the superclass explicitly via type conversions� see example
of x�vector��d�length�� in ��	
�� where x is of TYPE�vector��d� inherited from TYPE�vector��d��
This is a special case of the general features introduced in items � �Type Enquiry� and � �Access
to Extended Components� in ��	��� They hinder safe type	checking� obscure proper OOP and are
very similar to constructs much criticized in C��� There is hardly a case when they are needed�
The examples later on show a better solution using hash	types�

�� The de�nition of methods also introduces an asymmetry in their argument list� since in the im�

plementation of a method the �rst argument has to be the object itself �btype in Fig� �� while in
the call of the method this argument is not present� This is at least inconsistent and in contrast
with the rest of Fortran� The ADA�� solution� CALL �class�method�� obj� args �� is at least
consistent though it denies the connection between object and method while retaining it for object
and variable� The only consistent solution that does not treat variables and methods di�erently is
to introduce the SELF construct�

� Besides the extensible TYPE a construct OBJECT is introduced� and a variable Var� as in
OBJECT�atype� �� Var�

can have values that are subtypes of atype� This notion is confusing since variables declared with
TYPE and OBJECT are actually all objects in OOP terminology� The term OBJECT here is intended
primarily to declare polymorphic objects� In addition� TYPE can have the attribute POINTER which
can only lead to more confusion� The hash	type introduced earlier for the CLASS version is similar
but more general and avoids the confusion� I want to remind that genericity is hampered by a
nonuniform type syntax�

�� The declarations could be made less verbose by dropping the words TYPE and OBJECT since any
name di�erent from the intrinsic Fortran types automatically implies a TYPE�	 The name OBJECT
could then be replaced by explicitly adding the POINTER attribute�

�� The distinction between TYPE� and TYPE� EXTENSIBLE is unnecessary� extension should be the
default� The current TYPE is either completely public or completely private� I have argued above
for a more di�erentiated and �exible syntax with a di�erent default�

�� It not clear to me what form of polymorphism �subtyping� matching� multimethods� is actually
intended� Genericity does not appear among the features� OOP without it is of limited use�

��� A complication for TYPE might arise from the current e�ort to parametrize TYPE� I do not know
whether the current proposals harmonize or how they could a�ect a generic TYPE�

�I continue using the names like method as earlier on�
	Or are there parsing problems� Certainly not in F�� notation�

J��������
Page � of 	�

CLASS �� Point�D

IMPLICIT NONE

CREATE � Cart Though PRIVATE Cart can be used for creation

REAL �� x����� y����

REAL� FUNCTION �� Len

Len � SQRT� SELF�x��� �SELF�y��� � Example of SELF

END FUNCTION Len

REAL� FUNCTION �� Dist� p �

MYTYPE �� p

Dist � SELF�SubDist�� p �

 here equivalent to Dist � SQRT� �x	p�x���� ��y	p�y���� �

END FUNCTION Dist

REAL� FUNCTION �� SubDist�� p �

�MYTYPE �� p

SubDist� � SQRT� �x 	p�x���� ��y 	p�y���� �

END FUNCTION SubDist�

MYTYPE� FUNCTION� PRIVATE �� Cart� X�� Y� � Could also specify

REAL �� X�� Y� a Subroutine using

x � X� � y � Y� polar Coordinates

Cart � SELF

END FUNCTION Cart

END CLASS Point�D

Figure �� The Point�D class in the proposed CLASS syntax�

��� The Point Class Example

The examples of Figures �� � and �� are presented here to show the e�ect of MYTYPE and hash	types on
the point example that is being discussed in J� �see CWP and ��������

In my view the examples in CWP and ������ show still some confusion over polymorphism and
inheritance� One source of the problem is that a short description of what properties the Point type
should have is lacking� more concrete what should a method like Dist compute� Obviously the distance
between two points �of the same dimension�� But this becomes ambiguous in CWP and ��	���� Actually
the Java example in ��	��� is not a proper version of inheritance since in Java the so	called signature
of methods cannot be changed� i�e� restricted subtyping rules are used for polymorphism� overloading is
used in ��	��� for class Point��d� None of this is necessary� To discuss and demonstrate polymorphism
the examples must be more clearly de�ned as will be done here�

I believe that the presented features of MYTYPE and hash	types allow to achieve a solution that demon	
strates the intentions quite clearly� As a reminder� polymorphism means heterogeneous datastructures�
however� this means that binary methods are excluded since the exact type of the object is not available
before run	time� and testing for the actual type of an item in a heterogeneous list does not solve the
problem posed by inheritance� This is one of the reasons why I did not provide for type conversions and
enquiries� Homogeneous data present no problems in this respect since all data have the same type�

My de�nition of the point class example is given in Figures � and �� Dist computes the distance
between two points of the same type� a sensible de�nition� For two points with di�erent types a method
like Dist is not allowed� This makes sense as the distance between a Point��D and a Point��D is not
de�ned� We can� however� de�ne a subspace distance� i�e� project any Point��D onto the xy	plane� This
operation can be done for any n	dimensional point with n �
� Note the di�erence between the argument
declarations in Dist and SubDist��

In Figure �� the polymorphic array q is set up and all the operations are executed as one might
expect� When Len is called the method called depends on the run	time type of q but there is no problem
here�

J��������
Page �� of 	�

CLASS �� Point�D

IMPLICIT NONE

INHERIT � Point��D

REDEFINE � Dist� Len� Cart

CREATE � Cart

REAL �� z����

FUNCTION� REAL �� Len

Len � SQRT� x��� �y��� �z��� �

END FUNCTION Len

FUNCTION� REAL �� Dist� p �

MYTYPE �� p

Dist � SQRT� �x	p�x���� ��y	p�y���� ��z	p�z���� �

END FUNCTION Dist

MYTYPE� FUNCTION� PRIVATE �� Cart� X�� Y�� Z� �

REAL �� X�� Y�� Z�

x � X� � y � Y� � z � Z�

Cart � SELF

END FUNCTION Cart

END CLASS Point�D

Figure �� The Point�D class in the proposed CLASS syntax�

CLASS �� PointMain or PROGRAM PointMain

IMPLICIT NONE

Integer �� i

Point��D �� p���

�Point��D �� q���

Point��D �� r���

p��� � Point��D�Cart� ���� ��� �

p��� � Point��D�Cart� ���� ��� �

p��� � Point��D�Cart� ���� ��� �

q��� � Point��D�Cart� ���� ��� � legal

q��� � Point��D�Cart� ���� ���� ��� � legal

q��� � Point��D�Cart� ���� ���� ��� � legal

r��� � Point��D�Cart� ���� ���� ��� �

r��� � Point��D�Cart� ���� ���� ��� �

r��� � Point��D�Cart� ���� ���� ��� �

DO i����

Write����� p�i����Dist� p�i	�� �

Write����� r�i����Dist� r�i	�� �

Write����� r�i����SubDist�� p�i� �� p�i��Len

Write����� p�i����SubDist�� q�i� �� q�i��Len

Write����� q�i����SubDist�� r�i� �� r�i��Len

 Write����� p�i����Dist� q�i� � illegal

 Write����� q�i����Dist� p�i� � illegal

END DO

END CLASS PointMain

Figure ��� Using Point classes with homogeneous and heterogeneous datastructures�

J��������
Page �� of 	�

� The Module� Problems and Solutions

��� A Fortran Environment

There have been various critical comments on the current MODULE construct� The title for this section is
a better indication of the underlying issue� Most of these comments have been concerned with

�� how to organize large codes �includes use of directory structure�

� how to implement di�erent versions with the same interface
�� how to combine e�ciency with hiding of implementation details
�� how to compile e�ciently �separation of interface and implementation�
�� how to �nd information �indexing� documentation�

