J3/98-172r3

Page 1 of 2
Date: 10 August 1998
To: J3
From: Van Snyder

Subject: Explicitly typed allocations - Rationale, Specs, Syntax
References: 98-146, 98-160

1 Rationale

This paper does not address a specific requirement or minor technical enhancement. Rather, it
addresses issues of integration concerning parameterized derived types and polymorphic data.

In Fortran 95, character length cannot be deferred until allocation. In Fortran 2000, without
change, one will in addition not be able to defer specifying parameters of parameterized derived
types until allocation, nor will one be able to allocate a polymorphic object with a type extended
from its declared type. This paper addresses those deficiencies.

2 Specs

Change the syntax of declarations to indicate that nonkind type parameters are deferred until
allocation.

Extend the syntax of R623 allocate-stmt so that the type and type parameters, in addition to
dimensions, can be specified.

Extend the semantics of allocate to allow specifying a type of a polymorphic object that is
an extension of its declared type.

Extend the semantics of allocatable to scalars, which would be almost silly in Fortran 95,
but makes good sense with parameterized derived type objects and polymorphic objects.

Extend the semantics of pointer assignment and argument association so that deferred param-
eters of the pointer-object or the dummy argument are assumed from those of the target or
actual argument, respectively.

3 Syntax
In a declaration, allow “:” to stand for a deferred nonkind parameter, e.g.
character(len=:), allocatable :: char_arr(:)

One can defer zero or more nonkind parameters. Independently, one can defer zero or all
dimensions.

Extend the syntax of allocate to specify the type and at least all deferred parameters, using
an executable form syntactically identical to type-spec that does not constrain the expressions
for “actual” kind parameters to be specification expressions. E.g.

call calculate_the_length_and_dimension ( n, m )
allocate ( character(len=n) :: char_arr(m) )



J3/98-172r3
Page 2 of 2

If a type-spec appears in an allocate statement, it is required to appear before the first alloca-
tion, and affects all of the allocate-0bjs in the statement. Nonpolymorphic objects are required
to have a type that is the same as the type specified by the type-spec. Polymorphic objects are
required to have a declared type that is the same as the type specified by the type-spec, or a
type from which the type specified by the type-spec is extended.

The “actual” parameters correspond by position or by keyword to the “dummy” parameters,
in exactly the same way that actual procedure arguments correspond to dummy procedure
arguments. Nondeferred parameters need not be specified, subject to the same kinds of rules
as for optional arguments, e.g. if a value is specified by position for parameter &, it is required
to specify values by position for parameters 1, ...,k — 1.

If a value is provided for a nondeferred parameter or dimension bound, it is required to be the
same as the value specified for that parameter or dimension bound in the object declaration.
Otherwise, an error condition exists, that must be signalled. It could be signalled by the
compiler, by a nonzero status value, or by halting the program if no STAT= clause is present.

As in Fortran 95, if the bounds for one dimension are deferred, it is required to defer the
bounds for all dimensions. If the bounds are deferred, it is required to specify them in an
allocate statement or pointer assignment statement. If the bounds are not deferred, they may
be omitted or specified in an allocate statement. If the bounds for one dimension are specified
in an allocate statement, it is required to specify the bounds for all dimensions.



