J3/98-171rl

Page 1 of 8
Date: 9 July 1998
To: J3
From: Van Snyder

Subject: A single mechanism to support C TYPEDEF and enumerations
References: 98-113, 98-14512, 98-157, 98-165r1, 98-178

1 Introduction

We propose here three mechanisms to provide functionality similar to TYPEDEF declarations in C,
which was advocated in paper 98-165r1, Interoperability Syntax (part 1). This has substantially
broader applicability than supporting interoperability with C.

Enumeration types were apparently proposed in a tutorial during meeting 145, but I was not
able to attend, and have not yet seen the slides (paper 98-157, Slides from ENUM tutorial,
has not been posted to the server). Enumeration types were presumably advocated to support
interoperability with C, but have substantially broader applicability. A mechanism to declare
enumeration types is proposed in this paper, rather than in a separate paper, because it is
similar to the second mechanism proposed for type redefinition.

All mechanisms proposed herein are proposed as extensions of type declaration.

No new statement keywords are advocated. Two new intrinsic functions are proposed to sup-
port one of the methods of type redefinition. Two new intrinsic functions, and expanded
interpretation of an existing one, are advocated to support enumeration types. It is also ad-
vocated to re-examine whether function result types should participate in generic resolution.
This would also be necessary to support the functionality of the simplified syntax advocated in
paper 98-113, Constants for Opaque Data Types.

1.1 Summary of methods of type redefinition

The first method of type redefinition expands extensible types by allowing to extend intrinsic
types. The advantages are that no new mechanism is necessary — just an expansion of type
extensibility — and redefined types define new types, which can therefore be used for generic
resolution. The disadvantage is that special cases, clumsy circumlocutions, or additional new
mechanisms are necessary to make obviously desirable things work. Some of the new mecha-
nisms have already been proposed for other purposes.

The second method introduces a new mechanism by which type synonyms, not new types, are
defined. The advantage is that obviously desirable things work. The disadvantages are that a
new mechanism is necessary, and type synonyms cannot be used for generic resolution if they
are synonyms for the same “real” type.

The third method — the simplest one — was recently proposed to me informally by Malcolm
Cohen, and perhaps more formally at an earlier time. It allows to put TYPE() around intrinsic
types, and then rename them during USE association. There is the slight irregularity that
the “constructors” REAL and LOGICAL exist, while the “constructors” INTEGER and COMPLEX
are unfortunately spelled INT and CMPLX. This could be repaired simply by defining intrinsic
“constructors” INTEGER and COMPLEX identical to INT and CMPLX, respectively. This method has
the advantage of simplicity (so much so that nothing more is said here), and the disadvantage
of requiring construction of a module for the purpose of renaming a type.

J3/98-171r1
Page 2 of 8

2 First method of type redefinition

The first method of type redefinition expands the applicability of type extension, by allowing
to extend intrinsic types. This method requires no changes to existing syntax.

Types defined in this way are new types, as are all other extended types.

No new restrictions appear to be necessary, from the viewpoint of linguistic consistency, but
some may be desirable from the viewpoint of implementability. Prohibiting polymorphic ob-
jects of a class that begins at an intrinsic type or an extension of one complicates inheritance
of intrinsic procedures defined on intrinsic types. There seems to be no need to prohibit addi-
tional components in extensions of intrinsic types, whereas prohibiting them would introduce
an irregularity. Intrinsic operations on extensions of intrinsic types could be defined to be
non-overridable, but this, too, may be unnecessary (perhaps even undesirable).

We propose here that a type that is an extension of a parameterized type is a parameterized
type. If the base type is an intrinsic type, for which a default parameterization exists, use of the
new type in an object declaration without parameterization results in its use with the default
parameterization; use to define another type defines another parameterized type. Thus, the
following are legal

TYPE, EXTENDS(REAL) :: MYREAL; END TYPE MYREAL ! A parameterized type
TYPE(MYREAL(KIND(0.0DO))) :: MYVAR1 ! Double precision real
TYPE(MYREAL) :: MYVAR2 ! Single precision real

It would be convenient if an extended type inherits existing properties from the type from which
it is defined, and values without explicit construction, so that the following would be legal:

TYPE, EXTENDS(LOGICAL) :: REWIND; END TYPE REWIND
TYPE(REWIND) :: I = .false.
IF (I) REWIND 10

The second statement is, at present, opposite to the rules of extensible type assignment. One
might remedy the problem by allowing assignment of an object of parent type to an object of
descendant type if the descendant type adds no new components. The alternative is to require
an explicit constructor, so that the second statement above becomes

TYPE(REWIND) :: I = REWIND(.false.)

The third statement is at present completely undefined because the possibility of extending
intrinsic types has not yet been pondered. By the methods explained in section 6 it may
be possible automatically to apply an anonymous “conversion constructor” to convert I from
TYPE(REWIND) to LOGICAL, and, hopefully, expect the “conversion constructor” to come into
existence automatically if the extension has no additional components and no constructor has

been defined.

Defined operations are inherited by redefined types, unless over-ridden. Inheriting the defined
operations is very useful, for example, if one defines

TYPE, EXTENDS(<REAL or DOUBLE PRECISION or TYPE(EXTENDED(49))>) :: MYREAL
TYPE(MYREAL) :: X, Y, Z
X =Y + Z ! Should use intrinsic assignment and addition if MYREAL
! resolves to REAL or DOUBLE PRECISION, and use defined
! assignment and addition if it resolves to TYPE(EXTENDED(49)).
! Similar arguments apply to -, *, /, **, SIN(), ATAN2()

J3/98-171r1
Page 3 of 8

Intrinsic procedures defined on intrinsic types should be “inherited” by extensions of intrinsic
types. The syntax isn’t right to consider the intrinsic procedures to be type-bound procedures,
e.g. we don’t write X%SQRT. An alternative is to define the intrinsic procedures to have
polymorphic dummy arguments.

If it were prohibited to define intrinsic operations, e.g. 4, to operate on types that extend
intrinsic types, one couldn’t count on the following continuing to work if TYPE(MYREAL) were
changed from TYPE(EXTENDED(49)) to REAL:

INTERFACE OPERATOR(+)
MODULE PROCEDURE MYREAL_PLUS
END INTERFACE
CONTAINS
TYPE(MYREAL) FUNCTION MYREAL_PLUS (A, B)
TYPE(MYREAL), INTENT(IN) :: A, B;
END FUNCTION MYREAL_PLUS

To avoid this problem, procedures should be defined in terms of base types, while objects are
defined in terms of extended types. The correct procedure will be chosen by the usual generic
resolution rules.

3 Second method of type redefinition

To provide functionality similar to the TYPEDEF statement in C, the TYPE statement is extended:
type-definition-stmt is TYPE [,access-spec] :: type-name => type-spec
Notice that “::” is not optional, just as it is not optional in the case of initializing a pointer
object by using ”=> NULL()” in a type-declaration-stmt.

If type-spec refers to a parameterized type (intrinsic, derived, or redefined), parameters may
be specified, or deferred by omitting all of them or using “” for any parameter value. If any
parameter is deferred in type-spec, the redefined type is a parameterized type; the “dummy”
parameters of type-name occur in the same order, and have the same names, kinds, and other
characteristics as the deferred parameters in type-spec. If type-spec refers to a parameterized
type for which a default parameterization exists, e.g. REAL, the redefined name denotes the
default parameterization when used to declare an object, and the unspecialized parameterized
type when used to define another type.

It is not advocated to allow a list of type-name => type-spec, as doing so would make it more
difficult for future extensions to allow attaching attributes to the type-spec, e.g.

TYPE :: A_REAL => REAL, ASYNCHRONOUS

This mechanism of type redefinition is a “macro substitution” that does not introduce a new
type. It simply introduces a synonym for an existing type, perhaps indirectly by way of a
previously defined synonym. The “real” type in terms of which a synonym is defined, not the
new synonym or a previously existing one, is used for generic resolution.

A redefined type cannot be used to resolve generic procedures if it is a synonum for the type
of a corresponding argument. Thus one could not be confident that the following is portable:

MODULE. ..
TYPE :: SP => REAL(SELECTED_REAL_KIND(6,10))

J3/98-171r1
Page 4 of 8

TYPE :: DP => REAL(SELECTED_REAL_KIND(13,10))
INTERFACE SUB
MODULE PROCEDURE SUB_SP, SUB_DP
END INTERFACE
CONTAINS
SUBROUTINE SUB_SP (ARG)
TYPE(SP) :: ARG
END SUBROUTINE SUB_SP
SUBROUTINE SUB_DP (ARG)
TYPE(DP) :: ARG
END SUBROUTINE SUB_DP
END MODULE ...

4 Enumeration types

To declare enumeration types and their literals, the TYPE statement is extended by a syntax
similar to the second one proposed for type redefinition:

type-definition-stmt is TYPE [,enum-spec-list] :: type-name => literals
enum-spec is access-spec

or BIND(C)
literals is ORDERED [(kind-selector)] m

B (ordered-enum-list)
or UNORDERED [(kind-selector)] m

B (unordered-enum-list)
ordered-enum is named-constant [(explicit-shape-spec)]

unordered-enum 1s named-constani A
B [= scalar-int-initialization-expr |

Values of enumeration types are represented by integers.

If BIND(C) is specified, C representational rules apply, kind-selector is not allowed, and scalar-
int-initialization-expr, if any, shall have default integer kind. Is it better to ignore the kind?

If kind-selector is not specified, the kind of integer used to represent ordered enumerations,
or unordered enumerations for which no scalar-int-initialization-expr is provided, is separately
selected for each enumeration type by the processor.

If kind-selector is not specified and a scalar-int-initialization-expr is specified, the kind of the
representation is the kind of the scalar-int-initialization-expr. If more than one scalar-int-
initialization-expr is specified, they shall all have the same kind. If kind-selector is specified,
the kind of every scalar-int-initialization-expr shall be the kind specified by kind-selector.

Notice that “::” is not optional, just as it is not optional in the case of initializing a pointer
object by using ”=> NULL()” in a type-declaration-stmt.

The intrinsic function INT may be used to retrieve the numeric representation of an enumeration
literal. In the case of ordered enumerations, or of unordered enumerations in which no explicit
value is provided for the k’th literal, the first literal is represented by zero, and the k’th literal
is represented by SIZE(k-1’th literal) + INT(k-1 th literal).

For unordered enumerations, or for ordered enumerations for which explicit-shape-spec is not
specified, the size is one.

J3 note

J3/98-171r1
Page 5 of 8

If explicit-shape-spec is specified for an ordered enumeration, the size must be positive. If E is
an enumeration literal with bounds e;:ez, E(e1) denotes the first value, etc., E and E(k : [) are
sequences of values of the type of E, and INT(E) and INT(E(k : [)) are sequences of integers.

It is possible for two literals of an unordered enumeration type to have the same representation.

The intrinsic function KIND may be applied to the result of applying INT to a value of enumer-
ation type to determine the kind of integer used to represent values of the type (exept maybe
not for BIND(C) enumerations).

Should KIND be directly applicable to values of enumeration types?

The only intrinsic operations defined on values of unordered enumeration types are assignment
(=), equality (.EQ. or ==), and inequality (.NE. or /=).

Additional features of ordered enumerations

e All numeric relational operators are defined on values of ordered enumeration types.

e Values of ordered enumeration types may be used in SELECT CASE constructs and DO
constructs.

e TINY and HUGE are defined for ordered enumeration types, and return the first and last
literal of the type, respectively (not an integer). Thus if one has a variable E of an ordered
enumeration type, it is permitted to write DO E = TINY(E), HUGE(E), to use TINY(E)
and HUGE(E) for array dimensions, etc.

e Values of ordered enumeration types may be used in array dimensions and subscripts. If
an array has a dimension bound given by a value of an ordered enumeration type, the
other bound of that dimension shall be of the same type, or omitted (in which case it is
taken to be TINY or HUGE, as appropriate), and a subscript for that dimension shall be of
the same type as the bound. An omitted lower or upper bound of a subscript triplet is
taken to be TINY or HUGE, respectively. An increment of a subscript triplet is an integer.
Should increments of subscript triplets of enumeration types be prohibited?

e An elemental constructor having the same name as the type is defined. It takes a single
integer argument and returns a value of the enumeration type. (It would be cool be able
to raise an exception if an out-of-range argument is used.) One can guard against an
out-of-range argument by writing, e.g.

IF (I >= INT(TINY(E)) .AND. I <= INT(HUGE(E))) E = <type-of-E>(I)

e Two elemental intrinsic functions are defined, say SUCC and PRED (spelling negotiable)
that return the successor and predecessor of a value of an ordered enumeration type. The
result is the same type as the argument, not an integer.

Should SUCC and PRED be provided?

Should SUCC(last-literal) be an error, or first-literal? 1f it’s an error, it would be cool to
be able to raise an exception. The obvious anti-symmetric question applies to PRED. One
can guard against the error similarly to guarding against the error in the constructor.

Straw Vote

Straw vote

Straw Vote

SUCC(E) = <type-of-E>(1+INT(E)) or <type-of-E>(MOD(1+INT(E), 1+INT(HUGE(E))))? Straw Vote

J3/98-171r1
Page 6 of 8

5 Syntax of reference to user-defined types

User-defined types — derived types, type redefinitions, or enumeration types — can be referenced
by using TYPE(type-name [(type-parameters)]).

If a user-defined name is not identical to an intrinsic type, or attribute name, or ORDERED or
UNORDERED, it would not be ambiguous to allow a simplified syntax consisting of the type name
alone, so long as :: is present, or on the right-hand-side of => in a type-definition-stmt.

For example, if one defines TYPE :: REWIND => LOGICAL, the redefined type REWIND could
be accessed, without change to existing syntax rules by using TYPE(REWIND) I. If it were
agreed to allow a simplified syntax of usage, it would not be ambiguous to allow REWIND :: I.
The latter would be ambiguous without the :: symbol. If one defines TYPE :: REAL =>
TYPE(EXTENDED(49)) then REAL :: X would be ambiguous.

Should the simplified syntax be allowed at this time? (I think it’s too much of a mess to describe
and to understand the exceptions to be worth the trouble.)

5.1 Suggestion for writing standardese

Introduce Discrete and Continuous classifications of types. Types INTEGER, LOGICAL and
enumeration types are discrete; REAL and COMPLEX are continuous. Derived types are
neither. Or, INTEGER is an ordered enumeration, and LOGICAL is an unordered enumeration
(except it’s allowed in SELECT CASE).

Introduce the term defined type to include derived types, redefined types, and enumeration
types. This allows to prohibit, all at once, that none may appear in COMMON or EQUIVA-
LENCE.

6 Allowing function result type to participate in generic reso-
lution

At present, the result of a function does not participate in generic resolution. Including the
function result type in the criteria to resolve generic function references would not invalidate
any program that conforms to the Fortran 95 standard, if doing so is used only as a last resort
when the arguments are insufficient.

If the result type were used in generic resolution, at least two presently impossible things become
possible (one can debate whether these are benefits):

e It would be possible in many cases to apply automatically what in C+4 are called “con-
version constructors.”

As a special case, It becomes possible to use a character value to invoke a value constructor
for a derived type (opaque or otherwise), as advocated in paper 98-113.

e Generic function references that have identical actual argument characteristics, and that
therefore cannot now be resolved, could sometimes be resolved.

As a special case, if one considers a literal of an enumeration type to be a pure function
having zero arguments, it becomes possible to allow different enumeration types to have
literals having the same name. E.g., the following type definitions can coexist:

TYPE :: COLOR => UNORDERED(RED, GREEN, BLUE)

Straw Vote

J3/98-171r1
Page 7 of 8

TYPE :: NAMES => UNORDERED(WHITE, BROWN, BLACK, GREEN, BLUE)

(Yes, 1 know the usual syntax to reference argument-less functions includes an empty
actual argument list in parentheses. What is proposed here is only a sophistry to simplify
explanation, not a definition or implementation.)

