J3/98-146

Page 1 of 2
Date: 6 May 1998
To: J3
From: Van Snyder

Subject: Discussion paper — Explicitly typed allocations
References: 97-159, 98-124, 98-135

In paper 98-124, Richard Maine observed that array constructors suffer from the problem that
their types and type parameters are inferred from their components. The solution proposed in
that paper is to allow a complete type-spec, including specification of both kind and non-kind
parameters, to preceed the array constructor.

The ALLOCATE statement similarly suffers in that the length of a character datum cannot be
deferred until allocation. Furthermore, users will certainly want to be able to allocate:

e objects of parameterized derived types, and specify non-kind type parameters during
allocation, and

e polymorphic objects with a type descendant from the declared type.

In parallel to the solution proposed in paper 98-124, this paper proposes to use a type-spec,
including specification of non-kind parameters, to preceed an allocate-object, and its associated
allocate-shape-spec-list, if any. (Allowing specification of kind parameters to be deferred until
allocation would cause a tremendous performance problem.)

Exactly all deferred parameters must be specified during allocation. Actual type parameters to
the type-spec correspond in positional order to deferred “dummy” type parameters. Keyword
notation may also be used.

To make the declaration syntax for allocatable entities for which parameters in addition to
dimension will be specified during allocation more uniform, the “:”
to indicate a specification that is deferred until allocation, or assumed from a dummy argument.
“k” for assumed type parameters of

notation should be allowed

The present syntax for parameterized derived types uses
dummy arguments.

For example, to declare a rank-1 allocatable character array, in which the element size and
array dimension are both to be specified during allocation, one should write

character(len=:), allocatable :: char_arr(:)
allocate (character(len=16)(char_arr(23)))

If a facility to specify character length during allocation had been available, the mechanism to
access command line information might well have been developed differently.

Paper 97-159 illustrates the kind of difficulties that would have been encountered in trying
to access command line information by using procedures, but without the ability to specify
character length during allocation. A solution of the kind adopted for command line information
is, however, at best a clumsy solution for access to status error messages:

! Call the system’s intrinsic routine to give access to error messages:
call system_error (message_number, my_processing_routine)

contains

J3/98-146
Page 2 of 2

subroutine my_processing_routine (message)
character(len=*) message(:)
! access other information by host or use association

end subroutine my_processing_routine

(This solution was not proposed in 97-159 because it is even uglier than the ugly solutions
proposed therein. It would be the only intrinsic procedure that has a dummy procedure argu-
ment.)

It would be better to allow:
character(len=:), allocatable :: my_message(:)

! T want to do the allocation myself:

call system_message (message_number, width=my_width, lines=my_lines)
allocate (character(len=my_width)(my_message(my_lines)))

! If I don’t allocate enough, the system_message routine truncates
call system_message (message_number, message=my_message)

print * ’Something went wrong:’

print *, my_message

deallocate (my_message)

! T want the system to do the allocation.

call system_message (message_number, allocate_message=my_message)

! my_width = len(my_message); my_lines = size(my_message) ! but I don’t care
print * ’Something went wrong:’

print *, my_message

deallocate (my_message)

If one compares this solution to the preceeding one, and to the unbearably messy solutions in
97-159, the advantages are obvious

Facilities to access system environment information, and the MANGLE function proposed in dis-
cussions of C interoperability, would suffer difficulties similar to those shown here and in 97-159
without the ability for character variable length to participate in allocation, and would enjoy
similar benefits to those shown here if it were possible.

Compiler code generation strategies for objects for which specification of non-dimension pa-
rameters is deferred until they are allocated should be similar to, and no more difficult than,
existing strategies for dummy arguments of character type having assumed length, and strate-
gies that will be necessary for dummy arguments of parameterized derived type, with assumed
parameters.