Answers to these questions are important� but the language cannot provide it all� Certain tools must be
provided that ease or even remove these problems� Unfortunately very little help so far has come from
the Fortran vendors� At least three approaches are possible�

�� extend the MODULE syntax

� add a small management syntax
�� leave it to the compiler vendors to provide integrated tools

Advantages and disadvantages of these solutions�

� The leave	it	to	the	vendor solution will leave users with di�erent versions of variable quality� A
rather uniform appearance across platforms is certainly much more appealing� No particular action
from the Fortran committees is required�

� Extending the MODULE syntax including separation of interface and implementation� This requires
a certain amount work from the committees �and has to be approved��� It also will add to the
workload of programmers� especially since the interface information is already determined through
attributes� Visibility can be made more �ne	grained� which in turn allows code to be split over
several modules� It does not address all questions� in particular how to �nd information about a
module� class or method and cannot take advantage of the directory structure� It is very question	
able whether syntax elements for purely organisational purposes should be part of the language at
all�

� A management syntax added to the language as a separate part� This can take advantage of the �le
structure of the platform so that �les from di�erent directories can be accessed easily� An extension
of the PRIVATE construct can be used for �ne	grained access� The compiler will read a control �le
with the necessary information� Again� this needs approval and as a completely new feature will
receive objections� Compilers have to be smart enough� the notorious quality of implementation�

Whatever path is taken a certain uniformity should be achieved� Many high quality tools already exist on
many platforms that can help in this respect� e�g� GUI� syntax	highlighting editors �emacs�improved vi�
and hypertext browsers��
 The Fortran standard committees have not concerned themselves with these
issues of an �enviroment� but I personally believe this attitude should be reconsidered� Some languages
provide more sophisticated tools �compilers for ADA��� environments for Ei�el and Beta�� It would be
useful to gain more information about the practical experiences from users of these languages on this
topic�

��� Module Extensions

Van Snyder has recently proposed a syntax for modules that extends modules by adding junior and
child modules ����� I am concerned about the close ties that are made between MODULE and OOP on
the one hand and providing a more �ne grained visibility meachanism on the other hand� The MODULE

becomes loaded with so many di�erent features that the modular structure of the language su�ers while
the learning curve becomes steeper and steeper�

There are easier ways to achieve the same e�ects� First� a more �ne	grained visiblity can be gained
by extending PRIVATE to include an access list of privileged MODULEs that can see internal details of
other MODULEs� This would be a very simple and compatible solution which is at least as �exible as
child and junior parts� Secondly� compilers can and must automatically extract the interface including
the privileged access statements and use this for an e�cient compilation� This has advantages for the
programmer� all code is kept in one place since there is no physical separation of code and interface� which

�
See e�g� http���daisy�uwaterloo�ca� eddemain�f	
doc��

J��������
Page �� of 	�

will be less error	prone due to forgotten updates of the interface� A parser�compiler can this much more
e�ciently and safely� The same procedure can be used to provide library	style interface documentation
accessible to browsers or the like�

Fortran is the only language with modules �or packages� that does not qualify the names of variables
and methods by the name of the module� This policy should be reconsidered very seriously since the clash
of names can only be avoided by renaming� which compares rather unfavourably with the mechanism�
for example� in ADA���

� Conclusion

I have presented a rather comprehensive proposal for OOP in F
��� in form of a CLASS construct that is
safe via strong typing� is simple and at least as expressive as most OOP language with some form of type
checking� The important OOP principles are observed and their abuse made di�cult� The proposal goes
beyond what is currently considered but provides a much more satisfying and consistent solution that
leaves room for further development of the CLASS construct and does not overload the MODULE with syntax
and semantics� The extension of OOP syntax to existing elements has been proposed to make OOP as
seamless as possible with current Fortran� Some proposals for a simpli�ed syntax have been added� and
the possible extension of modules has been discussed� The current proposal for OOP in Fortran has
many merits that should again defy the so often predicted imminent demise of Fortran� Programmers
can develop their software along the more traditional structured programming lines or along the newer
OOP method� using whatever is most appropriate for the problem at hand�

PS� I would appreciate if one of the committee members could present me with a summary of the
discussion of my proposal since I will be unable to attend the meeting�

References

��� M� Cohen� J����	�� and J����	
�� and references therein�
ftp���ftp�dfrc�nasa�gov�pub�x�j��ncsa�doc�standing�����html

�
� W� B� Clodius� Critical Issues for Object Orientation in Fortran� J����	���� �����

��� K� Bruce� Typing in Object�oriented Languages� Achieving Expressiveness and Safety�
http���www�cs�williams�edu��kim�README�html

��� B� Meyer� Object�oriented Software Construction� New York� Prentice	Hall �����

��� language in the public domain� http���www�icsi�berkeley�edu��sather�

�� L� O� Madsen� B� M�ller	Pdersen� K� Nygaard� Object�Oriented Programming in the BETA

Programming Language� Wokingham� Addison	Wesley� �����

��� N� H� Cohen� ADA as a second Language� New York� McGraw	Hill� ����

��� K� Bruce� L� Cardelli� G� Castagna� The Hopkins Object Group� G� T� Leavens� B� Pierce� On
Binary Methods� http���www�cs�williams�edu��kim�README�html

��� L� E� Petersen� A Module System for LOOM� Thesis� Williams College� Williamstown �����
http���www�cs�williams�edu��kim�Theses�html

���� V� Snyder� Enhancing Modules� J����	�����������
ftp���ftp�dfrc�nasa�gov�pub�x�j��ncsa�doc�meeting�����

A Glossary of Terms

The terminology in the �eld of object	oriented programming �design� analysis� can be quite confusing
which is due to the independent development of ideas and only a slow emergence of a standard notation�
The following de�nitions were mostly collected from ��� with m � � denoting a method m of type � �

class
 code de�ning variables and methods

J��������
Page 	� of 	�

subclass
 code that extends a class �called superclass� and inherits the methods and variables
from the superclass�

object
 instance of a class� object and method are sometimes also called receiver and message�

self
 name for the receiver of a message �i�e� the current object�� only used inside a class�
meaning of self changes with subclass

type
 short for object type or interface type� contains the names of an object�s methods and
the types of each method�s arguments and results� a type is always the most speci�c
one for an object���

subtype
 �informal� a type � is a subtype of a type � � written � �� � � and for object types�

ObjectTypefmj � �jg��j�k �� ObjectTypefmi � �ig��i�n if n � k

with �i �� �i for each i � n�

An expression of type � can be used in any context that expects an expression of type
� � In other words� any expression of type � can masquerade as an expression of type
� � This usually expressed as the rule of

subsumption
 �subtype polymorphism�� if � �� � and a programme fragment has type � it also has
type �

subtyping
 �of methods� rule� � � � �� �� � � � if and only if �� �� � and � �� � �� also called
the contravariance rule� Note that the argument changes in a contravariant way� and
hence both functions and subroutines are a�ected�

mytype
 denotes the type of the receiver of a message with the understanding that its meaning
is variable in subclasses in accordance with self

matching
 short for match	bounded polymorphism� an object type matches another� written � �

� � � if the �rst type has at least the methods of the second considering mytype in one
to be �the same� as mytype in the other� A formal de�nition is�

ObjectTypefmi � �ig��i�k �� ObjectTypefmi � �ig��i�n i� n � k

where the �rst n method types in ObjectTypes may not be changed � but occurences
of mytype mark places where a type changes meaning automatically�

binary method
 a method of type � that has an argument of type � � a wider de�nition includes also
other arguments of same or di�erent type

��Note that methods or SUBROUTINEs have a type unit that is supertype to all types�

