
From: Kurt W. Hirchert J3/98-160 (Page 1 of 2)
Subject: /DATA Report on 98-146 Meeting 145

J3/98-160 (Page 1 of 2)

The following is a summary of the /DATA consideration of 98-146:

1. The subgroup supports the proposed functionality.

2. Declaration syntax – the subgroup discussed various alternatives:

a. CHARACTER(LEN=:) (also CHARACTER(:) and CHARACTER*(:)): This alternative was
proposed in 98-146 as an analog to the syntax for deferred-shape declarations.5

Objection: In deferred-shape declarations and elsewhere in the language, colon
is used to separate two omitted values rather than to represent a single omitted
value.

b. CHARACTER(LEN=*): The rationale for this alternative is that since the syntax for
deferred-shape arrays is very similar to the syntax of assumed-shape arrays, the10

syntax of deferred-length pointers should resemble that of assumed-length
variables. However, there are already assumed-length dummy pointers (because
non-dummy CHARACTER pointers are declared with explicits lengths) and there
are no assumed-shape dummy pointers, so we would need to reconcile the
syntax that can be taken as either an assumed-length dummy pointer or a15

dummy deferred-length pointers. One possible reconciliation is for assumed-
length dummies to also assumed the property of being deferred (and thus
changeable). Thus, they would effectively become dummy deferred-length
pointers when the corresponding actual arguments are deferred-length pointers.
Remaining objections: Use of this combined semantic may be more error-prone20

than helpful. It may be difficult to implement this form of assumed-length
length in a way that is object-compatible with implementations of the current
assumed-length feature.

c. CHARACTER(LEN=) (also CHARACTER() and CHARACTER*()): The rationale for this
alternative is that in assumed-shape declarations, we simply omit the values,25

leaving the punctuation. Objections: This form looks strange and it might be
confused with ordinary omission of the LEN type parameter (implying
CHARACTER(1)).

d. Others such as CHARACTER(LEN=**), CHARACTER(LEN=.), CHARACTER(LEN=-),
CHARACTER(LEN=+), and CHARACTER(LEN=_): These notations provide an explicit30

substitute for the omitted value, while avoiding semantic entanglements with
assumed-length. The same notation could be allowed as an alternative to the
existing assumed-shape notation. Objections: These notations have no
precedent in the language. Some of them are subject to legibility concerns or
concerns about precluding future extensions involving those notations (e.g.,35

under some possible extensions, _ might be a legal variable name).

3. Allocation syntax: Although the proposed syntax appeared unambiguous, concerns
were expressed that it placed an unnecessarily high burden on the parser and that the

From: Kurt W. Hirchert J3/98-160 (Page 2 of 2)
Subject: /DATA Report on 98-146 Meeting 145

J3/98-160 (Page 2 of 2)

connections to the syntax on which it was modeled were tenuous. As an alternative, the
subgroup suggested the following:

ALLOCATE (CHARACTER(LEN=16):: CHAR_ARR(23), CHAR_SCALAR)

The rationale (or perhaps rationalization) for this syntax choice was that since the
ALLOCATE statement is filling in values deferred from the declaration of the variables, it5

is reasonable the syntax for doing so should resemble declaration syntax.

4. Declaration constraints: Currently, all values used in specifying shape must be deferred
on an array pointer, but non-KIND type parameters must be specified. We wish to allow
those non-KIND type parameters to be deferred. If one non-KIND type parameter is
deferred, must all be? May the non-KIND type parameters be deferred and the shape10

specified? Should we revisit the decisions on deferring shape and allow some values to
be specified (e.g., lower bounds or the both bounds on the inner dimensions) while
others are deferred?

5. Allocation constraints: 98-146 proposes that only the deferred non-KIND type
parameters be specified in the ALLOCATE statement. An alternative suggestion is that the15

specification of type parameters be complete, with the requirement that previously
specified type parameters be given the same value. Another would be to allow such
restatement of previously specified type parameters, but not require it. It would be
possible to treat KIND and non-KIND type parameters in this regard (e.g., requiring KIND
type parameters not to be restated while allowing restatement of non-KIND type20

parameters).

•

