
J��������
Page � of �

Date� �� June ����
To� J	
From� Van Snyder
Subject� A single mechanism to support C TYPEDEF and enumerations
References� ��
��	� ��
���r�� ��
��
�� ��
���r�

� Introduction

We propose here similar mechanisms to unify at least these features� as extensions of type
declaration�

� A functionality similar to the TYPEDEF statement in C was advocated in paper ��
���r��
Interoperability Syntax �part ��� This has substantially broader applicability than sup

porting interoperability with C�

� Enumeration types were apparently proposed in a tutorial during meeting ���� but I
was not able to attend� and have not yet seen the slides �paper ��
��
� Slides from
ENUM tutorial� has not been posted to the server�� Enumeration types were presumably
advocated to support interoperability with C� but have substantially broader applicability�

No new statement keywords are advocated� Two new intrinsic functions� and expanded inter

pretation of an existing one� are advocated� It is also advocated to re
examine whether function
result types should participate in generic dis
ambiguation� This would also be necessary to sup

port the functionality of the simpli�ed syntax advocated in paper ��
��	� Constants for Opaque
Data Types�

� Syntax of type rede�nition

To provide functionality similar to the TYPEDEF statement in C� the TYPE statement is extended�

type�de�nition�stmt is TYPE ��access�spec� �� type�name �� type�spec

Notice that ���� is not optional� just as it is not optional in the case of initializing a pointer
object by using ��� NULL��� in a type�declaration�stmt�

If type�spec refers to a parameterized type �intrinsic� derived� or rede�ned�� parameters may
be speci�ed� or deferred by omitting all of them or using ��� for any parameter value� If any
parameter is deferred in type�spec� the rede�ned type is a parameterized type� the �dummy�
parameters of the rede�ned type occur in the same order� and have the same names� types�
kinds� and other characteristics as the deferred parameters in type�spec�

It is not advocated to allow a list of type�name �� type�spec� as doing so would make it more
di�cult for future extensions to allow attaching attributes to the type�spec� e�g�

TYPE �� A�REAL �� REAL� ASYNCHRONOUS

� Syntax of enumeration type de�nition

To declare enumeration types and their literals� the TYPE statement is extended�



J��������
Page � of �

type�de�nition�stmt is TYPE ��access�spec� �� type�name �� literals

literals is ORDERED �kind�selector �
�named�constant�list �

or UNORDERED �kind�selector � � enum�list �

enum is named�constant
� � scalar�int�initialization�expr �

Values of enumeration types are represented by integers� Also see section ��

If kind�selector is not speci�ed� the kind of integer used to represent ordered enumerations�
or unordered enumerations for which no scalar�int�initialization�expr is provided� is separately
selected for each enumeration type by the processor�

If kind�selector is not speci�ed and a scalar�int�initialization�expr is speci�ed� the kind of the
representation is the kind of the scalar�int�initialization�expr� If more than one scalar�int�
initialization�expr is speci�ed� they must all have the same kind� If kind�selector is speci�ed�
the kind of every scalar�int�initialization�expr must be the kind speci�ed by kind�selector�

Notice that ���� is not optional� just as it is not optional in the case of initializing a pointer
object by using ��� NULL��� in a type�declaration�stmt�

� Syntax of reference to user�de�ned types

User
de�ned types � derived types� type rede�nitions� or enumeration types � can be referenced
by using TYPE�type�name	�type�parameters�
��

If a user
de�ned name is not identical to an intrinsic type� or attribute name� or ORDERED or
UNORDERED� it would not be ambiguous to allow a simpli�ed syntax consisting of the type
name alone� so long as �� is present� or on the right
hand
side of �� in a type�de�nition�stmt�

For example� if one de�nes TYPE �� REWIND �� LOGICAL� the rede�ned type REWIND could
be accessed� without change to existing syntax rules by using TYPE�REWIND� I� If it were
agreed to allow a simpli�ed syntax of usage� it would not be ambiguous to allow REWIND �� I�
The latter would be ambiguous without the �� symbol� If one de�nes TYPE �� REAL ��
TYPE�EXTENDED����� then REAL �� X would be ambiguous�

