
J��������r�
Page � of �

Date� � July ����
To� J�
From� Van Snyder
Subject� A single mechanism to support C TYPEDEF and enumerations
References� ������� ����	
r�� ����
�� ����
r�� ������

� Introduction

We propose here three mechanisms to provide functionality similar to TYPEDEF declarations in C�
which was advocated in paper ����
r�� Interoperability Syntax �part ��� This has substantially
broader applicability than supporting interoperability with C�

Enumeration types were apparently proposed in a tutorial during meeting �	
� but I was not
able to attend� and have not yet seen the slides �paper ����
�� Slides from ENUM tutorial�
has not been posted to the server�� Enumeration types were presumably advocated to support
interoperability with C� but have substantially broader applicability� A mechanism to declare
enumeration types is proposed in this paper� rather than in a separate paper� because it is
similar to the second mechanism proposed for type rede�nition�

All mechanisms proposed herein are proposed as extensions of type declaration�

No new statement keywords are advocated� Two new intrinsic functions are proposed to sup�
port one of the methods of type rede�nition� Two new intrinsic functions� and expanded
interpretation of an existing one� are advocated to support enumeration types� It is also ad�
vocated to re�examine whether function result types should participate in generic resolution�
This would also be necessary to support the functionality of the simpli�ed syntax advocated in
paper ������� Constants for Opaque Data Types�

��� Summary of methods of type rede�nition

The �rst method of type rede�nition expands extensible types by allowing to extend intrinsic
types� The advantages are that no new mechanism is necessary � just an expansion of type
extensibility � and rede�ned types de�ne new types� which can therefore be used for generic
resolution� The disadvantage is that special cases� clumsy circumlocutions� or additional new
mechanisms are necessary to make obviously desirable things work� Some of the new mecha�
nisms have already been proposed for other purposes�

The second method introduces a new mechanism by which type synonyms� not new types� are
de�ned� The advantage is that obviously desirable things work� The disadvantages are that a
new mechanism is necessary� and type synonyms cannot be used for generic resolution if they
are synonyms for the same �real� type�

The third method � the simplest one � was recently proposed to me informally by Malcolm
Cohen� and perhaps more formally at an earlier time� It allows to put TYPE�� around intrinsic
types� and then rename them during USE association� There is the slight irregularity that
the �constructors� REAL and LOGICAL exist� while the �constructors� INTEGER and COMPLEX

are unfortunately spelled INT and CMPLX� This could be repaired simply by de�ning intrinsic
�constructors� INTEGER and COMPLEX identical to INT and CMPLX� respectively� This method has
the advantage of simplicity �so much so that nothing more is said here�� and the disadvantage
of requiring construction of a module for the purpose of renaming a type�

J��������r�
Page � of �

� First method of type rede�nition

The �rst method of type rede�nition expands the applicability of type extension� by allowing
to extend intrinsic types� This method requires no changes to existing syntax�

Types de�ned in this way are new types� as are all other extended types�

No new restrictions appear to be necessary� from the viewpoint of linguistic consistency� but
some may be desirable from the viewpoint of implementability� Prohibiting polymorphic ob�
jects of a class that begins at an intrinsic type or an extension of one complicates inheritance
of intrinsic procedures de�ned on intrinsic types� There seems to be no need to prohibit addi�
tional components in extensions of intrinsic types� whereas prohibiting them would introduce
an irregularity� Intrinsic operations on extensions of intrinsic types could be de�ned to be
non�overridable� but this� too� may be unnecessary �perhaps even undesirable��

We propose here that a type that is an extension of a parameterized type is a parameterized
type� If the base type is an intrinsic type� for which a default parameterization exists� use of the
new type in an object declaration without parameterization results in its use with the default
parameterization� use to de�ne another type de�nes another parameterized type� Thus� the
following are legal

TYPE� EXTENDS�REAL� �� MYREAL� END TYPE MYREAL � A parameterized type

TYPE�MYREAL�KIND��	�D���� �� MYVAR
 � Double precision real

TYPE�MYREAL� �� MYVAR� � Single precision real

It would be convenient if an extended type inherits existing properties from the type from which
it is de�ned� and values without explicit construction� so that the following would be legal�

TYPE� EXTENDS�LOGICAL� �� REWIND� END TYPE REWIND

TYPE�REWIND� �� I � 	false	

IF �I� REWIND
�

The second statement is� at present� opposite to the rules of extensible type assignment� One
might remedy the problem by allowing assignment of an object of parent type to an object of
descendant type if the descendant type adds no new components� The alternative is to require
an explicit constructor� so that the second statement above becomes

TYPE�REWIND� �� I � REWIND�	false	�

The third statement is at present completely unde�ned because the possibility of extending
intrinsic types has not yet been pondered� By the methods explained in section it may
be possible automatically to apply an anonymous �conversion constructor� to convert I from
TYPE�REWIND� to LOGICAL� and� hopefully� expect the �conversion constructor� to come into
existence automatically if the extension has no additional components and no constructor has
been de�ned�

De�ned operations are inherited by rede�ned types� unless over�ridden� Inheriting the de�ned
operations is very useful� for example� if one de�nes

TYPE� EXTENDS�REAL or DOUBLE PRECISION or TYPE�EXTENDED������� �� MYREAL

TYPE�MYREAL� �� X� Y� Z

X � Y � Z � Should use intrinsic assignment and addition if MYREAL

� resolves to REAL or DOUBLE PRECISION� and use defined

� assignment and addition if it resolves to TYPE�EXTENDED�����	

� Similar arguments apply to �� �� �� ��� SIN��� ATAN��� 			

J��������r�
Page � of �

Intrinsic procedures de�ned on intrinsic types should be �inherited� by extensions of intrinsic
types� The syntax isn�t right to consider the intrinsic procedures to be type�bound procedures�
e�g� we don�t write X�SQRT� An alternative is to de�ne the intrinsic procedures to have
polymorphic dummy arguments�

If it were prohibited to de�ne intrinsic operations� e�g� �� to operate on types that extend
intrinsic types� one couldn�t count on the following continuing to work if TYPE�MYREAL� were
changed from TYPE�EXTENDED����� to REAL�

INTERFACE OPERATOR���

MODULE PROCEDURE MYREAL�PLUS

END INTERFACE

CONTAINS

TYPE�MYREAL� FUNCTION MYREAL�PLUS � A� B �

TYPE�MYREAL�� INTENT�IN� �� A� B� 			

END FUNCTION MYREAL�PLUS

To avoid this problem� procedures should be de�ned in terms of base types� while objects are
de�ned in terms of extended types� The correct procedure will be chosen by the usual generic
resolution rules�

� Second method of type rede�nition

To provide functionality similar to the TYPEDEF statement in C� the TYPE statement is extended�

type�de�nition�stmt is TYPE ��access�spec� �� type�name �� type�spec

Notice that ���� is not optional� just as it is not optional in the case of initializing a pointer
object by using ��� NULL��� in a type�declaration�stmt�

If type�spec refers to a parameterized type �intrinsic� derived� or rede�ned�� parameters may
be speci�ed� or deferred by omitting all of them or using ��� for any parameter value� If any
parameter is deferred in type�spec� the rede�ned type is a parameterized type� the �dummy�
parameters of type�name occur in the same order� and have the same names� kinds� and other
characteristics as the deferred parameters in type�spec� If type�spec refers to a parameterized
type for which a default parameterization exists� e�g� REAL� the rede�ned name denotes the
default parameterization when used to declare an object� and the unspecialized parameterized
type when used to de�ne another type�

It is not advocated to allow a list of type�name �� type�spec� as doing so would make it more
di�cult for future extensions to allow attaching attributes to the type�spec� e�g�

TYPE �� A�REAL �� REAL� ASYNCHRONOUS

This mechanism of type rede�nition is a �macro substitution� that does not introduce a new
type� It simply introduces a synonym for an existing type� perhaps indirectly by way of a
previously de�ned synonym� The �real� type in terms of which a synonym is de�ned� not the
new synonym or a previously existing one� is used for generic resolution�

A rede�ned type cannot be used to resolve generic procedures if it is a synonum for the type
of a corresponding argument� Thus one could not be con�dent that the following is portable�

MODULE			

TYPE �� SP �� REAL�SELECTED�REAL�KIND���
���

J��������r�
Page 	 of �

TYPE �� DP �� REAL�SELECTED�REAL�KIND�
��
���

INTERFACE SUB

MODULE PROCEDURE SUB�SP� SUB�DP

END INTERFACE

CONTAINS

SUBROUTINE SUB�SP � ARG �

TYPE�SP� �� ARG

END SUBROUTINE SUB�SP

SUBROUTINE SUB�DP � ARG �

TYPE�DP� �� ARG

END SUBROUTINE SUB�DP

END MODULE 			

� Enumeration types

To declare enumeration types and their literals� the TYPE statement is extended by a syntax
similar to the second one proposed for type rede�nition�

type�de�nition�stmt is TYPE ��enum�spec�list � �� type�name �� literals

enum�spec is access�spec
or BIND�C�

literals is ORDERED ��kind�selector��
� ordered�enum�list �

or UNORDERED ��kind�selector��
� unordered�enum�list �

ordered�enum is named�constant � � explicit�shape�spec � �

unordered�enum is named�constant
� � scalar�int�initialization�expr �

Values of enumeration types are represented by integers�

If BIND�C� is speci�ed� C representational rules apply� kind�selector is not allowed� and scalar�
int�initialization�expr� if any� shall have default integer kind� Is it better to ignore the kind� J� note

If kind�selector is not speci�ed� the kind of integer used to represent ordered enumerations�
or unordered enumerations for which no scalar�int�initialization�expr is provided� is separately
selected for each enumeration type by the processor�

If kind�selector is not speci�ed and a scalar�int�initialization�expr is speci�ed� the kind of the
representation is the kind of the scalar�int�initialization�expr� If more than one scalar�int�
initialization�expr is speci�ed� they shall all have the same kind� If kind�selector is speci�ed�
the kind of every scalar�int�initialization�expr shall be the kind speci�ed by kind�selector�

Notice that ���� is not optional� just as it is not optional in the case of initializing a pointer
object by using ��� NULL��� in a type�declaration�stmt�

The intrinsic function INTmay be used to retrieve the numeric representation of an enumeration
literal� In the case of ordered enumerations� or of unordered enumerations in which no explicit
value is provided for the k �th literal� the �rst literal is represented by zero� and the k �th literal
is represented by SIZE�k�� �th literal� � INT�k�� �th literal��

For unordered enumerations� or for ordered enumerations for which explicit�shape�spec is not
speci�ed� the size is one�

J��������r�
Page
 of �

If explicit�shape�spec is speci�ed for an ordered enumeration� the size must be positive� If E is
an enumeration literal with bounds e��e�� E�e�� denotes the �rst value� etc�� E and E�k � l� are
sequences of values of the type of E� and INT�E� and INT�E�k � l�� are sequences of integers�

It is possible for two literals of an unordered enumeration type to have the same representation�

The intrinsic function KIND may be applied to the result of applying INT to a value of enumer�
ation type to determine the kind of integer used to represent values of the type �exept maybe
not for BIND�C� enumerations��

Should KIND be directly applicable to values of enumeration types� Straw Vote

The only intrinsic operations de�ned on values of unordered enumeration types are assignment
���� equality �	EQ	 or ���� and inequality �	NE	 or ����

Additional features of ordered enumerations

� All numeric relational operators are de�ned on values of ordered enumeration types�

� Values of ordered enumeration types may be used in SELECT CASE constructs and DO

constructs�

� TINY and HUGE are de�ned for ordered enumeration types� and return the �rst and last
literal of the type� respectively �not an integer�� Thus if one has a variable E of an ordered
enumeration type� it is permitted to write DO E � TINY�E�� HUGE�E�� to use TINY�E�

and HUGE�E� for array dimensions� etc�

� Values of ordered enumeration types may be used in array dimensions and subscripts� If
an array has a dimension bound given by a value of an ordered enumeration type� the
other bound of that dimension shall be of the same type� or omitted �in which case it is
taken to be TINY or HUGE� as appropriate�� and a subscript for that dimension shall be of
the same type as the bound� An omitted lower or upper bound of a subscript triplet is
taken to be TINY or HUGE� respectively� An increment of a subscript triplet is an integer�
Should increments of subscript triplets of enumeration types be prohibited� Straw vote

� An elemental constructor having the same name as the type is de�ned� It takes a single
integer argument and returns a value of the enumeration type� �It would be cool be able
to raise an exception if an out�of�range argument is used�� One can guard against an
out�of�range argument by writing� e�g�

IF � I �� INT�TINY�E�� 	AND	 I � INT�HUGE�E�� � E � type�of�E��I�

� Two elemental intrinsic functions are de�ned� say SUCC and PRED �spelling negotiable�
that return the successor and predecessor of a value of an ordered enumeration type� The
result is the same type as the argument� not an integer�

Should SUCC and PRED be provided� Straw Vote

Should SUCC�last�literal� be an error� or �rst�literal� If it�s an error� it would be cool to
be able to raise an exception� The obvious anti�symmetric question applies to PRED� One
can guard against the error similarly to guarding against the error in the constructor�

SUCC�E�� type�of�E��
�INT�E�� or type�of�E��MOD�
�INT�E��
�INT�HUGE�E����� Straw Vote

J��������r�
Page of �

� Syntax of reference to user�de�ned types

User�de�ned types � derived types� type rede�nitions� or enumeration types � can be referenced
by using TYPE�type�name��type�parameters����

If a user�de�ned name is not identical to an intrinsic type� or attribute name� or ORDERED or
UNORDERED� it would not be ambiguous to allow a simpli�ed syntax consisting of the type name
alone� so long as �� is present� or on the right�hand�side of �� in a type�de�nition�stmt�

For example� if one de�nes TYPE �� REWIND �� LOGICAL� the rede�ned type REWIND could
be accessed� without change to existing syntax rules by using TYPE�REWIND� I� If it were
agreed to allow a simpli�ed syntax of usage� it would not be ambiguous to allow REWIND �� I�
The latter would be ambiguous without the �� symbol� If one de�nes TYPE �� REAL ��

TYPE�EXTENDED����� then REAL �� X would be ambiguous�

Should the simpli�ed syntax be allowed at this time� �I think it�s too much of a mess to describe Straw Vote
and to understand the exceptions to be worth the trouble��

��� Suggestion for writing standardese

Introduce Discrete and Continuous classi�cations of types� Types INTEGER� LOGICAL and
enumeration types are discrete� REAL and COMPLEX are continuous� Derived types are
neither� Or� INTEGER is an ordered enumeration� and LOGICAL is an unordered enumeration
�except it�s allowed in SELECT CASE��

Introduce the term de�ned type to include derived types� rede�ned types� and enumeration
types� This allows to prohibit� all at once� that none may appear in COMMON or EQUIVA�
LENCE�

� Allowing function result type to participate in generic reso�

lution

At present� the result of a function does not participate in generic resolution� Including the
function result type in the criteria to resolve generic function references would not invalidate
any program that conforms to the Fortran �
 standard� if doing so is used only as a last resort
when the arguments are insu�cient�

If the result type were used in generic resolution� at least two presently impossible things become
possible �one can debate whether these are bene�ts��

� It would be possible in many cases to apply automatically what in C�� are called �con�
version constructors��

As a special case� It becomes possible to use a character value to invoke a value constructor
for a derived type �opaque or otherwise�� as advocated in paper �������

� Generic function references that have identical actual argument characteristics� and that
therefore cannot now be resolved� could sometimes be resolved�

As a special case� if one considers a literal of an enumeration type to be a pure function
having zero arguments� it becomes possible to allow di�erent enumeration types to have
literals having the same name� E�g�� the following type de�nitions can coexist�

TYPE �� COLOR �� UNORDERED�RED� GREEN� BLUE�

J��������r�
Page � of �

TYPE �� NAMES �� UNORDERED�WHITE� BROWN� BLACK� GREEN� BLUE�

�Yes� I know the usual syntax to reference argument�less functions includes an empty
actual argument list in parentheses� What is proposed here is only a sophistry to simplify
explanation� not a de�nition or implementation��

It would be useful to extend to user�de�ned types what is already done automatically for intrin�
sic types� When di�erent types or kinds of numbers are combined� there are rules that specify
which �conversion constructor� to invoke� and thence which �operator function� to invoke�
For example� in �	�d� � � the REAL �conversion constructor� with KIND � KIND� �
d �
is applied to � and then the double precision real add operator function is invoked� A �con�
version constructor� is a function that has the same generic name as a type� and has one
INTENT�IN� argument �except that INTEGER and COMPLEX are spelled INT and CMPLX� respec�
tively�� An intrinsic conversion function with a KIND argument is considered to have only one
argument� the KIND argument is considered to be an indication of the result type�s kind� To
be consistent with parameterized derived type constructors� intrinsic constructors �REAL� INT�
etc�� should be changed to allow the parameterization in the same syntactic position� Thus
REAL���KIND��	�d��� could alternatively be written REAL�KIND��	�d������� If explicitly
typed expressions were allowed �see paper �������� and if the result type could participate in
resolving generic function references� and if it were possible to apply conversion constructors au�
tomatically� the above expression could be equivalently written �	�d� � REAL�KIND��	�d���

�� REAL��� and �	�d� � REAL�KIND��	�d��� �� ��

It is not an open problem to decide the resolution� It has been explained in the Ada��� standard
�ANSI�MIL�STD����
A�� and in numerous books on functional programming �e�g� Anthony
J� Field and Peter G� Harrison� Functional Programming� Addison�Wesley ������ Chapter
��� Here�s an attempt at an initial super�cial explanation� Maybe it works�

In the sequel� operand and actual argument are interchangable� and operator� function� operation
and subroutine are interchangable� For example� in a � b 	 c� the operation ��� may be
implemented by a subroutine� the operator ��� may be implemented by a function� and the
operands a� b and c may be actual arguments�

To resolve a generic reference� one analyzes a statement from the �outside inward�� If one had
an attributed parse tree or equivalent representation� one would analyze it from the the root
toward the leaves� starting with the set of all possible operators or operations that the root of
the tree might represent�

�� For each dummy argument position� construct the set of all possible characteristics � the
union of dummy argument types for all possible operations�

�� For each actual argument� construct the set of all possible characteristics�

�� For each argument position� intersect the set of possible dummy argument characteristics
with the set of possible actual argument characteristics�

	� Remove each operation for which the set of possible actual argument types does not
include the dummy argument type� for any argument position� This will remove operator�
operand possibilities that do not have the correct number of arguments�

� Remove each operand type that is not in the set of possible dummy argument types� at
each position� Repeat the previous step and this one if either one removes anything�

� Repeat this process for every actual argument that is a function result�

J��������r�
Page � of �

If anything changes during an iteration� it is repeated starting at the root� The iteration may
converge faster if it is repeated alternately starting from the root and leaves� or if started
initially from the leaves� When a �xed point is reached� if there is any operand for which there
are zero possible interpretations of its type� apply all visible �conversion constructors� to the
set of original types of the operand� and start over again� Be careful of introducing a loop in
this step� E�g� don�t apply INT�REAL�INT�REAL			����

Ultimately� there are three possibilities�

� At least one operation� or the type of at least one operand has two possible interpretations�
and no operations or operand types have zero possible interpretations� The program is
ambiguous� If one of the interpretations is correct� the program can be repaired by
providing an explicit conversion or type mark �see paper ��������

� Every operation� and the type of every operand� has exactly one possible interpretation�
The program is correct as it stands�

� At least one operation� or the type of at least one operand� has zero possible interpreta�
tions� The program is incorrect�

