

stra-

 it in
HRO-

eans
ost

ecent
ns

 associ-
-

d a
s the

ent

he
peci-
J3/98-112r2

To: J3
From: Matthijs van Waveren
Subject: VOLATILE requirement (specs/syntax/edits/example)
Date: March 6, 1998

1. Specification

The VOLATILE attribute and statement specify that the object associated with it may be
accessed or changed by a cause from outside the scope of the standard.

2. Syntax

We propose to introduce an attribute form and a statement form. The following is an illu
tion of the syntax:

• Attribute form:
REAL, VOLATILE :: A

• Statement form:
VOLATILE [::] A

3. Description

An object can have the VOLATILE attribute in a specific scoping unit but need not have
other scoping units. In this, it has the same scoping and inheritance rules as the ASYNC
NOUS attribute.

It is intended that a VOLATILE variable may be referenced or defined by non-Fortran m
during execution of a Fortran program. The Fortran processor must attempt to use the m
recent definition when a value is required. Likewise it should attempt to make the most r
Fortran definition available. It is the programmers responsibility to manage the interactio
with the non-Fortran processes. Any variable that affects the sequence of storage units
ated with a object with the VOLATILE attribute, also needs to be declared with the VOLA
TILE attribute.

On the use and constraints of the attribute and statement the following. A procedure an
function shall have an explicit interface, if the procedure has a dummy argument that ha
VOLATILE attribute. An array with vector-valued subscripts can not be a dummy argum
with a VOLATILE attribute. A local variable declared in the specification-part or internal-
subprogram-part of a pure subprogram shall not have the VOLATILE attribute. If the
POINTER and VOLATILE attributes are both specified, then the volatility shall apply to t
target of the pointer and not to the pointer association. If the PARAMETER attribute is s
fied, the VOLATILE attribute shall not be specified.
3/6/98 1 of 5

ut-
4. List of Edits

• Add to syntax rule R214 (page 10), as follows:

R214 specification-stmt is access-stmt
or allocatable-stmt
or asynchronous-stmt
or common-stmt
or data-stmt
or dimension-stmt
or equivalence-stmt
or external-stmt
or intent-stmt
or intrinsic-stmt
or namelist-stmt
or optional-stmt
or pointer-stmt
or save-stmt
or target-stmt
or volatile-stmt

• Add to section 2.5.4 (page 18):

When a data object with the VOLATILE attribute is given a value via some mechanism o
side the scope of this standard, it is considered to be defined.

• Add to syntax rule R503 (page 49), as follows:

R503 attr-spec is PARAMETER
or access-spec
or ALLOCATABLE
or ASYNCHRONOUS
or DIMENSION (array-spec)
or EXTERNAL
or INTENT (intent-spec)
or INTRINSIC
or OPTIONAL
or POINTER
or SAVE
or TARGET
or VOLATILE

• Add an extra constraint after R506 (page 50):

Constraint: If the PARAMETER, INTRINSIC, or EXTERNAL attributes are specified,
then the VOLATILE attribute shall not be specified.
3/6/98 2 of 5

 it in
so

eans
ost

ecent
ns
 associ-

-

y to

 198):

er spec-
n the
r PRI-

US

nherit-
 the
ute.
escrib-

of the
• Add a new section 5.1.2.13 (page 61):
VOLATILE attribute

An object can have the VOLATILE attribute in a specific scoping unit but need not have
other scoping units. All objects associated with an object with the VOLATILE attribute al
need this attribute.

NOTE
It is intended that a VOLATILE variable may be referenced or defined by non-Fortran m
during execution of a Fortran program. The Fortran processor must attempt to use the m
recent definition when a value is required. Likewise it should attempt to make the most r
Fortran definition available. It is the programmers responsiblity to manage the interactio
with the non-Fortran processes. Any variable that affects the sequence of storage units
ated with a object with the VOLATILE attribute, also needs to be declared with the VOLA
TILE attribute.
END NOTE

If the POINTER and VOLATILE attributes are both specified, then the volatility shall appl
the target of the pointer and not to the pointer association.

• Add a new section 5.2.11 (page 64) and renumber 5.2.11 to 5.2.12:
VOLATILE statement

R5xx volatile-stmt is VOLATILE [::] object-name-list

The VOLATILE statement declares the VOLATILE attribute for a list of objects.

• Change in section 11.3.2 the text between Note 11.7 and 11.8 to the following (page

The local name of an entity made accessible by a USE statement may appear in no oth
ification statement that would cause any attribute (5.1.2) of the entity to be respecified i
scoping unit that contains the USE statement, except that it may appear in a PUBLIC o
VATE statement in the scoping unit of a module and it may be given the ASYNCHRONO
or VOLATILE attribute.

• Change (2) (f) in section 12.3.1.1 (page 203) from:

A dummy argument that has the ASYNCHRONOUS attribute, or

to:

A dummy argument that has the ASYNCHRONOUS or VOLATILE attribute, or

• Somewhere, probably in chapter 14, it is needed to clarify the special scoping and i
ance rules for the ASYNCHRONOUS attribute. Namely that it can be different for
"same" variable in different scoping units. This is also valid for the VOLATILE attrib
Thus we can make the edits for both attributes in parallel. See issue 4 in the paper d
ing the edits for 98-007.

• Add to section 14.7.5 in page 302:

(23) An object with a VOLATILE attribute, that is changed by a cause outside the scope
3/6/98 3 of 5

ers,
ow

irect

ates
ce
standard, becomes defined with a processor-dependent value.

5. Example of Usage

The following example illustrates the usage of the VOLATILE attribute in the case of Remote
Memory Access (RMA). RMA allows one process to specify all communication paramet
both for the sending side and for the receiving side. Since the other process may not kn
which data in its own memory might be accessed, we need the VOLATILE attribute in order to
specify the "volatility" of the data. The example shows how to implement the generic ind
assignment A = B(map) , where A, B, and map have the same distribution, and map is a
permutation. We assume a block distribution with equal size blocks. The example origin
from the MPI-2 Standard Document, Chapter 6 (July 18, 1997, Message Passing Interfa
Forum), with the addition of the VOLATILE attribute.

SUBROUTINE MAPVALS(A, B, map, m, comm, p)
!
!

USE MPI
!
! *** Subroutine arguments
!

INTEGER m ! extent of index, target and
! source arrays

INTEGER map(m) ! index array
INTEGER comm ! communicator, specifies group

! of processes
INTEGER p !
REAL A(m) ! target array
REAL, VOLATILE :: B(m) ! source array

!
! *** Local variables
!

INTEGER sizeofreal ! size of real in bytes
 INTEGER win ! handle to window in memory

! accessible by other processes
INTEGER ierr ! error number
INTEGER i !
INTEGER j ! rank of target
INTEGER k ! displacement from window start

! to the beginning of the target
! buffer

!
! *** Executable code
!
! ***
!

3/6/98 4 of 5

CALL MPI_TYPE_EXTENT(MPI_REAL, sizeofreal, ierr)
!
! *** Creation of a memory window of size m*sizeofreal by each
! *** process in comm that is accessible by remote processes.
!

CALL MPI_WIN_CREATE(B, m*sizeofreal, sizeofreal, &
MPI_INFO_NULL, comm, win, ierr)

!
! *** Synchronisation of Remote Memory Access calls on win within
! *** the group comm.
!

CALL MPI_WIN_FENCE(0, win, ierr)
!
! ***
!

DO i = 1, m
j = map(i)/p ! calculation of rank of target
k = MOD(map(i), p) ! calculation of displacement

!
! *** Data transfer from the target memory [A(i)] to the caller
! *** memory [win, B(map(i))].
!

CALL MPI_GET(A(i), 1, MPI_REAL, j, k, 1, MPI_REAL, &
win, ierr)

ENDDO
!
! *** Synchronisation of Remote Memory Access calls on
! *** win within the group comm.
!

CALL MPI_WIN_FENCE(0, win, ierr)
!
! *** Freeing of memory windows in each process.
!

CALL MPI_WIN_FREE(win, ierr)

RETURN
END
3/6/98 5 of 5

	1. Specification
	2. Syntax
	3. Description
	4. List of Edits
	5. Example of Usage