Should the simpli�ed syntax be allowed at this time� �I think it�s too much of a mess to describe Straw Vote
and to understand the exceptions to be worth the trouble��

� Semantics of type rede�nition

A type�de�nition�stmt introduces a new type that is an extension of the type it rede�nes �in
the same sense as an extensible type�� It is not a textual substitution that results in a reference
to an existing type�

A re
de�ned type may be used to dis
ambiguate generic procedures� even if it resolves to the
same type as a corresponding argument� In this way� one could be con�dent that the following
is portable �yes� I know this isn�t the recommended style� but users seem to want it��

TYPE �� SP �� REAL�SELECTED�REAL�KIND�
�����

TYPE �� DP �� REAL�SELECTED�REAL�KIND��������

INTERFACE SUB

SUBROUTINE SUB�SP � ARG �

TYPE�SP� �� ARG



J��������
Page 	 of �

END SUBROUTINE SUB�SP

SUBROUTINE SUB�DP � ARG �

TYPE�DP� �� ARG

END SUBROUTINE SUB�DP

END INTERFACE

A rede�ned type inherits existing values and properties from the type from which it is de�ned�
�This makes programs less mutable than I desire� but I see no alternative other than explicit
casting� which would be onerous in most cases��

For example� the following is legal�

TYPE �� REWIND �� LOGICAL

TYPE�REWIND� �� I �� �false�

IF �I� REWIND �� � �IF �I�� is OK� because I�s underlying

� type is LOGICAL

De�ned operations are inherited by rede�ned types� unless over
ridden �over
riding is not pos

sible if rede�ned types are not speci�ed to be new types� and may be undesirable in any case��
Inheriting the de�ned operations is very useful� for example� if one de�nes

TYPE �� MYREAL �� �REAL or DOUBLE PRECISION or TYPE�EXTENDED������

TYPE�MYREAL� �� X� Y� Z

X � Y � Z � Should use intrinsic assignment and addition if MYREAL

� resolves to REAL or DOUBLE PRECISION� and defined assignment

� and addition if it resolves to TYPE�EXTENDED������ Similar

� arguments apply to �� �� �� ��� SIN��� ATAN��� ���

It should probably not be allowed to de�ne intrinsic operations� e�g� �� to operate on rede�ned
types that resolve to intrinsic types� Thus� one couldn�t count on the following continuing to
work if TYPE�MYREAL� were changed from TYPE�EXTENDED����� to REAL�

INTERFACE OPERATOR���

TYPE�MYREAL� FUNCTION MYREAL�PLUS � A� B �

TYPE�MYREAL�� INTENT�IN� �� A� B

END FUNCTION MYREAL�PLUS

END INTERFACE

It should be remarked as a note that de�ned operator arguments �or at least arguments of
rede�nitions of intrinsic operator symbols� should be declared using intrinsic or derived types�
rather than rede�ned types� whenever possible� to avoid the problem illustrated above�

Type rede�nition clearly has much similarity to type extension and inheritance� This mechanism
would not be needed if the type inheritance facility allowed to extend intrinsic types� with the
restriction that no new components could be added� and the component name that is the same
as the parent type did not exist� The same restrictions would apply to types extended from
extensions of intrinsic types� On the other hand� the syntax proposed here is more terse than

TYPE� EXTENDS��REAL or DOUBLE PRECISION or EXTENDED������ �� MYREAL

END TYPE MYREAL

If this facility is needed� should it be provided as described here� or by enhancing the type Straw Vote
inheritance mechanism described in paper ��
���r� and its antecedents�



J��������
Page � of �

� Semantics of enumeration type values

The intrinsic function INT may be used to retrieve the numeric representation of an enumeration
literal� The intrinsic function KIND may be applied to the result of applying INT to a value of
enumeration type to determine the kind of integer used to represent values of the type�

Should KIND be directly applicable to values of enumeration types� Straw Vote

In the case of ordered enumerations� or of unordered enumerations in which no explicit value
is provided for the k �th literal� the �rst literal is represented by zero� and the k �th literal is
represented by � � INT�k�� �th literal��

It is possible for two literals of an unordered enumeration type to have the same representation�

The only intrinsic operations de�ned on values of unordered enumeration types are assignment
���� equality ��EQ� or ���� and inequality ��NE� or ����

Additional features of ordered enumerations

� All relational operators are de�ned on variables and literals of ordered enumeration types�

� Values of ordered enumeration types may be used in SELECT CASE constructs and DO
constructs�

� TINY and HUGE are de�ned for ordered enumeration types� and return the �rst and last
literal of the type� respectively �not an integer�� Thus if one has a variable E of an ordered
enumeration type� it is permitted to write DO E � TINY�E�� HUGE�E�� to use TINY�E�
and HUGE�E� for array dimensions� etc�

� Values of ordered enumeration types may be used in array dimensions and subscripts� If
an array has a dimension bound given by a value of an ordered enumeration type� the
other bound of that dimension must be of the same type� or omitted �in which case it is
taken to be TINY or HUGE� as appropriate�� and a subscript for that dimension must be
of the same type as the bound� This insures that subscripts stay within bounds�

� A constructor having the same name as the type is de�ned� It takes a single integer as an
argument and returns a value of the enumeration type� �It would be cool be able to raise
an exception if an out
of
range argument is used�� One can guard against an out
of
range
argument by writing� e�g�

IF � I �� TINY�E� �AND� I �� HUGE�E� � E � �type�of�E��I�

� Two additional intrinsic functions are de�ned� say SUCC and PRED �spelling negotiable�
that return the successor and predecessor of a variable or literal of an ordered enumeration
type� The result is the same type as the argument� not an integer�

Should SUCC�last�literal� be an error� or �rst�literal� If it�s an error� it would be cool Straw Vote
to be able to raise an exception� The obvious anti
symmetric question applies to PRED�
One can guard against the error similarly to guarding against the error in the constructor�

SUCC�E� � �type�of�E����INT�E�� or �type�of�E��MOD���INT�E����HUGE�E���� Straw Vote

Should SUCC and PRED be provided�



J��������
Page � of �

��� Suggestion for writing standardese

Introduce Discrete and Continuous classi�cations of types� Types INTEGER� LOGICAL and
enumeration types are discrete� REAL and COMPLEX are continuous� Derived types are
neither�

Introduce the term de�ned type to include derived types� rede�ned types� and enumeration
types� This allows to prohibit� all at once� that none may appear in COMMON or EQUIVA

LENCE�

	 Allowing function result type to participate in generic dis�

ambiguation

At present� the result of a function does not participate in generic dis
ambiguation�

If the result type were used in generic dis
ambiguation� two bene�ts would accrue�

� It becomes possibile to use a character value to invoke a value constructor for a derived
type �opaque or otherwise�� as advocated in paper ��
��	�

� If one considers a literal of an enumeration type to be a pure function having zero ar

guments� it becomes possible to allow di�erent enumeration types to have literals having
the same name� E�g�� the following type de�nitions can coexist�

TYPE �� COLOR �� ORDERED�RED� GREEN� BLUE�

TYPE �� NAMES �� ORDERED�WHITE� BROWN� BLACK� GREEN� BLUE�

�Yes� I know the usual syntax to reference argument
less functions includes an empty
actual argument list in parentheses� What is proposed here is only a sophistry to simplify
explanation� not a de�nition or implementation��

It is not an open problem to decide the dis
ambiguation� It has been explained in the Ada
�	
standard �ANSI�MIL
STD
����A�� and in numerous books on functional programming �e�g�
Anthony J� Field and Peter G� Harrison� Functional Programming� Addison
Wesley ������
Chapter 
��

Including the function result type in the criteria to dis
ambiguate generic function references
would not invalidate any program that conforms to the Fortran �� standard� if doing so is used
only as a last resort when the arguments are insu�cient�


