
 J3/98-165r1
 Page 1 of 7

Date: 1998/05/31
To: J3
From: interop
Subject: Interoperability syntax (Part 1)
References: J3/98-132r1, J3/98-139

Describing pre-defined C data types

An ISO_C_TYPES module shall be provided that makes accessible the following named
constants of type default integer: C_INT, C_SHORT, C_LONG, C_LONG_LONG,
C_SIGNED_CHAR, C_FLOAT, C_DOUBLE, C_LONG_DOUBLE,
C_COMPLEX, C_DOUBLE_COMPLEX, C_LONG_DOUBLE_COMPLEX and
C_CHAR.

C_INT, C_SHORT, C_LONG, C_LONG_LONG and C_SIGNED_CHAR shall have
values that are representation methods for integers that exist on the processor or shall
have the value –1.

Because the C standard specifies that the representations for positive signed integers are
the same as the representations for corresponding values of unsigned integers, and
because Fortran will not provide any real support for unsigned kinds of integers, we have
decided not to provide C_UNSIGNED_INT, C_UNSIGNED_SHORT,
C_UNSIGNED_LONG, C_UNSIGNED_LONG_LONG or C_UNSIGNED_CHAR
constants in the ISO_C_TYPES module. Instead a user can use the constants for the
signed kinds of integers to access the unsigned kinds as well. Note that this has the
potentially surprising side-effect that unsigned char would be declared as
INTEGER(C_SIGNED_CHAR) in Fortran.

C_FLOAT, C_DOUBLE and C_LONG_DOUBLE shall have values that specify
approximation methods for the real type that exist on the processor or shall have the
value -1. The values of C_COMPLEX, C_DOUBLE_COMPLEX, and
C_LONG_DOUBLE_COMPLEX shall be the same as the values of C_FLOAT,
C_DOUBLE, and C_LONG_DOUBLE, respectively.

The value of C_CHAR shall specify a representation method for characters that exists on
the processor or shall have the value -1.

A scalar entity or derived type component in the “Fortran type” column of the following
table, that has a kind type parameter that has the same value as the named constant made
accessible from the ISO_C_TYPES modules specified in the “Type kind” column, are
said to interoperate with scalars or structure components of C types that are compatible
(ref. C standard) with the C types in the corresponding row of the “C type” column.

 J3/98-165r1
 Page 2 of 7

Fortran type Type kind C type
C_INT int

unsigned int
C_SHORT short int

unsigned short int
C_LONG long int

unsigned long int
C_LONG_LONG long long int

unsigned long long int

INTEGER

C_SIGNED_CHAR signed char
unsigned char

C_FLOAT float
C_DOUBLE doubleREAL
C_LONG_DOUBLE long double
C_COMPLEX complex

C_DOUBLE_COMPLEX double complexCOMPLEX
C_LONG_DOUBLE_COMPLEX long double complex

CHARACTER C_CHAR char

So, for example, a scalar object of type integer, with a kind parameter equal to the value
of C_SHORT, interoperates with a scalar object of the C type short or of any C type
derived (via typedef) from short.

No other entities than those mentioned in this document shall be made accessible from
the ISO_C_TYPES module. This prevents a program that is conforming with respect to
one processor from being made non-conforming with respect to another due to names
made accessible from the ISO_C_TYPES module.

C pointer types

The ISO_C_TYPES module shall make accessible an entity with the name C_PTR.
This entity shall be a derived type or a type alias name. A Fortran scalar entity or derived
type component of type C_PTR interoperates with C scalars or structure components
that are of any C pointer type.

Note that this requires the representation method for all C pointer types to be the same for
the C processor, if it is to be the “target” of interoperability of a Fortran processor. The C
standard does not impose this requirement, so this may limit the ability of some
processors to conform to Fortran 2000. Whether any C processors of interest actually
take advantage of this needs to be determined.

Dereferencing of C pointers within Fortran will not be supported.

 J3/98-165r1
 Page 3 of 7

Handling of structures

A new “attribute” (that’s not the right term, but. . .) is introduced for Fortran derived type
declarations. This is the BIND(C) attribute. For example,

TYPE, BIND(C) :: MYFTYPE
 INTEGER(C_INT) :: I, J
 REAL(C_FLOAT) :: R
END TYPE MYFTYPE

Such a derived type definition shall not specify the SEQUENCE statement.

A Fortran scalar object or derived type component of derived type is said to interoperate
with a C scalar object or derived type component of a struct type, if the derived type
definition includes the BIND(C) attribute, the derived type and the struct type have the
same number of components, and components of the derived type interoperate with the
corresponding components of the struct type, which shall not be bit fields or arrays
whose first bound is unspecified (need correct C terminology again).

A Fortran derived type that specifies the BIND(C) attribute shall satisfy the following.
� It shall not be a parameterized derived type.
� It shall not specify either the EXTENDS extends or the EXTENSIBLE attribute.
� Any component that is of derived type shall be of a type that specifies the BIND(C)

attribute as well.
� Any component shall not specify the POINTER nor the ALLOCATABLE attribute.

For example, a C scalar object of type myctype interoperates with a Fortran scalar object
of type myftype.

typedef struct {
 int m, n;
 float r;
} myctype;

Note that C9x requires the names and component names of two struct types to be the
same in order for the types to be considered to be the same. This is similar to Fortran’s
rule describing when sequence derived types are considered to be the same type.
However, because of the problem of mixed-case names in C, we have decided to be more
forgiving.

Note that unions and bit fields are not supported. In addition, C structs like the
following cannot interoperate with any Fortran structure (this is a new feature of C9x):

struct {
 int m[]; /* Last component has an unspecified bound – like assumed-size */
}

 J3/98-165r1
 Page 4 of 7

Straw vote: Should we use BIND(C) or add an optional “(C)” to the SEQUENCE
statement?

Result of straw vote: BIND(C) - 4 SEQUENCE(C) - 4 Undecided - 3

Handling of arrays

Because Fortran arrays are stored in column-major order, whereas C arrays are stored in
row-major order, the nth dimension of a Fortran array corresponds to the (r-n+1)th
dimension of the C array, where both arrays are of rank r.

A Fortran explicit-shape or assumed-size array object or structure component
interoperates with C objects or structure components of array types if the elements
interoperate, the ranks of the arrays are the same, and

1. if the Fortran array is explicit-shape, the extent in each dimension is the same as the
extent of the corresponding dimension of the C array (need C terminology here); or

2. if the Fortran array is assumed-size, the extent in each dimension but the last must
be the same as the extent of the corresponding dimension of the C array, and the
extent of the first dimension of the C array shall be unspecified.

� Need to deal with arrays of arrays of. . . . (This is mainly to ensure that we’re using
the correct terminology throughout to map Fortran’s multi-dimensional arrays to
C’s arrays of arrays.) This is to be clarified in a future paper.

Handling of characters

This is TBD in a future paper.

Type aliases

In order to facilitate portable use of C functions that use data types defined with C’s
typedef facility, a type aliasing statement is introduced to Fortran. The syntax is:

type-alias-stmt is TYPEALIAS :: type-alias-list
type-alias is type-alias-name => type-spec

A type alias name can then appear as the type-spec (R502) in a type-declaration-stmt
(R501), a component-def-stmt (R425) or an implicit-spec (R542). Explicit or implicit
declaration of an entity or component using a type alias name is identical to declaration
using the type-spec for which it is an alias. The keyword TYPE is used in declarations.

 J3/98-165r1
 Page 5 of 7

For example,

TYPEALIAS :: DOUBLECOMPLEX => COMPLEX(KIND(1.0D0)), &
 & NEWTYPE => TYPE(DERIVED)

TYPE(DOUBLECOMPLEX) :: X, Y
TYPE(NEWTYPE) :: S

The type alias name can also be used as a structure constructor name, if it is an alias for a
derived type.

A type alias name shall not be the same as the name of an intrinsic type. The type alias
name declared is a local entity of class (1) (14.1.2), and can be made accessible via use or
host association.

Note the => in the type alias statement syntax precludes making the :: optional.
Otherwise, there is an ambiguity with pointer assignment in fixed source form. Also, the
TYPE keyword is required when the type alias name is used in type-specs, as there would
be a potential for ambiguity in fixed source form were it omitted:

TYPEALIAS :: REWIND => LOGICAL
REWIND I

Suggestions that allow the “::” to be optional and suggested alternatives to using TYPE in
declarations will be gladly entertained.

Note that the TYPEALIAS is not as flexible as C’s typedef facility because certain type
modifiers of C (such as array bounds) are attributes in Fortran, rather than being a part of
the type.

Attributes of procedures and dummy arguments

A new VALUE attribute (along with a VALUE declaration statement) is defined for
dummy data objects, and a BIND attribute is introduced for function and subroutine
statement. A Fortran procedure interoperates with a C function if:
� the procedure is declared with the BIND(C) attribute;
� the results of the procedure and function interoperate, if the Fortran procedure is a

function, or the result type of the C function is void, if the Fortran procedure is a
subroutine;

� the number of dummy arguments of the Fortran procedure is equal to the number of
formal parameters of the C function;

� dummy arguments with the VALUE attribute interoperate with corresponding formal
parameters, and dummy arguments without the VALUE attribute correspond to
formal parameters that are pointers whose reference types (need correct C
terminology here!) interoperate with the types of the corresponding dummy
argument;

 J3/98-165r1
 Page 6 of 7

The BIND(C) attribute shall not be specified for a subroutine or function if it requires an
explicit interface or has asterisk dummy arguments.

Note that the requirement that the Fortran procedure not require an explicit interface
prohibits dummy arguments from having the POINTER attribute, having the
ALLOCATABLE attribute, being assumed-shape arrays, having an array result, etc.

Here’s an example:

BIND(C) INTEGER(C_SHORT) FUNCTION FUNC(I, J, K, L, M)
 INTEGER(C_INT), VALUE :: I
 REAL(C_DOUBLE) :: J
 INTEGER(C_INT) :: K, L(10)
 TYPE(C_PTR), VALUE :: M
END FUNCTION FUNC

short func(int i; double *j; int *k; int l[10], void *m);

This ties together some of the syntax specified in previous sections. Note that a C pointer
may correspond to a Fortran dummy argument of type C_PTR, or to a Fortran scalar that
does not have the VALUE attribute. Fortran’s rules of type checking will not be hobbled
in order to provide access to C pointers to void, and the like; instead, a LOC intrinsic
will be introduced to get the address of a Fortran object. (See “The LOC intrinsic” for
information on how values of type C_PTR are constructed.)

If an object is not a dummy argument, it shall not have the VALUE attribute. An object
shall not have the VALUE attribute if it is an array or has INTENT(OUT) or
INTENT(INOUT). A dummy argument of type character with a length parameter whose
value is not one, shall not have the VALUE attribute.

If a dummy argument in a subprogram has the VALUE attribute, it implicitly has the
INTENT(IN) attribute. (That is, VALUE can be used in a Fortran subprogram
definition.)

The intent for BIND(C) is to be able to specify both procedures defined in C that can
be called from Fortran, and subprograms defined in Fortran that can be called from C.
Thus far, we have dealt with the former. The latter is to be dealt with in a future paper

Note also that, as an extension, a processor could provide additional BIND
subattributes to specify particular C processors with the Fortran processor.

Name mangling

This is a facility to handle name changes that both allows the Fortran processor to
specify with what name a C function or global data object was declared (since the rules

 J3/98-165r1
 Page 7 of 7

for the two languages are different, particularly with regard to treatment of case), and
to explicitly override the algorithm used to map a name to a “binder” name. More
than one such name may be associated with a procedure. (See 98-139 for more details
on direction.)

TBD – this will be completed in a future paper. The intended direction is to add
additional optional subattributes to the BIND attribute.

Access to global data

This will be a facility to associate Fortran objects with global C data objects.
Additional rules on association (similar to those specified for COMMON) will be
required. It may be possible to extend such association to COMMON as well. Details
TBD by a future paper.

The LOC intrinsic

This will be a function that returns the address of an object as a C_PTR. The precise
details and restrictions are TBD in a future paper.

stdargs

A facility to specify a varying number of arguments to a procedure. The details are
TBD by a future paper.

Conditions under which a C function may maintain a pointer to an object

Currently, Fortran’s rules that enable optimization are such that, a reference to a
procedure may cause a local object to be modified or referenced, if that object is
accessible via host association, dummy argument association, has the TARGET
attribute or the POINTER attribute. C’s use of pointers needs to be taken into account
here. Details are TBD by a future paper.

Enums

A facility to provide access to C enumerated types will be provided. Possibilities are
under discussion, with details TBD by a future paper.

