
J�������	
Page � of �

Date� � May ����
To� J�
From� Van Snyder and Malcolm Cohen
Subject� Edits for R�	a
 Inheritance
References� �����	r� ������

Edits refer to ����r�� Page and line numbers are displayed in the margin� Remarks for the
editor are noted in the margin� or appear between � and ��

� component�def�stmt ��� � ��������

R��� derived�type�stmt is TYPE ��� type�quali�er�list� �� � type�name ����	�

R���a type�quali�er is access�spec
�������or EXTENSIBLE

or EXTENDS�parent�type�name�

Constraint� A derived type shall not have both the EXTENSIBLE and EXTENDS qual�
i�ers�

��������

Constraint� parent�type�name shall be the name of an accessible extensible type ��new
section� �������

Constraint� If derived�type�def de�nes an extensible type ��new section� ������� SE�
QUENCE shall not be present�

��������

Constraint� A component declared with the OBJECT keyword ��new section� ��������
shall have the POINTER attribute�

�������

�
	
� Extensible types ��	��	��

Insert new section� add base type� descendant type� extensible type� extension type�
and inherit to the index�

Editor

A type that is declared with the EXTENSIBLE or EXTENDS�parent�type�name� quali�er is
an extensible type� Note� Intrinsic types are not extensible�

New types may be derived from extensible types by adding zero or more components�

A type that is declared with the EXTENSIBLE quali�er is a base type�

The next sentence indirectly de�nes �parent type�� Should �parent type� be in bold face
type� If so� it should be in the index� too�

Malcolm

A type that is declared with the EXTENDS�parent�type�name� quali�er is an extension type
of the speci�ed parent type� A type is a descendant type of another type if and only if it is
the same as the other� or is a direct or indirect extension of it�

The above de�nition of descendant type avoids �the same type as ��� or a type extended
from ���� in numerous places� This usage is common practice in theoretical computer science�
and textbooks on algorithm design� The latter can be used if J� prefers it�

J� Note

An extensible type is not required to have any components� Note� An extension type is a new
type even if it declares no additional components�

An extension type includes all of the components of its parent type� The components of the
parent type are said to be inherited by the extension type� Additional components may
be declared� For purposes of intrinsic input�output ������� and value construction ��existing
section� ������� the order of the components of an extension type is the components inherited
from the parent type� followed by the components of the extension type� in the order declared�

An extension type has a component name that is the same name and has the same type as its

J�������	
Page � of �

parent type� This is not an additional component� it denotes a subobject that has the parent
type� and that consists of all of the components inherited from the parent type�

Note� The subobject denoted by the parent type name has the same accessibility as the ad�
ditional components of the extension type� even if the components of the parent type are not
accessible�

A component declared in an extension type shall have neither the same name as any accessible
component of its parent type nor the same name as the parent type name�

Examples�

TYPE� EXTENSIBLE �� POINT � A base type

REAL �� X� Y

END TYPE POINT

TYPE� EXTENDS�POINT� �� COLOR�POINT � An extension of TYPE�POINT�

� Components X and Y� and component name POINT� inherited from parent

INTEGER �� COLOR

END TYPE COLOR�POINT

Note �����a

R��	 structure�constructor is derived�type�spec� � component�spec�list � � �������

A structure�constructor for an extension type may use a nested form or a list form� In the
��������nested form a single value is provided for the component that has the same name as the

parent type�

If every component of the parent type has a default initialization� does this constitute a default
initialization for the component that has the same name as the parent type�

Malcolm

In the list form a separate value is provided for each component of the parent type� The list
form shall not be used if any components of the parent type are inaccessible in the scoping unit
in which the structure�constructor appears ��������

In the absence of a component name keyword� values for the parent type shall be provided Necessary�

before values for the additional components of the extension type�

Examples of equivalent values �see note �����a��

� Create values with components x �� 	
�� y �� �
�� color �� �

TYPE�POINT� �� PV � POINT�	
�� �
�� � Assume components of TYPE�POINT�

� are accessible here

COLOR�POINT� PV� � � Nested form� available even if

� TYPE�POINT� has PRIVATE

� components

COLOR�POINT� POINT�	
�� �
��� � � Nested form� components of

� TYPE�POINT� must be accessible

COLOR�POINT� 	
�� �
�� � � List form� components of

� TYPE�POINT� must be accessible

Note �����a

or OBJECT� type�name � ��������

Constraint� An entity declared with the OBJECT keyword shall be a dummy argument
or have the POINTER attribute�

�������

Constraint� If an entity is declared with the OBJECT keyword� the type�name shall be
an extensible type ��new section� �������

	
�
�
� Polymorphic objects �Editor� new section� ��	��	��

J�������	
Page � of �

An OBJECT type speci�er is used to declare objects that can� during program execution�
assume any derived type that is a descendant type ��new section� ������ of the type speci�ed
by the type�name� The type speci�ed by type�name is the declared type of the polymorphic
object� The type assumed at any instant during program execution is the run�time type at
that instant� The run�time type of a �xed�type object is the same as its declared type�

Note� Only components of the declared type of a polymorphic object may be referenced by
component selection �	������

When �if� a SELECT TYPE construct is added� mention it here� J� note

The next two paragraphs are an extension of speci�cations� It seems more useful for a disas�
sociated polymorphic pointer object to have the declared type than an unde�ned type� and it
would have been di�cult to describe a NULL�� intrinsic returning a pointer with no type�

J� note

Polymorphic objects acquire their run�time type from associated actual arguments �����������
as a result of pointer assignment �������� or as a result of successful execution of an ALLOCATE
�	������ NULLIFY �	������ or DEALLOCATE �	����� statement�

The type of a polymorphic pointer with a pointer association status of disassociated or unde�ned
is the declared type�

�Editor� change �type� to �declared type��� �������

An allocate�object that is a polymorphic object ��new section� �������� is allocated with its ��������
run�time type equal to the declared type�

Note� When a NULLIFY statement is applied to a polymorphic object ��new section� �������� �������
the run�time type becomes the declared type�

An intrinsic assignment statement is an assignment statement wherein the shapes of vari� ����������
able and expr conform� and which is one of the following�

��� A numeric intrinsic assignment statement is an intrinsic assignment statement for New

wording for

existing

material

which variable and expr are of numeric type�

��� A character intrinsic assignment statement is an intrinsic assignment statement for
which variable and expr are of type character and have the same kind type parameter�

��� A logical intrinsic assignment statement is an intrinsic assignment statement for
which variable and expr are of type logical�

��� A derived type intrinsic assignment statement is an intrinsic assignment statement
for which the following are true�

�i� There is no accessible de�ned assignment ������������ for objects of the declared type
of variable and objects of the declared type of expr�

The following were not covered by speci�cations� Choose one alternative of the three� J� Note

�ii� The declared type of expr is a descendant type ��new section� ������ of the declared Alt� �

type of variable� if either variable or expr is polymorphic ��new section� ��������� the
run�time type of expr shall be a descendant type of the run�time type of variable�

�ii� The declared type of variable shall be the same as the declared type of expr �within Alt� �

specs�� If either variable or expr is polymorphic� the run�time type of expr shall be
the same as the run�time type of variable �an extension of specs��

J�������	
Page � of �

�ii� The declared type of variable shall be the same as the declared type of expr �within Alt� �

specs�� The variable shall not be polymorphic �within specs�� If expr is polymorphic�
the run�time type of expr shall be the same as the type of expr �an extension of
specs��

Notwithstanding Werner Schulz�s objections� anything other than Alt� � requires a pile of
nested SELECT TYPE constructs� or even worse if we don�t do SELECT TYPE�

Malcolm

�Editor� Move table ��� to be between lines �� and ���� ���������

Specs didn�t discuss the following paragraph� It is germane if we don�t choose Alt� � above� J� note

For a derived type intrinsic assignment statement� if the type of expr is not the same as the type ������
of variable� only the part of expr that is inherited ��new section� ������� directly or indirectly�
from the type of variable is assigned� Note� This is analogous to the case of variable being of
type real and expr of type complex� wherein only the real part of expr is assigned to variable� If
either variable of expr are polymorphic ��������� the run�time types determine the part of expr
that is assigned to variable�

Specs didn�t discuss the following paragraph� J� note

I used �assigned from� instead of �assigned the value of� because this sentence asserts that
assignment is done� not that value assignment is done� In fact� the following paragraph states
the condition under which pointer assignment is done�

Malcolm

A derived type intrinsic assignment is performed as if each component of variable is assigned ����������
from the corresponding component of expr� Note� if variable is polymorphic ��new section�
�������� the components are determined by the run�time type of variable �unless we choose Alt�
� above�� Note� If the type of expr is di�erent from the type of variable� additional components
of expr are ignored �unless we choose Alt� � or Alt� � above��

For pointer components� pointer assignment is used�

For non�pointer components that are not allocatable arrays� intrinsic assignment is used�

For allocatable array components the following sequence of operations is applied�

�Editor� change �types� to �declared types��� ��������

Constraint� If pointer�object is a data object or a function procedure pointer� the declared
type of target shall be a descendant type ��new section� ������ of the declared
type of pointer�object�

�����������

Constraint� If pointer�object is a data object or a function procedure pointer� the rank
and kind type parameters of target shall be the same as the rank and corre�
sponding kind type parameters of pointer�object�

Do we need to be more careful in the two previous constraints about �the type� of a function
procedure pointer�

Malcolm

If the target is polymorphic ���������� the run�time type of the target shall be a descendant type
���������

��new section� ������ of the declared type of the pointer�object�

The following paragraph extends the speci�cations� See the second J� note at ��	��	��

If the pointer�object is polymorphic� the pointer�object assumes the run�time type of the target�

�Note to Editor� Replace �If ��� object�� by�� ��������

If a dummy argument is a dummy data object of �xed type and the associated actual argument
is of �xed type�

J�������	
Page � of �

If either or both of a dummy argument and its associated actual argument are polymorphic�
their data types are not required to be exactly the same�

The run�time type of an actual argument shall be a descendant type ��new section� ������ of
the declared type of the dummy argument� If the dummy argument is polymorphic it assumes
the run�time type of the corresponding actual argument�

The call to SA is legal� but results in allowing an illegal pointer assignment� or requiring a
run�time check� The call to SB is illegal� but if it were allowed� nothing bad would happen in
its body� Because intent�out� dummy arguments must be pointer�assigned before they can be
referenced� the argument association rule for intent�out� pointer dummy arguments should be
that the declared type of the dummy argument shall be a descendant type of the declared type
of the actual argument �opposite to all the other cases�� Then� the call to SA is illegal� and no
run�time check is needed� while the call to SB is legal� The e�ect is to allow a slightly larger
class of legal and meaningful programs� and to obviate the need for a run�time check of the
constraint �In a pointer assignment to a polymorphic dummy argument� the run�time type of
the target shall be a descendant type of the declared type of the associated actual argument�
in the case of intent�out� pointer dummy arguments� it is still needed for intent�inout� and
unspeci�ed intent� This has the e�ect of requiring the declared type of the actual argument
to be part of the dope vector�
We need the constraint in any case� Should it be in ������
 Pointer assignment� or here�

TYPE� EXTENSIBLE �� A

TYPE� EXTENDS�A� �� B

OBJECT�A�� POINTER �� PA

OBJECT�B�� POINTER �� PB

SUBROUTINE SA � XA �

OBJECT�A�� POINTER� INTENT�OUT� �� XA

XA �� PA

END SUBROUTINE SA

CALL SA � PB � � Indirectly� the XA �� PA in SA violates pointer

� assignment rules

SUBROUTINE SB � XB �

OBJECT�B�� POINTER� INTENT�OUT� �� XB

XB �� PB

END SUBROUTINE SB

CALL SB � PA � � Violates argument association rules� but

� XB �� PB inside SB is OK

Malcolm

J�������	
Page 	 of �

Examples� Given

TYPE�POINT� �� T� � See note �
�
a

TYPE�COLOR�POINT� �� T

OBJECT�POINT� �� P�

OBJECT�COLOR�POINT� �� P

� Dummy argument is polymorphic and actual argument is of fixed type

SUBROUTINE SUB� � X� �� OBJECT�POINT� �� X��

SUBROUTINE SUB � X �� OBJECT�COLOR�POINT� �� X�

CALL SUB� � T� � � Legal �� The declared type of T� is the same as the

� declared type of X�

CALL SUB� � T � � Legal �� The declared type of T is extended from

� the declared type of X�

CALL SUB � T� � � Illegal �� The declared type of T� is neither the

� same as nor extended from the declared type

� type of X

CALL SUB � T � � Legal �� The declared type of T is the same as the

� declared type of X

� Actual argument is polymorphic and dummy argument is of fixed type

SUBROUTINE TUB� � D� �� TYPE�POINT� �� D�

SUBROUTINE TUB � D �� TYPE�COLOR�POINT� �� D

CALL TUB� � P� � � Legal �� The declared type of P� is the same as the

� declared type of D�

CALL TUB� � P � � Legal �� The declared type of P is extended from

� the declared type of D�

CALL TUB� � P� � � is legal only if the run�time type of P� is the same

� as the declared type of D�� or a type

� extended therefrom

CALL TUB � P � � Legal �� The declared type of P is the same as the

� declared type of D

� Both the actual and dummy arguments are of polymorphic type

CALL SUB� � P� � � Legal �� The declared type of P� is the same as the

� declared type of X�

CALL TUB� � P � � Legal �� The declared type of P is extended from

� the declared type of X�

CALL TUB� � P� � � is legal only if the run�time type of P� is the same

� as the declared type of X�� or a type

� extended therefrom

CALL TUB � P � � Legal �� The declared type of P is the same as the

� declared type of X

Note
��������a
Maybe this

should be in

Annex C�

��
�� Polymorphic type inquiry functions �Editor� new section� ���������

I changed the functions to allow either argument to be polymorphic or �xed� This al�
lows asking EXTENDS TYPE OF either way� without needing to put �NOT� in front of it�
SAME TYPE AS is changed for symmetry� I don�t think we need a note about pointlessness
if they�re both of �xed type� any more than we need a note about pointlessness of SQRT�����

Malcolm

These intrinsic functions are slightly changed from speci�cations� J� note

J�������	
Page � of �

The function SAME TYPE AS inquires whether two objects of extensible type ��new section�
������ have the same run�time type� The function EXTENDS TYPE OF inquires whether the
run�time type of one object of extensible type is a descendant type ��new section� ������ of the
run�time type of another object of extensible type�

��
��
�� Polymorphic type inquiry functions �Editor� new section� ���������

EXTENDS TYPE OF�A� B� Same run�time type or an extension

SAME TYPE AS�A� B� Same run�time type

��
��
� EXTENDS TYPE OF�A� B� �Editor� new section� ��	������

Description
 Inquires whether the run�time type of A is a descendant type ��new section�
������ of the run�time type of B�

Class
 Inquiry function�

Arguments

A shall be an object of extensible type�

B shall be an object of extensible type�

Result Characteristics
 The result is of type default logical scalar�

Do you want �direct or indirect extension� instead of �descendant� below� and in the summary
������ above�

Malcolm

Result Value
 The result is true if and only if the run�time type of A is a descendant type
��new section� ������ of the run�time type of B�

��
��
�� SAME TYPE AS�A� B� �Editor� new section� ���������

Description
 Inquires whether the run�time type of A is the same as the run�time type of B�

Class
 Inquiry function�

Arguments

A shall be an object of extensible type�

B shall be an object of extensible type�

Result Characteristics
 The result is of type default logical scalar�

Result Value
 The result is true if and only if the run�time type of A is the same as the
run�time type of B�

�Note to Editor� Replace �di�erent type� by �declared type that is not a descendant type ��new �����	���
section� ������ of the declared type of the other dummy argument���

base type ��new section� ������� An extensible type that is not an extension of another type� ���������
A type that is declared with the EXTENSIBLE type quali�er�

descendant type ��new section� ������� An extensible type that is the same as another exten� ���������
sible type� or a direct or indirect extension of it�

extensible type ��new section� ������� A type from which new types may be derived by adding ���������
components�

extension type ��new section� ������� A type derived from an extensible type by adding
components�

�xed�type object ��new section� ��������� An object for which the type cannot change during ���������
execution of a program�

inherit ��new section� ������� Components of an extension type are automatically acquired ���������

J�������	
Page � of �

from the parent type� without requiring explicit declaration in the extension type�

parent type ��new section� ������� The extensible type from which an extension type is derived� ���	�����

polymorphic object ���������� An object for which the type may vary during program exe� ��������
cution�

run�time type ���������� The actual type of a polymorphic object during execution of a ������	��
program� The run�time type of a �xed�type object is the same as its declared type�

Components of an object of extensible type that are inherited from the parent type may be ��	������
accessed� as a whole� by using the component name that is the same as the parent type name�
or individually� either with or without qualifying them by the component name that is the same
as the parent type name� Continuing note �����a�

TYPE� EXTENSIBLE �� POINT � A base type

REAL �� X� Y

END TYPE POINT

TYPE� EXTENDS�POINT� �� COLOR�POINT � An extension of TYPE�POINT�

� Components X and Y� and component name POINT� inherited from parent

INTEGER �� COLOR

END TYPE COLOR�POINT

TYPE�POINT� �� PV � POINT�	
�� �
��

TYPE�COLOR�POINT� �� CPV � COLOR�POINT�PV� � � Nested form constructor

PRINT �� CPV�POINT � Prints 	
� and �
�

PRINT �� CPV�POINT�X� CPV�POINT�Y � And this does� too

PRINT �� CPV�X� CPV�Y � And this does� too