It would be useful to extend to user-defined types what is already done automatically for intrin-
sic types: When different types or kinds of numbers are combined, there are rules that specify
which “conversion constructor” to invoke, and thence which “operator function” to invoke.
For example, in 0.5d0 + 3 the REAL “conversion constructor” with KIND = KIND(0.5d0)
is applied to 3 and then the double precision real add operator function is invoked. A “con-
version constructor” is a function that has the same generic name as a type, and has one
INTENT(IN) argument (except that INTEGER and COMPLEX are spelled INT and CMPLX, respec-
tively). An intrinsic conversion function with a KIND argument is considered to have only one
argument; the KIND argument is considered to be an indication of the result type’s kind. To
be consistent with parameterized derived type constructors, intrinsic constructors (REAL, INT,
etc.) should be changed to allow the parameterization in the same syntactic position. Thus
REAL(3,KIND(0.5d0)) could alternatively be written REAL(KIND(0.5d0))(3). If explicitly
typed expressions were allowed (see paper 98-178), and if the result type could participate in
resolving generic function references, and if it were possible to apply conversion constructors au-
tomatically, the above expression could be equivalently written 0.5d0 + REAL(KIND(0.5d0))
:: REAL(3) and 0.5d0 + REAL(KIND(0.5d0)) :: 3.

It is not an open problem to decide the resolution. It has been explained in the Ada-83 standard
(ANSI/MIL-STD-1815A), and in numerous books on functional programming (e.g. Anthony
J. Field and Peter G. Harrison, Functional Programming, Addison-Wesley (1988) Chapter
7). Here’s an attempt at an initial superficial explanation. Maybe it works.

In the sequel, operand and actual argument are interchangable, and operator, function, operation
and subroutine are interchangable. For example, in ¢« = b + ¢, the operation “=" may be
implemented by a subroutine, the operator “+” may be implemented by a function, and the

operands a, b and ¢ may be actual arguments.

To resolve a generic reference, one analyzes a statement from the “outside inward.” If one had
an attributed parse tree or equivalent representation, one would analyze it from the the root
toward the leaves, starting with the set of all possible operators or operations that the root of
the tree might represent.

1. For each dummy argument position, construct the set of all possible characteristics — the
union of dummy argument types for all possible operations.

2. For each actual argument, construct the set of all possible characteristics.

3. For each argument position, intersect the set of possible dummy argument characteristics
with the set of possible actual argument characteristics.

4. Remove each operation for which the set of possible actual argument types does not
include the dummy argument type, for any argument position. This will remove operator-
operand possibilities that do not have the correct number of arguments.

5. Remove each operand type that is not in the set of possible dummy argument types, at
each position. Repeat the previous step and this one if either one removes anything.

6. Repeat this process for every actual argument that is a function result.

J3/98-171r1
Page 8 of 8

If anything changes during an iteration, it is repeated starting at the root. The iteration may
converge faster if it is repeated alternately starting from the root and leaves, or if started
initially from the leaves. When a fixed point is reached, if there is any operand for which there
are zero possible interpretations of its type, apply all visible “conversion constructors” to the
set of original types of the operand, and start over again. Be careful of introducing a loop in
this step. E.g. don’t apply INT(REAL(INT(REAL...))).

Ultimately, there are three possibilities:

e At least one operation, or the type of at least one operand has two possible interpretations,
and no operations or operand types have zero possible interpretations. The program is
ambiguous. If one of the interpretations is correct, the program can be repaired by
providing an explicit conversion or type mark (see paper 98-178).

e Every operation, and the type of every operand, has exactly one possible interpretation.
The program is correct as it stands.

e At least one operation, or the type of at least one operand, has zero possible interpreta-
tions. The program is incorrect.

