J3/98-132r1
Page 1 of 4

Date: 1998/02/18
To: J3
From: interop

Subject: Interoperability with C: Specifications

After some consideration, the interop subgroup feels that, in
order to be effective, an interoperability feature between
Fortran and C must meet the following criteria.

The binding must be to the new C standard (C9x) upon which J11
and WG1l4 are currently working. This standard is scheduled
for adoption prior to the completion of the current revision
of the Fortran standard, and it is very likely that there will
be new implementations and C programs that will adhere to C9x
before the Fortran standard is published.

It should allow Fortran programmers to write interface bodies
for arbitrary C functions in Fortran, without requiring
recourse to "wrapper" routines.

A method of specifying the bind-time name of a procedure
defined in C is required, since, in Fortran, names are case
insensitive.

Some method of describing the following C data types for the
interface to a procedure written in C and for globally
accessible C data must be supported: int, short, long, long
long, signed char, unsigned int, unsigned short, unsigned
long, unsigned long long, unsigned char, float, double, long
double, complex, double complex, long double complex, char.

Some method of describing C struct data types must be provided
for both the interface to a procedure written in C and for
globally accessible C data.

Some method of describing C array data types must be provided
for both the interface to a procedure written in C and for
globally accessible C data.

Note that no method of transforming an array from row-major to
column-major, and vice versa, need be provided. If a user
finds the differences in the array notations in the two
languages sufficiently confusing that such a transformation is
desired, Fortran already provides sufficient facilities to
make the transformation "manually".



J3/98-132r1
Page 2 of 4

Some method of describing C pointer types to all of the above
data types must be provided - not just as dummy arguments to
procedures defined in C, but also as members in structs and
the types of array elements.

It may be sufficient to assume that all pointer types have the
same representation (which is not guaranteed by either the
current C standard or C9x). There is some risk that this
might prevent some processor from being standard-conforming,
particularly, processors for embedded systems. However, it
would avoid some of the problems encountered in the
Interoperability PDTR with supporting the rich (and infinite)
variety of pointer representations available to a
standard-conforming C processor.

Associated with the preceding requirement is the requirement
that some method of enquiring about the address of a Fortran
object (with some restrictions) be provided. Many C functions
have parameters of type void *, that are provided to allow
pointers to arbitrary types of objects to be passed. The
Message Passing Interface (MPI) is an example of a facility
that uses this, which makes it impossible to specify a
standard-conforming interface to most MPI procedures. Being
able to specify such interfaces should be a goal of this
feature.

Support for function pointers. Many C functions accept
parameters that act as call back functions. That is, the
caller of the function must provide a function that is used to
perform some sort of initialization action, or perhaps a
per-element computation action.

(Aside: A straw poll was held on whether this was required
function, and the result was 17-0-0.)

Direct support for C functions that have ellipsis parameters
must be provided.

C programmers very often use typedefs to hide the underlying
definitions of objects. For example, on one system the
underlying data type used as a function parameter might be int
while on another it might be a struct.

In order to provide a straightforward, portable way of being
able to handle both cases in the Fortran interface to such a



J3/98-132r1
Page 3 of 4

procedure, a similarly functional type definition system would
be required. Such a facility would benefit Fortran, in
general, in the same way that C benefits.

Even though direct support of the setjmp and longjmp
facilities is not required, there may be implications for a
Fortran program that uses a C function that uses these
functions.

The following additional sub-features may be included, if the
development body finds that time permits their inclusion.

A method of directly de-referencing or manipulating (via
pointer arithmetic) C pointers in a Fortran program could be
provided. Without such a facility, it may prove difficult to
share abstract data structures between the two languages; a
user would have to write C routines to be able to de-reference
such an object or to store the address of a Fortran object,
although these would be likely to be very short C routines.

On the other hand, this may have a significant impact on the
Fortran standard.

(Aside: A straw poll was held on whether this should be a
required feature, and the result was 5-0-13. For this reason,
work on this feature will be deferred.)

Support for unions. The C standard places certain
requirements on the layout of storage in unions that makes it
extremely difficult to simulate this feature without direct
support in the Fortran standard. Many languages provide such
a feature, and it is likely that such a feature would prove
useful to many Fortran users. However, this may be a somewhat
large feature to integrate into Fortran.

Support for bit fields in structs. There has been a
long-standing requirement for support for a bit data type in
Fortran. However, there has been considerable difference of
opinion about the precise semantics required. Including such
a feature may have a significant impact on the standard, and
may not fully satisfy the requirement for a bit data type.

Support for enums. This could be limited to providing a way
of declaring an integer type that is compatible with the
particular enum type, or it could be full-blown support in
Fortran for enums.



J3/98-132r1
Page 4 of 4

Features that will not be supported.

* Support for pragmas. The Interoperability PDTR made an
attempt to provide support for pragmas that might affect
things such as storage layouts. This was done by associating
a scalar-char-init-expr with interface bodies for procedures
defined in C, with dummy arguments for the same, and with
variables associated with globally accessible C data.



