J3/98-171

Page 1 of 5
Date: 26 June 1998
To: J3
From: Van Snyder

Subject: A single mechanism to support C TYPEDEF and enumerations
References: 98-113, 98-145r2, 98-1577, 98-16511

1 Introduction

We propose here similar mechanisms to unify at least these features, as extensions of type
declaration:

e A functionality similar to the TYPEDEF statement in C was advocated in paper 98-165r1,
Interoperability Syntaxz (part 1). This has substantially broader applicability than sup-
porting interoperability with C.

e Enumeration types were apparently proposed in a tutorial during meeting 145, but I
was not able to attend, and have not yet seen the slides (paper 98-157, Slides from
ENUM tutorial, has not been posted to the server). Enumeration types were presumably
advocated to support interoperability with C, but have substantially broader applicability.

No new statement keywords are advocated. Two new intrinsic functions, and expanded inter-
pretation of an existing one, are advocated. It is also advocated to re-examine whether function
result types should participate in generic dis-ambiguation. This would also be necessary to sup-
port the functionality of the simplified syntax advocated in paper 98-113, Constants for Opaque
Data Types.

2 Syntax of type redefinition

To provide functionality similar to the TYPEDEF statement in C, the TYPE statement is extended:
type-definition-stmt is TYPE [,access-spec] :: type-name => type-spec
Notice that “::” is not optional, just as it is not optional in the case of initializing a pointer
object by using ”=> NULL()” in a type-declaration-stmt.

If type-spec refers to a parameterized type (intrinsic, derived, or redefined), parameters may
be specified, or deferred by omitting all of them or using “” for any parameter value. If any
parameter is deferred in type-spec, the redefined type is a parameterized type; the “dummy”
parameters of the redefined type occur in the same order, and have the same names, types,
kinds, and other characteristics as the deferred parameters in type-spec.

It is not advocated to allow a list of type-name => type-spec, as doing so would make it more
difficult for future extensions to allow attaching attributes to the type-spec, e.g.

TYPE :: A_REAL => REAL, ASYNCHRONOUS

3 Syntax of enumeration type definition

To declare enumeration types and their literals, the TYPE statement is extended:

J3/98-171
Page 2 of 5

type-definition-stmt is TYPE [,access-spec] :: type-name => literals
literals is ORDERED [kind-selector] m

B (named-constant-list)

or UNORDERED [kind-selector] (enum-list)

enum is named-constant ®
B [= scalar-int-initialization-expr |
Values of enumeration types are represented by integers. Also see section 6.

If kind-selector is not specified, the kind of integer used to represent ordered enumerations,
or unordered enumerations for which no scalar-int-initialization-expr is provided, is separately
selected for each enumeration type by the processor.

If kind-selector is not specified and a scalar-int-initialization-expr is specified, the kind of the
representation is the kind of the scalar-int-initialization-expr. If more than one scalar-int-
initialization-expr is specified, they must all have the same kind. If kind-selector is specified,
the kind of every scalar-int-initialization-expr must be the kind specified by kind-selector.

Notice that “::” is not optional, just as it is not optional in the case of initializing a pointer
object by using ”=> NULL()” in a type-declaration-stmt.

4 Syntax of reference to user-defined types

User-defined types — derived types, type redefinitions, or enumeration types — can be referenced
by using TYPE(type-name [(type-parameters)]).

If a user-defined name is not identical to an intrinsic type, or attribute name, or ORDERED or
UNORDERED, it would not be ambiguous to allow a simplified syntax consisting of the type
name alone, so long as :: is present, or on the right-hand-side of => in a type-definition-stmdt.

For example, if one defines TYPE :: REWIND => LOGICAL, the redefined type REWIND could
be accessed, without change to existing syntax rules by using TYPE(REWIND) I. If it were
agreed to allow a simplified syntax of usage, it would not be ambiguous to allow REWIND :: I.
The latter would be ambiguous without the :: symbol. If one defines TYPE :: REAL =>
TYPE(EXTENDED(49)) then REAL :: X would be ambiguous.

Should the simplified syntax be allowed at this time? (I think it’s too much of a mess to describe
and to understand the exceptions to be worth the trouble.)

5 Semantics of type redefinition

A type-definition-stmt introduces a new type that is an extension of the type it redefines (in
the same sense as an extensible type). It is not a textual substitution that results in a reference
to an existing type.

A re-defined type may be used to dis-ambiguate generic procedures, even if it resolves to the
same type as a corresponding argument. In this way, one could be confident that the following
is portable (yes, | know this isn’t the recommended style, but users seem to want it):

TYPE :: SP => REAL(SELECTED_REAL_KIND(6,10))
TYPE :: DP => REAL(SELECTED_REAL_KIND(13,10))
INTERFACE SUB

SUBROUTINE SUB_SP (ARG)
TYPE(SP) :: ARG

Straw Vote

J3/98-171
Page 3 of 5

END SUBROUTINE SUB_SP
SUBROUTINE SUB_DP (ARG)
TYPE(DP) :: ARG
END SUBROUTINE SUB_DP
END INTERFACE

A redefined type inherits existing values and properties from the type from which it is defined.
(This makes programs less mutable than I desire, but I see no alternative other than explicit
casting, which would be onerous in most cases.)

For example, the following is legal:

TYPE :: REWIND => LOGICAL

TYPE(REWIND) :: I => .false.

IF (I) REWIND 10 ! "TF (I)" is OK, because I’s underlying
! type 1s LOGICAL

Defined operations are inherited by redefined types, unless over-ridden (over-riding is not pos-
sible if redefined types are not specified to be new types, and may be undesirable in any case).
Inheriting the defined operations is very useful, for example, if one defines

TYPE :: MYREAL => <REAL or DOUBLE PRECISION or TYPE(EXTENDED(49))>

TYPE(MYREAL) :: X, Y, Z

X =Y + Z ! Should use intrinsic assignment and addition if MYREAL
! resolves to REAL or DOUBLE PRECISION, and defined assignment
! and addition if it resolves to TYPE(EXTENDED(49)). Similar
! arguments apply to -, *, /, **, SIN(), ATAN2()

It should probably not be allowed to define intrinsic operations, e.g. +, to operate on redefined
types that resolve to intrinsic types. Thus, one couldn’t count on the following continuing to

work if TYPE(MYREAL) were changed from TYPE(EXTENDED(49)) to REAL:

INTERFACE OPERATOR(+)
TYPE(MYREAL) FUNCTION MYREAL_PLUS (A, B)
TYPE(MYREAL), INTENT(IN) :: A, B
END FUNCTION MYREAL_PLUS
END INTERFACE

It should be remarked as a note that defined operator arguments (or at least arguments of
redefinitions of intrinsic operator symbols) should be declared using intrinsic or derived types,
rather than redefined types, whenever possible, to avoid the problem illustrated above.

Type redefinition clearly has much similarity to type extension and inheritance. This mechanism
would not be needed if the type inheritance facility allowed to extend intrinsic types, with the
restriction that no new components could be added, and the component name that is the same
as the parent type did not exist. The same restrictions would apply to types extended from
extensions of intrinsic types. On the other hand, the syntax proposed here is more terse than

TYPE, EXTENDS(<REAL or DOUBLE PRECISION or EXTENDED(49)>) :: MYREAL
END TYPE MYREAL

If this facility is needed, should it be provided as described here, or by enhancing the type
inheritance mechanism described in paper 98-14512 and its antecedents?

Straw Vote

J3/98-171
Page 4 of 5

6 Semantics of enumeration type values

The intrinsic function INT may be used to retrieve the numeric representation of an enumeration
literal. The intrinsic function KIND may be applied to the result of applying INT to a value of
enumeration type to determine the kind of integer used to represent values of the type.

Should KIND be directly applicable to values of enumeration types?

In the case of ordered enumerations, or of unordered enumerations in which no explicit value
is provided for the k’th literal, the first literal is represented by zero, and the k’th literal is
represented by 1 + INT(k-1’th literal).

It is possible for two literals of an unordered enumeration type to have the same representation.
The only intrinsic operations defined on values of unordered enumeration types are assignment
(=), equality (.EQ. or ==), and inequality (.NE. or /=).

Additional features of ordered enumerations

o All relational operators are defined on variables and literals of ordered enumeration types.

e Values of ordered enumeration types may be used in SELECT CASE constructs and DO
constructs.

e TINY and HUGE are defined for ordered enumeration types, and return the first and last
literal of the type, respectively (not an integer). Thus if one has a variable E of an ordered
enumeration type, it is permitted to write DO E = TINY(E), HUGE(E), to use TINY(E)
and HUGE(E) for array dimensions, etc.

e Values of ordered enumeration types may be used in array dimensions and subscripts. If
an array has a dimension bound given by a value of an ordered enumeration type, the
other bound of that dimension must be of the same type, or omitted (in which case it is
taken to be TINY or HUGE, as appropriate), and a subscript for that dimension must be
of the same type as the bound. This insures that subscripts stay within bounds.

e A constructor having the same name as the type is defined. It takes a single integer as an
argument and returns a value of the enumeration type. (It would be cool be able to raise
an exception if an out-of-range argument is used.) One can guard against an out-of-range
argument by writing, e.g.

IF (I >= TINY(E) .AND. I <= HUGE(E)) E = <type-of-E>(I)

e Two additional intrinsic functions are defined, say SUCC and PRED (spelling negotiable)
that return the successor and predecessor of a variable or literal of an ordered enumeration
type. The result is the same type as the argument, not an integer.

Should SUCC(last-literal) be an error, or first-literal? If it’s an error, it would be cool
to be able to raise an exception. The obvious anti-symmetric question applies to PRED.
One can guard against the error similarly to guarding against the error in the constructor.

SUCC(E) = <type-of-E>(1+INT(E)) or <type-of-E>(MOD(1+INT(E),1+HUGE(E))).
Should SUCC and PRED be provided?

Straw Vote

Straw Vote

Straw Vote

J3/98-171
Page 5 of 5

6.1 Suggestion for writing standardese

Introduce Discrete and Continuous classifications of types. Types INTEGER, LOGICAL and
enumeration types are discrete; REAL and COMPLEX are continuous. Derived types are
neither.

Introduce the term defined type to include derived types, redefined types, and enumeration
types. This allows to prohibit, all at once, that none may appear in COMMON or EQUIVA-
LENCE.

7 Allowing function result type to participate in generic dis-
ambiguation

At present, the result of a function does not participate in generic dis-ambiguation.

If the result type were used in generic dis-ambiguation, two benefits would accrue:

e It becomes possibile to use a character value to invoke a value constructor for a derived
type (opaque or otherwise), as advocated in paper 98-113.

e If one considers a literal of an enumeration type to be a pure function having zero ar-
guments, it becomes possible to allow different enumeration types to have literals having
the same name. E.g., the following type definitions can coexist:

TYPE :: COLOR => ORDERED(RED, GREEN, BLUE)
TYPE :: NAMES => ORDERED(WHITE, BROWN, BLACK, GREEN, BLUE)

(Yes, 1 know the usual syntax to reference argument-less functions includes an empty
actual argument list in parentheses. What is proposed here is only a sophistry to simplify
explanation, not a definition or implementation.)

It is not an open problem to decide the dis-ambiguation. It has been explained in the Ada-83
standard (ANSI/MIL-STD-1815A), and in numerous books on functional programming (e.g.
Anthony J. Field and Peter G. Harrison, Functional Programming, Addison-Wesley (1988)
Chapter 7).

Including the function result type in the criteria to dis-ambiguate generic function references
would not invalidate any program that conforms to the Fortran 95 standard, if doing so is used
only as a last resort when the arguments are insufficient.

