
J�������	
Page � of �

Date� �� June ����
To� J	
From� Van Snyder
Subject� Discussion paper 
 Using POINTER�C� for C interoperability
References� �
����� �
���	� ������r�

� Introduction

Using POINTER�C� for several purposes� for which papers �
���� and ������R� proposed
separate mechanisms� would simplify C interoperability� while simultaneously expanding its
expressive power�

POINTER�C� can provide the functionality of and replace the need for the following facilities
proposed by paper ������r��

� The type C PTR

� A VALUE annotation for dummy arguments

� A LOC intrinsic function

Facilities prohibited or not addressed by paper ������r�� but that are supported by using
POINTER�C�� include�

� Pointer�C� allows safe C object dereferencing� using semantics very similar to Fortran
semantics�

� It should not be necessary to export a C NULL object from ISO C TYPES�

� Proposal

Use the POINTER�C� annotation in ways similar to the Fortran POINTER attribute� with
modest restrictions� to provide support for several necessary facilities of C interoperability�
The POINTER�C� annotation could be used in any situation where a Fortran POINTER
annotation is allowed� except for the case of assumed or deferred type parameters �including
dimensions�� or an ALLOCATE or DEALLOCATE statement� Unlike Fortran pointers� arrays
with the POINTER�C� annotation shall not be declared as deferred shape arrays� and they can
be assumed�size arrays�

The restriction that Fortran pointer arrays shall be declared as deferred shape arrays seems J� note

unnecessary� There is no reason that pointer arrays could not have explicit shape� If the shape
is explicit� it should be a constant speci�cation expression so as to avoid undesirable side�e�ects�

� The type C PTR

Fortran does not need a distinct type for Fortran pointers� With the POINTER�C� annotation�
Fortran would not need a distinct type for C pointers�



J�������	
Page � of �

C pointer manipulation �except for pointer arithmetic� for which no provision should be made��
and interoperability with Fortran pointers� can be achieved by using Fortran pointer assignment
or argument association� with appropriate modi�cations to their de�nitions�

If a Fortran object is the target in a pointer assignment� and a C pointer object is the pointer�

object� or if a Fortran object is an actual argument and a C pointer is the corresponding dummy
argument� the type and type parameters �including dimensions� of the Fortran object shall be
the same as the type and type parameters of the C pointer� except that the last dimension
cannot be checked if the C pointer object is an assumed size array� If a C pointer is a pointer�

object in a pointer assignment statement� the bounds�spec�list shall not be speci�ed�

The case of a Fortran array pointer with assumed or deferred type parameters �including di�
mension� getting its association from a C pointer is allowed� other rules require that all type
parameters or C pointers must be explicit� except in the case of assumed size arrays� If an
assumed size array with the POINTER�C� attribute is the target in a pointer assignment state�
ment� and a Fortran pointer is the pointer�object� the bounds�spec�list shall be speci�ed�

There is at present no prohibition that the target in a pointer assignment statement shall not be J� note

an assumed�size array� or that if it is� the bounds�spec�list shall be speci�ed� Is this as intended�

� A VALUE annotation for dummy arguments

If POINTER�C� is used to annotate C functions� dummy arguments that are C pointers� and not
used to annotate dummy arguments that are not C pointers� the VALUE annotation proposed
by paper ������r� is not needed� It isn�t necessary� and in fact it is undesirable to require that
POINTER�C� shall only be allowed to annotate arguments of procedures that are declared to
be BIND�C� procedures�

Arguments that are pointer to pointer to ��� can be represented by the usual Fortran subterfuge
of using a derived type having a component that is a pointer� etc�� provided that one abandons
support for the possibility that C pointers to objects of di�erent type are allowed to have
di�erent representation� Abandonment of this support is also advocated by paper ������r��

The semantics of the presence or absence of POINTER�C� annotation of a dummy argument
of a BIND�C� procedure� and POINTER or POINTER�C� annotation of a dummy argument
of a Fortran procedure are not identical� For a Fortran procedure� absence of the POINTER
annotation nonetheless allows the argument to be passed by reference� while in the case of a
BIND�C� procedure� absence of the POINTER�C� annotation requires that the argument be
passed by value�

In the case of a Fortran procedure� POINTER�C� annotation has the same meaning as POINTER
annotation� except that type parameters are not passed as hidden parts of the argument�

Fortran at present does not do �automatic targeting� of non�pointer actual arguments associ�
ated to pointer dummy arguments� If the POINTER�C� approach is adopted� and it is desirable
to allow non�pointer Fortran objects to be argument associated with POINTER�C� dummy ar�
guments� it will be necessary to debate and vote whether there should be no exception for C
pointers� an exception for C pointers� or a general change to allow �automatic targeting� of
non�pointer actual arguments associated to pointer dummy arguments�

See also section 
 concerning procedure interface�



J�������	
Page 	 of �

� A LOC intrinsic function

A LOC intrinsic function is not required to make a Fortran object a target of a Fortran pointer�
By using POINTER�C�� it would not be needed in order to make a Fortran object a target of
a C pointer� If a Fortran object has the TARGET attribute� it should be allowed to assign it
as a target to a C pointer using pointer assignment� This would make the syntax of pointer
association uniform� no matter whether the pointer is a C pointer or a Fortran pointer� rather
than using �� only for Fortran pointer association� and � for C pointer association� as would
be the case if using TYPE�C PTR� and LOC�

A LOC intrinsic function may be useful in the absence of �automatic targeting� of non�pointer
actual arguments that one wishes to correspond to a pointer dummy argument� but it should
not be considered exclusively a feature of C interoperability� �Automatic targeting� may be a
better solution�

� Dereferencing C pointer objects

It should be allowed for scalar or array element POINTER�C� objects to be dereferenced auto�
matically in the same way as are Fortran POINTER objects� POINTER�C� objects cannot be
assumed� or deferred�shape arrays� so it may be harmless to allow array sections in the case of
explicit�shape POINTER�C� arrays� In the case when an array section of a POINTER�C� ob�
ject is used as an actual argument� it shall be associated to an assumed�shape dummy argument
�or there will be copy�in�copy�out���

� Interface speci�cations

Contrary to the recommendation in paper ������r� that BIND�C� procedures do not have
explicit interface� this paper requires that they have explicit interface� This allows a BIND�C�
procedure to be a de�ned operator� to have arguments with the ASYNCHRONOUS attribute�
to be PURE �this may be undesirable since one can�t reason by induction that every procedure
it calls is pure� ����� to be referenced by a generic name� to implement a de�ned operator� or to
return a POINTER�C� result�

This paper proposes the following rules in order for a Fortran procedure to interoperate with a
C function�

� The interface to the C function shall be speci�ed by a Fortran interface body�

� The procedure declaration shall include the BIND�C� annotation�

� No dummy argument shall have an assumed type parameter �including dimension or
length�� except that assumed size arrays are permitted�

� No dummy argument shall have the Fortran POINTER attribute�

� No dummy argument shall be ALLOCATABLE�

� Dummy arguments that are declared without the POINTER�C� annotation shall be de�
clared with the INTENT�IN� speci�cation�

� If a dummy argument has the POINTER�C� annotation and an INTENT speci�cation�
the intent applies to the object� not the pointer association status� POINTER�C� and



J�������	
Page � of �

INTENT�IN� correspond to the C const annotation� POINTER�C� and any other intent�
or no intent speci�cation� correspond to absence of the C const annotation�

� The procedure shall not have an asterisk �alternate return� argument�

� The procedure shall not be a de�ned assignment�

� The procedure shall not be elemental �is this required���

A Fortran procedure declared in this way interoperates with a C function if�

� The result of a BIND�C� function is of a type that interoperates with Fortran� or the
BIND�C� procedure is a subroutine� in which case it interoperates with a C function
having result type void�

� The number of dummy arguments declared in the Fortran interface body is the same as
the number of formal parameters of the C function�

� Dummy arguments with the POINTER�C� annotation� or that are of a derived type for
which there is only one component� and that component has the POINTER�C� annota�
tion� correspond to formal parameters that are C pointers� i�e� declared with a ��� pre�x�
�This de�nition allows arguments that are arrays of pointers�� Otherwise they correspond
to formal parameters that are not C pointers� i�e� declared without a ��� pre�x�

� The types of the dummy arguments are the same as the types of the corresponding formal
arguments of the C procedure�

Symmetrically� a Fortran procedure de�ned according to these rules can be referenced from a C
procedure �or a Fortran procedure��� There should be no problem allowing a Fortran procedure
de�ned with the BIND�C� attribute to be pure� since pureness can be veri�ed�

	 Miscellaneous rules and observations

An object with the POINTER�C� annotation shall not also have the Fortran POINTER at�
tribute� nor be ALLOCATABLE� nor be used in an ALLOCATE or DEALLOCATE statement�

An object with the POINTER�C� annotation shall not have any assumed or deferred type
parameters �including dimensions�� except that an assumed�size POINTER�C� array is allowed�

It should not be necessary to export a C NULL object from ISO C TYPES� The NULLIFY
statement and the NULL�� and ASSOCIATED�� intrinsic functions should be usable with C
pointers� ASSOCIATED�� should work even in the case of inquiring whether an assumed� or
deferred�shape Fortran pointer is associated to a C pointer� for the same reasons that pointer
assignment works�

It is allowed� but invites portability problems� for objects having types other than those ex�
ported from ISO C TYPES� or derived types in which all components have types exported from
ISO C TYPES or are derived types���� to have the POINTER�C� attribute�


